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Abstract. Capacitated Vehicle Routing Problem (CVRP), as a transportation problem,
is often use the meta-heuristic algorithm to solve it and can obtain an approximate op-
timal solution. Flower pollination algorithm (FPA) is a meta-heuristic algorithm and
we propose an improved flower pollination algorithm (IFPA) in this paper. In IFPA, we
enhance the global search capability of FPA by introducing a random jump perturbation
in the global pollination phase and update the switching probability according to the global
optimal value of each iteration. Then we test the IFPA by CEC2013, IFPA has better
performance in convergence than FPA, particle swarm optimization (PSO), and differ-
ential evolution (DE). Finally, IFPA is also applied to solve CVRP in many instances.
From the test results of the instances, IFPA is more suitable to solve the CVRP problem
than FPA, PSO, and DE.
Keywords: meta-heuristic algorithm, flower pollination algorithm, CEC2013, capaci-
tated vehicle routing problem

1. Introduction. The meta-heuristic algorithm is widely used in transportation prob-
lems. Some meta-heuristic algorithms are population-based algorithm [1, 2]. Differential
Evolution (DE) [3, 4, 5], Ant Colony Optimization [6, 7, 8], Cuckoo Search (CS) [9,
10, 11], Particle Swarm Optimization (PSO) [12, 13, 14], Artificial Bee Colony (ABC)
algorithm [15, 16, 17], Cat Swarm Optimization (CSO) [18, 19, 20], Bat Algorithm
(BA) [ [21, 22, 23] and Grey Wolf Optimization (GWO) [24, 25, 26] were some popular
population-based algorithms. Recently Meng et. al. proposed the QUasi-Ane TRansfor-
mation Evolutionary (QATRE) [27, 28, 29, 30] to implement the DE algorithm based on
the Matrix process to avoid the bias of crossover operation. FPA, proposed by Yang [31],
is a novel meta-heuristic algorithm. PSO is the foraging behavior of natural birds, ABC
mimics bee, and the idea of FPA comes from the pollination mechanism of flowers.

Since the FPA was introduced, many researchers have proposed many improvements.
Dubey et al. proposed a biologically inspired modified FPA, which uses constant factor
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rather than a random number to control the local pollination for increasing convergence,
adding intensive exploitation for exploiting the best solution [32]. Abdel-Raouf et al.
proposed an improved FPA with chaos. Which uses chaotic mapping to determine the
switching probability, levy parameter, and local pollination random number [33]. Wang
uses three strategy to improve FPA, such as local neighborhood search, dimension by
dimension evaluation and improvement, and dynamic switching probability [34]. The
compact FPA is also presented for the layouts of nodes in Wireless Sensor Network [35].
The history of the vehicle routing problem (VRP) can be traced back to Dantzig’s work.

Dantzig in 1959 firstly proposes the truck dispatching problem [36]. Many scholars have
proposed many diverse models for diverse types of VRP and many methods to obtain the
optimal or suboptimal solution of the VRP [37].
VRP is crucial whether in transportation or research. On the one hand, the optimiza-

tion of vehicle usage scheme and vehicle driving path scheme is of great significance for
improving the operation quality of the transportation system. On the other hand, it is
a challenging research subject. One kind of VRP, CVRP is an NP-hard problem [38].
It usually takes a long computational time to get the optimal solution. Therefore, the
meta-heuristic algorithm is often applied to solve the CVRP and obtain an approximate
optimal solution.
Enhanced ABC algorithm, proposed by Szeto, is applied to solve CVRP [39]. Chen

puts forward a new hybrid PSO for solving CVRP, which is hybrid discrete PSO and
simulated annealing, and discrete PSO search optimum and simulated annealing get out
of local optimum [38]. Mazzeo used ant colony algorithm to solve CVRP [40]. Teymourian
proposes two hybrid algorithms for solving CVRP, which hybrid improved intelligent
water drops algorithm and advanced cuckoo search algorithm [41]. Our work has some
benefits and advantages. Comparing with some exact algorithm, such as Branch and
Bound [42, 43], Branch and Cut [44, 45], IFPA is more suitable for large-scale problems
and can obtain satisfactory solutions. Moreover, our work is more reliable because we
test more instances than Wu [46] that just test 10 instances.
In this paper, our work has several contributions. One is to introduce random jump

disturbance in the global pollination of FPA, and make the switching probability change
with the fitness value, thus improving the FPA. The other one is that IFPA can effectively
solve CVRP and get a better solution than the other three algorithms.
The following is the remaining of this paper. In section 2, the CVRP model is described,

FPA and IFPA were described in section 3. In section 4, the experiments of CEC2013
functions [47] and CVRP are described. In section 5, a conclusion is given.

2. CVRP. Minimizing the distance or the total cost for all vehicles is the objective of
CVRP. In this paper, we select distance as our goal. The customer’s total demand on each
route should not surpass the capacity of the vehicles servicing that route. The starting
and ending point is the same depot. The CVRP model is as follows [38, 46]:

min f(X) =

Kvehicle∑
k=1

Nc∑
i=0

Nc∑
j=0

ckijx
k
ij (1)

s. t.

xk
ij=

{
1 if vehicle k travels from customer i to j
0 otherwise

(2)

yki =

{
1 if vehicle k serves customer i
0 otherwise

(3)
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N∑
i=1

diy
k
i ≤ Qk,k= 1, 2,...,Kvehicle (4)

K∑
k=1

ykt = 1,i= 1, 2,...,Nc (5)

N∑
i=0

xk
ij=ykj ,j= 0, 1, 2,...,Nc; k= 1, 2,...,Kvehicle (6)

N∑
j=1

xk
ij=yki ,i= 0, 1, 2,...,Nc; k= 1, 2,...,Kvehicle (7)

N∑
i=0

xk
it=

N∑
j=0

xk
tj,t= 1, 2,...,Nc; k= 1, 2,...,Kvehicle (8)

∑
i,j∈S×S

xk
ij ≤ |S| − 1, S ⊂ {1, 2, ..., N} , S ̸= Φ, k = 1, 2, ..., Kvehicle (9)

where is Nc the number of customers, and Kvehicle is the number of vehicle, ckij is the
distance of traveling from the ith customer to the jth customer by the kth vehicle, di is
the demand of the ith customer. The capacity of the kth vehicle is Qk . The depot is
node 0.

Formula (1) is the objective function that is to minimize the total distance by all
vehicles. In formula (2), if the kth vehicle travels from the ith customer to the jth
customer, xk

ij equals to 1, otherwise equals to 0. In (3), if the kth vehicle serves the ith

customer, yki equals to 1, otherwise equals to 0. Formula (4) shows that total demand in
each route should not exceed vehicles capacity. Formula (5) guarantee that every customer
is served only once. Formula (6) and (7) ensures one vehicle serves one custom. Formula
(8) ensures the continuity of the route so that every car coming in from the customer
point would go out from that point, as well as back to the depot. Finally, formula (9) is
to eliminate sub-loop.

3. FPA and IFPA.

3.1. FPA. It is estimated that tens of thousands of flowering plants exist in nature and
can be seen everywhere. FPA is an algorithm abstracted from the pollination mechanism.
Pollination could be taken by abiotic form or biotic form and achieved through self-
pollination or cross-pollination. FPA as a population-based heuristic algorithm, its local
pollination contains abiotic and self-pollination, which indicates the exploiting in the
search area, its global pollination contains biotic and cross-pollination, which represents
global exploration, the proportion of above two pollination process is controlled by its
switching probability. The global pollination of FPA is modeled as follows [31].

Pollent+1
i = Pollent

i + Levystep × (Pollent
i − Pollen∗) (10)
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where Pollent
i is the ith pollen of the tth iteration, Pollen∗ is the best pollen of the current

iteration among all pollens. In this paper Levystep > 0 and draw from Levy distribution.
FPAs local pollination for exploiting is modeled as follows [31].

Pollent+1
i = Pollent

i + φrand × (Pollent
p − Pollent

q) (11)

where Pollent
p and Pollent

q are pollens from the identical plant diverse flowers, and φrand

is the uniform distribution number in [0,1]. The FPAs pseudo-code shows in Figure 1.

Figure 1. FPA’s pseudo-code.

3.2. IFPA. In terms of software and hardware, FPA has strong practicability. It also has
some shortcomings such as slow convergence rate and worse precision. Given the short-
comings of FPA, we propose an IFPA in this paper. In IFPA, we introduce a random jump
perturbation operator in the global pollination phase that enhances FPAs global search
ability, and a novel switching probability updating strategy that using global optimum to
control the switching probability.
The shortcomings of FPA, such as slow convergence rate and easy to fall into local

solutions, are closely related to its global pollination. When the global pollination area
is more narrow, the solution will easily fall into local solution, while more wide will slow
the convergence rate. How to balance the degree of global pollination is a very important
thing. Therefore, we propose a random jump perturbation, which makes the particle
jump to a randomly designated point around, and controls whether it jumps, whether it
jumps to the point or away from the point by the operator. The randomness of global
pollination is enhanced, and the possibility of jumping out of local solutions is improved.
It is also restricted to a one-step jump to prevent its convergence too slow. The enhanced
global pollination formula is as follows:

Pollent+1
i = Pollent

i + Levystep × (Pollent
i − Pollen∗)+α× (Pollent

i − Pollenk) (12)

where α is the random integer number in [-1,0,1], and Pollenk is the random pollen
different from Pollent

i .
The switching probability controls the ratio of global pollination and local pollination.

When the switching probability is larger, the FPAs global search ability is reinforced,
which is helpful to shun the local optimal solution, but the local pollination is weakened
and the optimization accuracy is low. When the switching probability is smaller, the
situation is reversed.
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Based on this, we design a dynamic switching probability operator. If the optimal value
found at this generation is less than the optimal value found in the previous generation,
we think it may drops into the local optimal solution, so we increase the global pollination
proportion and make the switching probability of the next generation pt+1 = 1.5pt . Con-
versely, we think it approaches the optimal solution, so we increase the local pollination
proportion, that is, reducing the global pollination proportion pt+1 = 0.8pt.

In this section, the step of IFPA will be described. We set the total population is
POPSIZE . Firstly, pollen is initialized randomly, and its fitness value is calculated,
the original switching probability parameter is initialized. Then for each iteration pollen
updates by (12) and (13), and novel switching probability updating strategy is performed
after iteration. While meeting the max number of iteration or calculate fitness is just less
than the threshold fitness, terminate the algorithm. The following are the detailed steps.

Step 1. Initialization: Produce POPSIZE pollens Pollent with D dimensions, where
POPSIZE is pollen number, t is the present iteration and set t = 1 , initialize switching
probability p=0.8 .

Step 2. Evaluation: Calculate f(Pollent
i) for the ith pollen. Find the populations best

pollen Pollen∗ and its fitness.
Step 3. Pollen Update: According to the present switching probability, the ith pollen

Pollent
i choose enhanced global pollination by (12), or local pollination by (11), to gener-

ate new pollen Pollent+1
i . In (12), α is the random integer number in [-1,0,1]. Calculate

f(Pollent+1
i ) . Update pollen, when new pollens are better. Update the best pollen

Pollen∗ and its fitness in population.
Step 4. Perform Strategy: For every iteration, Comparing best pollens fitness of this

iteration with that of the previous iteration. If its no better than that of the previous
iteration, update the switching probability with pt+1 = 1.5pt, otherwise, pt+1 = 0.8pt.

Step 5. Termination: Step 3 to 5 are repeated until reaching the given threshold fitness,
or maximum iteration. Finally, record the best fitness f (Pollen∗) and best pollen Pollen∗
among the population.

3.3. Solution representation. Both the FPA and the IFPA are continuous optimization
algorithms, which are often used in continuous optimization problems. For CVRP is a
discrete problem, we need to encode and decode each solution, that is, to discretize the
FPA and IFPA algorithm.

There are many papers about continuous optimization algorithms to discrete for solving
the CVRP problem, such as Wu proposes a real number encoding method, solutions
dimension equals to the number of custom, and the decoding only requires a sorting and
integer operation [46]. Szeto also proposes a real number encoding method, the solution
is n + m dimensions, that is m vehicles and n customers, and the path is the sequence of
numbers between the two zeros in the solution [39]. Ai et al. propose another real number
coding method named SR-1. the solution is n + 2m dimensions. Each solution has n
dimension that is corresponding to customers, and the 2m dimension is the coordinate of
vehicles. The n-dimensional customer produces the customer priority matrix, and the 2m
dimensional produces the vehicle priority matrix. The path is obtained by combining the
two matrices, that is, the feasible solution [48].

In this paper, the SR-1 encoding method is used for encoding, and local optimization
methods such as 2-opt, 1-1 exchange, and 1-0 exchange are adopted [48].

4. Experiment and Application. We utilized 28 benchmark functions of the CEC2013
to test our proposed algorithm comparing with PSO [12],FPA [31],and DE [49]. Detail
function is shown in table 1, and experimental results are shown in table 2 to 6. Next,
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we select some functions convergence curves to compare the rate of convergence of 4
algorithms, details are shown in figure 2 to 6. Finally, we apply the IFPA to solve the
CVRP, the result is shown in table 7 to 8.

Table 1. Function of CEC2013.

No. Type Optimum No. Type Optimum

F1 Unimodal -1400 F15 Basic Multimodal 100
F2 Unimodal -1300 F16 Basic Multimodal 200
F3 Unimodal -1200 F17 Basic Multimodal 300
F4 Unimodal -1100 F18 Basic Multimodal 400
F5 Unimodal -1000 F19 Basic Multimodal 500
F6 Basic Multimodal -900 F20 Basic Multimodal 600
F7 Basic Multimodal -800 F21 Composition 700
F8 Basic Multimodal -700 F22 Composition 800
F9 Basic Multimodal -600 F23 Composition 900
F10 Basic Multimodal -500 F24 Composition 1000
F11 Basic Multimodal -400 F25 Composition 1100
F12 Basic Multimodal -300 F26 Composition 1200
F13 Basic Multimodal -200 F27 Composition 1300
F14 Basic Multimodal -100 F28 Composition 1400

Search Range: [−100, 100]D

4.1. Experiment with CEC2013 function. In the CEC2013 test, for the randomness
of the meta-heuristic algorithm and comparing fairly, algorithms run independently for
51 times. For D=2, the iteration is 400. For D=5, the iteration is 800. For D=10,
the iteration is 1000. For D=20, the iteration is 1500. For D=30, the iteration is 2000.
Four algorithms maximum function evaluation is the same in different dimensions, for
each algorithm has the same function evaluation in each iteration. The range of each
dimension of the decision variable is [-100,100]. The learning factor of PSO, c1 and c2
equal to 2, and the inertia constant ω equals to 0.8, the number of population is 400.
FPA and IFPAs switching probability p=0.8 and λ = 1.5 . The number of pollen is 400,
As for DE, F=2 and CR=0.9. Therefore, the result obtained is reliable.
Table 1 shows that, the diversity of test functions guarantees the reliability of our

experiment. Table 2 to 6 show the algorithm result of D=2, 5, 10, 20, 30. In each table,
the data form is Mean/Std, and in the final line, the form is the recording best number
in Mean/ Std. The Mean is the mean value of 51 runs and Std is stand deviation. In
each table, if an algorithm achieves the best of the four algorithms in a function test, the
number of records is increased by one. Note that two algorithms get the same best results
in the same function, we record both algorithms getting the best results.
As shown in Table 2, with D=2, In mean value, IFPA achieves the best of the four

algorithms in 19 functions. As for standard deviation, IFPA obtains the best in 20
functions. From table 3, with D=5, the IFPA obtains a better convergence precision
effect in 18 test functions in Mean item. In the Std item, IFPA is more stable than other
algorithms in 17 functions. In table 4, with D=10, the IFPA has the better mean than
others in Mean item, but it has the approximate stability in standard deviation with FPA.
In table 5 and 6, whether in Mean item or Std item, IFPA achieves the best result in
most function than the other 3 algorithms. IFPA has better convergence precision and
stability than FPA, PSO, and DE.
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Table 2. Mean/Std result of algorithms with D=2.

No. IFPA FPA PSO DE

F1 0/0 1.87e-07/2.01e-07 0/0 0/0
F2 0/0 2.21e-09/3.39e-09 3.37e-12/8.97e-12 2.18e-13/2.23e-13
F3 3.12e-13/8.25e-13 1.34e-06/2.65e-06 2.72e-11/7.31e-11 9.46e-12/9.77e-12
F4 0/0 1.19e-09/1.31e-09 4.55e-12/8.46e-12 2.63e-13/2.6e-13
F5 0/0 2.88e-05/2.37e-05 1.02e-09/2.45e-09 0/0
F6 0/0 3.53e-07/3.99e-07 0/0 0/0
F7 6.92e-07/2.38e-07 0.083102/0.045169 9.10e-08/1.23e-07 2.19e-05/9.93e-06
F8 1.76e-07/2.40e-07 1.2018/0.70158 3.87e-08/6.42e-08 5.08e-07/3.71e-07
F9 4.70e-04/2.73e-04 1.32e-02/4.62e-03 2.89e-03/2.06e-02 7.59e-05/1.27e-04
F10 7.05e-07/1.01e-06 3.58e-03/2.47e-03 3.51e-09/1.67e-08 4.45e-04/4.73e-04
F11 0/0 0.001201/0.001071 0/0 0/0
F12 0/0 2.31e-03/2.35e-03 0/0 1.23e-10/2.58e-10
F13 0/0 2.96e-03/3.59e-03 0/0 3.30e-12/6.59e-12
F14 6.64e-13/3.49e-12 9.96e-02/9.04e-02 1.85e-02/7.42e-02 6.42e-06/2.12e-05
F15 2.21e-05/4.67e-05 8.09e-02/7.44e-02 5.51e-02/1.20e-01 0.14206/0.13946
F16 0.07264/0.045947 0.053375/0.03245 0.084802/0.068451 1.44e-02/8.73e-03
F17 8.33e-03/8.16e-03 0.10403/0.082287 0.0067931/0.02717 0.012614/0.010241
F18 0.05494/0.037594 0.14435/0.070128 0.090263/0.39181 0.12375/0.075685
F19 0/0 3.74e-07/7.70e-07 0/0 0/0
F20 3.78e-06/4.87e-06 1.09e-02/6.58e-03 7.66e-04/3.81e-03 1.28e-03/1.21e-03
F21 1.07e-10/1.05e-10 0.30095/0.17872 7.45e-08/1.02e-07 1.99e-08/1.48e-08
F22 7.75e-10/1.25e-09 0.56451/0.43635 7.50e-08/2.52e-07 9.73e-07/9.34e-07
F23 2.33e-05/4.08e-05 1.331/1.0559 2.46e-08/3.10e-08 3.97e-05/4.39e-05
F24 1.29e-08/2.65e-08 0.10127/0.070979 3.60e-09/4.12e-09 1.23e-06/1.05e-06
F25 1.80e-08/2.54e-08 0.30529/0.24379 2.29e-08/3.07e-08 2.97e-07/2.02e-07
F26 1.08e-08/2.66e-08 0.017173/0.013251 8.55e-03/6.09e-02 4.55e-05/1.45e-04
F27 0.32485/0.53116 9.6213/5.6215 0.15043/0.33134 0.6618/0.46372
F28 1.64e-10/2.17e-10 0.31096/0.24254 6.39e-08/6.66e-08 3.23e-08/1.59e-08

Total 19/20 0/0 13/12 7/7

Figure 2 to 6 is the convergence curves of IFPA, FPA, PSO, and DE in CEC2013.
As shown in figure 2, with D=2, the blue curve is IFPA, the red curve is FPA, and the
yellow curve is PSO and the line with the right-pointing triangle marker symbol is DE.
In figure 2, we iterate 400 times and take 4 samples for every 100 iterations to plot the
convergence curves. The optimization curves of F14, F15, F20, F26 reflect the IFPA has
a better convergence rate than FPA, PSO, and DE. Similarly, in Figure 3 to 6, the curves
are about four algorithms at D=5, 10, 20, 30. IFPA has a good rate of convergence than
FPA, PSO, and DE.

4.2. CVRP Application. In this section, we apply IFPA, FPA, PSO, and DE for solv-
ing CVRP. Just as CVRP is a discrete problem, we use SR-1 methods for solution rep-
resentation and decoding. We test in 26 instances of A and 22 instances of B. For more
effectively, we run 10 times for getting more reliable data. The particles or pollens are 50.
The iteration is 1000. The other parameters are the same as above mentioned. The CVRP
experiment is shown in table 7 to 8. As is shown in table 7, IFPA, FPA, PSO, and DE
are tested in 26 instances, such as A-n32-k5. A-n32-k5 means 32 points including depot.
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Table 3. Mean/Std result of algorithms with D=5.

No. IFPA FPA PSO DE

F1 0/0 7.81e-05/3.26e-05 0/0 0.51347/0.23659
F2 1.01e-10/7.70e-11 1.22e-02/8.90e-03 0/0 1.29e+04/4.93e+03
F3 6.16e-05/6.21e-05 455.5759/392.846 5.0084/23.8662 3.06e+5/1.63e+5
F4 7.89e-13/5.59e-13 7.04e-03/3.18e-03 0/0 321.3541/132.8914
F5 0/0 1.48e-03/5.38e-04 4.41e-11/9.60e-11 0.22899/0.088351
F6 4.31e-09/4.03e-09 1.85e-03/1.32e-03 0.9249/1.684 0.7528/0.24972
F7 0.071877/0.026677 2.1302/0.63397 0.36214/0.54636 3.2476/0.85147
F8 11.0371/4.7572 15.0488/3.9881 15.8611/8.0451 14.8774/2.4767
F9 0.74865/0.16424 0.57891/0.17962 0.61816/0.58909 1.8228/0.27069
F10 0.047564/0.013241 0.06869/0.019296 0.154/0.099475 1.0703/0.15078
F11 7.30e-09/1.75e-08 1.7728/0.4158 3.5701/2.7871 6.1993/1.4919
F12 0.97526/0.44587 2.1412/0.68232 3.1021/1.7646 9.2642/1.8296
F13 1.1133/0.51809 2.3675/1.0669 4.9868/2.3768 9.9102/2.3477
F14 1.5731/0.80576 34.7244/18.0338 132.67/91.474 128.4688/49.9083
F15 77.1249/36.0592 66.4823/40.8411 128.347/90.1638 222.477/68.1575
F16 0.45206/0.10925 0.3015/0.067634 0.35045/0.20416 0.51869/0.12252
F17 4.2517/1.173 5.8637/1.7956 6.2929/1.9921 14.6506/2.1267
F18 5.6477/1.1148 6.3041/1.6026 6.9291/1.4929 15.9153/2.706
F19 0.037976/0.038452 0.10808/0.047396 0.21276/0.092409 0.69442/0.19399
F20 0.29899/0.074889 0.52189/0.14732 0.28232/0.26971 0.70315/0.12869
F21 31.2294/46.312 19.3249/20.963 231.3725/104.8622 153.6254/20.0888
F22 150.062/25.1565 195.3489/51.1928 338.8589/146.7542 373.5481/71.197
F23 269.0217/45.3829 269.9081/41.8249 316.7802/145.0557 441.5375/86.7905
F24 57.0541/27.8568 78.8627/20.0993 96.3009/32.4902 93.4406/22.2511
F25 91.3159/23.3488 104.125/9.2509 106.165/2.8333 108.6289/10.6242
F26 34.0242/23.4768 29.4642/16.9507 85.141/36.0697 70.7598/18.9784
F27 294.4923/46.5782 261.3828/49.422 312.1647/41.8169 311.5479/39.8722
F28 68.6314/46.8564 60.254/39.1287 241.1765/125.1822 151.7258/14.6781

Total 18/17 7/4 4/4 0/4

Customs are serviced by 5 vehicles, and the best-known solution result is 784. Symbols
like M in the table refer to the mean value of 10 runs. Symbols like S in the table refer to
the stand deviation of 10 runs. The last line of table 7 is to calculate the performance of
each algorithm in each instance. If an algorithm achieves the best result in an instance,
then its corresponding term (Mean/ Stand Deviation) is added to 1. Whether in Mean
item or Stand Deviation item IFPA performs better than the other three algorithms.
IFPA has 17 best performances in Mean item and 13 in Stand Deviation item. Similarly,
in table 8, 22 instances are used to test the algorithms, the parameters are the same as
the above mentioned. From table 8, IFPA gets 13 better performance in Mean item and
Stand Deviation. And Figure 7 is the route map of IFPA on A-n46-k7 instance in the 9th
run. On the whole, the IFPA we proposed has better convergence accuracy and stability
than FPA, PSO, and DE in CVRP.

5. Conclusions. we propose IFPA in this paper, which is enhanced by random jump
perturbation operator and its switching probability varies with the global optimum of
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Table 4. Mean/Std result of algorithms with D=10.

No. IFPA FPA PSO DE

F1 6.36e-09/2.15e-09 0.065679/0.016957 0/0 1.03e+03/2.61e+02
F2 3.01e-03/1.07e-03 534.7903/156.5574 5.10e-11/2.14e-10 6.18e+06/2.09e+06
F3 3.81e+06/1.48e+06 1.27e+07/4.89e+06 1.11e+06/5.29e+06 2.06e+09/5.04e+08
F4 1.19e-05/1.06e-05 36.7133/10.6556 2.36e-13/2.13e-13 9.27e+03/2.38e+03
F5 7.26e-06/1.78e-06 0.28127/0.055384 4.12e-07/7.70e-07 69.5393/12.8463
F6 2.04e-03/8.53e-04 0.09001/0.063173 0.62535/1.4642 83.4214/16.3068
F7 14.0407/2.885 36.8664/5.8414 27.5713/22.4623 67.2262/8.6703
F8 20.2718/0.055033 20.2731/0.064192 20.3044/0.059066 20.2513/0.068758
F9 4.7602/0.61592 5.0435/0.49091 4.7367/1.5897 8.0841/0.53867
F10 0.15883/0.028049 0.15119/0.019017 0.37457/0.27929 140.8073/32.7892
F11 7.8359/1.2888 14.8415/2.3642 29.3414/12.9624 60.1365/7.5711
F12 16.1268/2.8026 23.0094/4.5841 26.259/12.4732 71.1428/8.1376
F13 19.0003/3.7562 30.9777/5.1307 33.3101/9.8706 69.5204/8.8836
F14 331.9764/103.3957 375.9019/70.3603 913.4666/299.0018 1145.9695/133.0936
F15 905.9532/145.697 666.3938/85.8658 838.6646/312.1282 1347.0284/130.3205
F16 0.90926/0.12904 0.70121/0.11803 0.45422/0.37162 0.93323/0.13905
F17 29.802/4.2068 37.5183/4.6169 28.8639/9.0038 114.4804/11.5771
F18 37.5978/4.6184 42.9112/6.0584 27.7559/9.5898 112.9044/12.3419
F19 1.4639/0.23712 1.2385/0.20948 1.2731/0.54824 19.9641/7.7656
F20 3.0182/0.1694 3.2515/0.15586 3.1036/0.51009 3.7233/0.20011
F21 92.4868/26.4427 96.636/26.9239 394.3077/42.0356 482.665/24.4713
F22 403.488/68.4806 570.5885/93.3868 1116.0011/358.705 1468.5114/125.6417
F23 1103.5654/140.2435 929.1687/92.0711 1035.2271/295.0504 1595.5527/170.019
F24 148.2738/8.0375 142.6049/6.8801 206.1124/26.5891 211.4401/15.2614
F25 184.219/24.6832 178.255/20.352 212.9408/11.5838 212.4234/10.3249
F26 123.8798/3.6747 131.3682/4.8194 173.9133/36.4968 187.402/10.9944
F27 429.1122/18.199 407.1113/4.6333 446.6245/33.2932 593.5751/31.5038
F28 100.0807/34.5168 132.4951/6.7595 427.753/198.1379 595.4341/83.8035

Total 11/11 7/11 9/4 1/2

last and now. The random jump perturbation operator improves pollen diversity. The
novel switching probability updating strategy controls the proportion of global exploration
and local exploitation, that gradually weakens the global effect and enhances the local
effect. Then we test the IFPA by CEC2013. IFPA has better convergence precision and
speed than FPA, PSO, and DE. Finally, four algorithms are used to solve CVRP. From
the test results of the selected CVRP test instances, IFPA is more powerful to solve CVRP
than FPA, PSO, and DE.

In the future, the IFPA could be further improved, such as hybrid [50], and adding
chaotic mapping [51]. IFPA proposed in this paper could also be applied to other fields,
such as power system problems [32] and wireless sensor networks problems [35].
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Table 5. Mean/Std result of algorithms with D=20.

No. IFPA FPA PSO DE

F1 4.44e-03/8.10e-04 0.96891/0.16029 3.25e-13/1.59e-13 1.14e+04/1.58e+03
F2 293.101/66.0257 8.00e+04/1.74e+04 5.16e+03/8.22e+03 9.30e+07/1.65e+07
F3 2.50e+08/5.51e+07 2.66e+08/6.41e+07 4.81e+08/5.82e+08 4.49e+11/3.86e+11
F4 0.5643/0.40979 2638.4207/616.7311 28.6263/58.552 3.50e+04/5.17e+03
F5 0.052009/0.0081726 2.061/0.26684 6.93e-03/8.55e-03 1182.8672/218.9587
F6 1.0304/0.17338 1.2066/0.32829 2.5239/3.7579 1550.454/301.9796
F7 31.4515/4.0581 60.9592/6.4386 87.7145/37.1132 776.8381/421.3689
F8 20.6868/0.063644 20.7163/0.054111 20.7154/0.075301 20.689/0.075988
F9 16.6607/1.0958 16.9111/0.78845 17.5202/2.2349 22.8569/0.78677
F10 0.46008/0.051919 0.94274/0.071128 0.19415/0.16484 1388.3123/216.9299
F11 69.1726/5.2839 61.4735/6.3978 96.1593/25.4954 264.678/25.0193
F12 78.0355/8.2337 98.3027/12.0344 99.5538/31.8529 285.329/18.044
F13 94.4584/9.2919 123.2666/10.3973 140.74/33.032 280.5053/24.4151
F14 1818.6308/205.7626 1592.7746/114.837 2529.8888/424.7988 3860.7122/182.7896
F15 3273.9183/211.677 2104.1733/157.8468 2274.3553/454.4577 3974.1847/183.4144
F16 1.5065/0.21288 1.4441/0.18399 0.26759/0.48276 1.6406/0.23894
F17 125.6101/10.0439 143.458/13.9367 94.1394/27.1916 541.0395/45.5588
F18 135.002/8.6502 163.4766/17.9539 96.5926/18.0419 538.7545/38.7699
F19 7.5846/0.89521 7.2342/1.0007 5.9695/3.0782 7.31e+03/3.63e+03
F20 7.6657/0.2251 8.2891/0.23037 9.1568/0.85547 9.9697/0.066736
F21 116.9193/2.7018 157.2523/18.2347 305.8824/90.3588 1465.8885/80.36
F22 2431.1419/156.0366 2048.1337/160.2527 3015.8449/623.0757 4519.0503/209.4897
F23 3531.5691/237.1801 2861.2171/209.892 2883.7446/623.5493 4609.5522/213.7189
F24 248.1246/3.0734 253.2957/2.513 249.7151/5.1618 279.4762/2.8596
F25 254.5481/2.7645 264.0839/2.6636 248.2443/5.2724 289.0877/2.9087
F26 2.00e+02/6.10e-04 200.0463/0.011738 211.4108/39.4809 211.4372/2.8607
F27 647.6199/110.5125 405.556/2.6698 776.9549/53.6965 969.5953/28.4846
F28 946.5572/195.4429 1788.742/124.0558 2105.988/530.8711 3249.9454/183.67

Total 14/16 6/9 8/1 0/2
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Table 7. CVRP result of algorithms in Instance A.

instance BKV M/IFPA M/FPA M/PSO M/DE S/IFPA S/FPA S/PSO S/DE

A-n45-k6 944 1030.5 1027.9 1033.5 1062.9 12.1339 24.0434 37.2305 22.2989
A-n45-k7 1146 1168.3 1171.7 1174.7 1186.4 4.83 2.7976 12.2776 5.2642
A-n46-k7 914 935.281 942.0607 943.4805 963.2721 4.371 3.0185 13.3023 5.1939
A-n48-k7 1073 1112.2 1113.7 1126.3 1133.3 7.2015 4.2584 10.983 9.2926
A-n53-k7 1010 1062.9 1059.2 1067.1 1089.9 8.949 12.742 19.2893 12.0678
A-n54-k7 1167 1215.7 1219.3 1229.2 1244.6 8.0626 11.8938 20.2852 7.1321
A-n55-k9 1073 1101.3 1104.8 1118.1 1131.1 7.7377 8.3472 15.5771 5.2664
A-n61-k9 1035 1187.8 1171.2 1165.2 1212.1 16.0567 14.5459 32.3751 8.7822
A-n62-k8 1290 1343.3 1341.3 1352.9 1373.7 4.4773 8.4849 17.6934 8.7893
A-n63-k9 1634 1695.5 1706 1706.1 1750.4 14.1201 10.6184 19.477 16.0561
A-n63-
k10

1315 1379.9 1377.7 1375.6 1410.7 8.6684 10.8543 17.5371 11.229

A-n64-k9 1402 1489.9 1483.9 1477.6 1513.5 13.2491 14.427 16.9814 11.7299
A-n65-k9 1177 1266.9 1270.6 1280 1315.6 18.594 15.3545 13.8924 20.7444
A-n69-k9 1168 1224.4 1227.8 1235 1262.8 6.5358 8.8949 17.8868 11.1658
A-n80-
k10

1764 1891.1 1881.9 1894.9 1924.8 13.5098 9.6443 23.066 17.89

A-n32-k5 784 787.2555 787.917 795.8927 792.3797 0.3843 0.7428 14.1107 3.0042
A-n33-k5 661 670.0689 670.9565 685.5917 674.4119 4.8057 5.1674 8.1119 6.2998
A-n33-k6 742 742.8916 743.1867 744.9353 746.0909 0.3603 0.6962 1.4121 1.9903
A-n34-k5 778 789.835 790.6263 794.8318 796.4842 2.0684 2.1155 3.6343 4.2444
A-n36-k5 799 811.0082 814.3318 822.3429 826.3277 1.7347 3.4134 13.8168 3.4316
A-n37-k5 669 682.6576 688.265 692.2565 698.9449 4.7332 3.3061 11.5006 6.6086
A-n37-k6 949 965.9209 963.2131 972.7341 975.0433 3.795 4.4946 14.4937 7.4291
A-n38-k5 730 746.009 749.1232 756.0405 763.9066 4.7791 4.1212 11.4014 8.4083
A-n39-k5 822 842.3224 849.0114 850.5909 864.5575 6.5871 7.0213 9.9891 9.974
A-n39-k6 831 841.0361 843.8896 844.0845 850.2126 3.0245 3.909 5.6321 6.6134
A-n44-k7 937 972.0752 970.1763 981.2069 993.4208 6.011 9.741 18.607 11.442

Best Number 17 6 3 0 14 7 1 4

Table 8. CVRP result of algorithms in Instance B.

instance BKV M/IFPA M/FPA M/PSO M/DE S/IFPA S/FPA S/PSO S/DE

B-n45-k5 751 764.8276 763.642 771.8425 778.9442 3.238 3.0577 7.6194 5.0931
B-n45-k6 678 726.9834 733.6402 740.6682 750.3614 11.0083 12.2689 19.1044 9.3091
B-n50-k7 741 749.5179 747.5284 752.6085 756.7734 2.0153 1.8771 6.0432 4.5204
B-n50-k8 1313 1342.4 1339.8 1342.9 1348 2.4195 2.9506 6.3554 5.4062
B-n51-k7 1032 1056.6 1062.7 1070.7 1080.1 5.2001 5.7941 10.3877 9.6801
B-n52-k7 747 761.5051 760.8908 768.4612 770.0915 2.8904 1.5867 6.2445 3.7758
B-n56-k7 707 737.8803 740.6999 745.1967 759.6426 3.3764 3.152 8.0153 5.6094
B-n57-k7 1153 1262.9 1283.3 1336.6 1304 15.8288 23.6088 50.9952 15.4473
B-n57-k9 1598 1631.8 1630.9 1628.1 1652.9 4.6436 6.7512 10.9261 5.2717
B-n63-
k10

1537 1575.1 1573.9 1581.4 1605.2 6.1593 8.963 6.2592 8.5888

B-n64-k9 861 933.3173 942.5308 932.8179 962.9793 12.2904 6.0937 18.0562 12.8969
B-n67-
k10

1033 1100.8 1109.1 1114.9 1131.7 8.5255 7.8119 15.358 7.1263

B-n68-k9 1304 1319.8 1321.2 1325.6 1338.5 3.1125 4.6249 7.3213 3.3454
B-n78-
k10

1266 1294.1 1291.4 1293.6 1322.1 7.0016 7.8446 13.9793 7.7938

B-n31-k5 672 676.9321 677.2138 682.1923 682.1957 1.2436 1.3565 5.6781 2.0508
B-n34-k5 788 791.0146 791.5426 793.8962 796.0825 0.748 1.4244 4.0826 2.2652
B-n35-k5 955 960.5567 960.6174 961.1713 965.1459 1.3105 1.6925 2.3593 1.6148
B-n38-k6 805 814.0256 814.868 817.02 824.7458 1.2714 3.841 3.8877 2.6668
B-n39-k5 549 554.8778 556.5571 561.5804 562.0877 1.6345 1.7212 3.2397 3.1788
B-n41-k6 829 839.9814 840.1659 847.5659 850.2074 3.2247 2.3487 5.4337 3.6756
B-n43-k6 742 754.3639 757.4055 758.2226 763.7189 1.986 2.6673 6.0856 3.835
B-n44-k7 909 931.5067 931.0228 939.7941 941.664 2.8862 3.4877 4.9014 4.9147

Best Number 13 7 2 0 13 6 0 3
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Figure 2. The optimization curves of the functions at D=2.

Figure 3. The optimization curves of the functions at D=5.
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Figure 4. The optimization curves of the functions at D=10.

Figure 5. The optimization curves of the functions at D=20.
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Figure 6. The optimization curves of the functions at D=30.
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