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Abstract. Optimal allocation of distributed generation (DG) focuses on optimal loca-
tion and sizing of DGs for promoting energy conversion efficiency and quality in the
power distribution system. Nowadays, the loss minimization goal has received signif-
icant attention since it gains enormous benefits between economic and environmental
fields. In this paper, the sensitivity factor method is used to determine the optimal DG
positions, which reduces the search space by finding the best locations. This paper first
introduces a compact technology based on the equilibrium optimizer (EO) algorithm. The
compact equilibrium optimizer (cEO) algorithm has a considerable advantage in reduc-
ing the memory space of the potential bus selection. Then this paper implements and
optimizes the cEO algorithm by the method of update interval. The value of an optimal
interval is selected to promote the maximum contribution of the equilibrium pool update.
According to the characteristics of the equilibrium pool, two kinds of parallel compact
algorithms, public parallel compact EO (public pcEO) and private parallel compact EO
(private pcEO) algorithm with different structures, are proposed. Compared with other
algorithms, public pcEO has achieved excellent performance with less memory space. The
proposed algorithms are tested on CEC 2014 functions. By comparing with other basic
algorithms, the experimental results showed that two parallel compact algorithms could
obtain competitive results and avoid getting into the optimal local solution. Then two
proposed parallel algorithms are tested compared with some general algorithms to gain
the most suitable sizing of DGs in those selected potential locations and gained great re-
sults.
Keywords: Optimal allocation of distributed generation, Equilibrium optimizer, Par-
allel communication strategy, Compact strategy, Loss sensitivity factor

1. Introduction. The concept of optimization is widely used in the decision-making,
allocation, and production planning of practical problems. While the key is whether these
problems could achieve the optimal solution, the research on the optimization methods is
of great value both in theory and in practice. Use the optimization method to determine
the value of some optional variables under constraints for achieving the optimal value
of the selected objective function. Aiming at different problems, diverse optimization
method, they can be simplified and classified into two types (mathematical optimization
and the heuristic searching technique), was developed.

Mathematical optimization methods can generally be divided into two categories: deter-
ministic and stochastic. Linear and non-linear optimization problems [1] are both belong
to deterministic optimization problems. Only when the constraint condition and objective
function are linear, this problem has linear characteristics. If the objective function or
constraint conditions is non-linear, the problem is defined as non-linear optimization [2].
We hope to find the global optimal solution to the problem, and the global optimum is
from the local optimum. There is no doubt that finding a global optimum is harder than
finding the local optimum. When some mathematical optimization problems have non-
convex characteristics, it is hard to find the global optimum in limited computation cost
and converges to the local optimum smoothly. When the optimization problem is convex,
the local optimal solution can be considered equivalent to the global optimal solution.

Compared with the traditional deterministic mathematical optimization, the meta-
heuristic algorithm improves the heuristic algorithm [3,4], which combines the character-
istics of the local search algorithm and random algorithm. One of its main characteristics
is stochastic. Meta-heuristics is an iterative generation process, which utilizes specific
methods in heuristic algorithms to find feasible solutions in the problem space. Meta-
heuristic algorithm increases the probability of finding the global optimum by improving
randomness and doesn’t depend on a particular problem. Biological behaviors and phys-
ical phenomena inspire many meta-heuristic algorithms. In recent years, many classic
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meta-heuristic algorithms have appeared such as Genetic Algorithm (GA) [5], Particle
Swarm Optimization (PSO) [6] and Ant Colony Optimization (ACO) [7]. Genetic al-
gorithm uses three processes of selection, crossover, and mutation operations to update
individuals in each generation, promoting the population to evolve better and better
approach the optimal solution. In a given environment, this process may promote popu-
lations to be more adaptable than previous generations. Cai and Lei [8] proposes a new
evolutionary algorithm for many-objective optimization. PSO algorithm is a classic swarm
intelligence algorithm and comes from studying the predation behavior of birds. Through
the cooperation and information sharing among individuals in a group, to find the optimal
solution. PSO algorithm has great development potential and value. It can be used in
many fields and plays an important role. Similar swarm intelligence algorithms include
Grey Wolf Optimizer (GWO) [9,10], QUasi-Affine TRansformation Evolutionary (QUA-
TRE) [11,12], Cat Swarm Optimization (CSO) [13,14], Cuckoo Search (CS) [15,16], Fish
Migration Optimization (FMO) [17–19], Butterfly Optimization Algorithm (BOA) [20]
and Phasmatodea Population Evolution Algorithm (PPE) [21].

Compared with meta-heuristic algorithms based on biological behavior, some meta-
heuristic algorithms come from physical models, just like the improved algorithm in this
paper. The equilibrium Optimizer (EO) algorithm is based on a mass conservation model,
representing the change process of the mass in the solution under both dynamic and static
equilibrium state. The EO algorithm’s mathematical basis is the ordinary differential
equation of time and mass, which follows the rules of conservation of mass. In EO, each
particle’s concentration is used as a search and update tool to find the optimal solution
to the problem. The four best particles and their average particles in the search pro-
cess constitute the equilibrium pool, it plays an important role in balancing algorithm
exploitation and exploration capabilities [22]. These particles are considered equilibrium
candidates. Randomly select a particle from the equilibrium candidates, and use the
selected particle to update each particle in the solution according to specific rules, en-
hancing the algorithm’s global search capabilities. The EO algorithm has been proposed
recently which although can achieve good results the application of the EO algorithm is
less, such as identifying the parameters of solar photovoltaic [23] and solving economic
dispatch problem [24]. There are few related kinds of research on the optimal allocation
of distributed generation, so this article attempts to use the improved EO algorithm to
solve the optimal allocation of distributed generation problem.

A power system is composed of generation, transmission, and distribution systems,
and it is one of the most critical and complicated engineering systems in modern society.
Unlike traditional centralized power generation, distributed generation refers to the sys-
tem composed of small generation equipment close to the end-users and delivers power
to customers. There are many advantages of distributed generation. First, as a result
of distributed generation is closed to the power supply area, it can reduce the loss of
long-distance power transmission. Unlike energy produced by coal-burning power sta-
tions, the wind and energy produced by the sun are generally considered zero-pollution.
Distributed generation systems are gradually playing a pivotal role in the development of
modern power systems. Nowadays, enormous benefits can be gained in economic and en-
vironmental fields because of the characteristics of distributed generators [25,26]. Proper
planning of the location and size of distributed generators can benefit the entire power
system’s operation. Therefore, distributed generation has been widely concerned recently.
There are three main objectives for the optimal allocation of distributed generators that
are loss minimization, voltage stability, and hybrid objective [27]. Many meta-heuristic
algorithms show good efficiency in solving such problems. Suresh and Belwin [28] pro-
posed the dragonfly algorithm to solve the problem of the greatest benefit of distributed
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generators in the distribution system. Abu-Mouti and El-Hawary [29] uses an artificial bee
colony algorithm to optimize the distributed generators positions and sizing in a power
distribution system.

However, large-scale problems may limit the performance of the algorithm. Sun and Jin
(eds.) [30] proposed the surrogate-assisted cooperative swarm to solve high-dimensional
optimization problems and achieves good results. For big data optimization, a hybrid
multi-objective firefly algorithm is proposed [31]. In large power distribution systems,
few meta-heuristic algorithms consider the memory space of potential buses. This pa-
per improves the EO algorithm by two different parallel strategy and compact method.
In order to reduce the memory space of potential buses in the power system, compact
technology is considered in the improvement of the EO algorithm. The idea of compact
technology established a certain population probability model to simulate the distribution
of all individuals in the population with less space, so the operation of the probability
model can represent approximately the original population [32–34]. As the considerable
memory savings, the algorithm’s performance improved by using this technique may be
limited due to less memory space. Therefore, this paper attempts to improve the per-
formance of the algorithm by using interval update method and parallel technique. The
interval update method is considered a catalyst for the combination of compact technol-
ogy and the EO algorithm, which can give full play to the equilibrium pool’s renewal role.
Simultaneously, taking into account the differences in the equilibrium pool, two differ-
ent parallel communication strategies are proposed for improving the algorithm’s ability.
Parallel technology divides the overall population into small part groups, emphasizing the
diversity of solutions in the search problem. Each group has its own individuals but they
are not independent of each other. Two different parallel communication strategies have
different equilibrium pools, so they with varying spaces of memory. The concrete analysis
for memory spaces of the equilibrium pool is illustrated in a later section.

Recently, there are some compact algorithms proposed. Harik, Lobo and Goldberg
proposed the compact genetic algorithm (cGA), a probability distribution model is in-
troduced based on a genetic algorithm (GA) to describe the distribution of individuals.
Mininno and Neri (eds.) proposed the compact differential evolution (cDE) algorithm,
cDE is similar to cGA algorithms. The use of compact technology in many algorithms is
roughly the same, including compact particle swarm optimization (cPSO) [35], compact
bat algorithm (cBA) [36], compact firefly algorithm (CFA) [37]. Compact technology
makes a useful contribution for saving memory space, but the algorithm’s performance
needs to be tested. Parallel technology has made a meaningful contribution to improving
the performance and efficiency of the algorithm [38–41]. It can achieve faster convergence
and get better solutions by effectively exchange information between groups. This pa-
per proposed two parallel compact EO algorithms (pcEO) and utilizes them to optimize
distributed generation.

According to the above, the main contributions of this paper are listed as follows:

1) Improve and implement compact EO algorithms. For promoting the maximum con-
tribution of the equilibrium pool update, the method of update interval is proposed.
For four categories of test functions, experiments are tested and analyzed to find the
value of the optimal interval.

2) After receiving the optimal interval value, the improved compact EO algorithm is
tested and compared with other compact standard algorithms.

3) Propose two parallel EO algorithms with different structures of equilibrium pool.
Private pEO algorithm means that each group of the entire population has an equi-
librium pool. These equilibrium pools can be improved and updated by parallel
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communication strategy and then achieve efficient communication, but the memory
space of the algorithm is large. Next, the public pcEO algorithm with a collective
equilibrium pool is proposed. It achieved excellent performance with less memory
space.

4) Two improved pcEO algorithms are applied in the optimal allocation of distributed
generation to determine the optimal sizing of DGs, then compared with other classic
algorithms in the 30 buses system.

The structure of this paper is organized as follows. Firstly, the EO algorithm is in-
troduced in Sect. 2. The basis of mathematical and evaluation criteria for optimal
allocation of distributed generation is presented. Subsequently, the process of a compact
EO algorithm and two different compact parallel algorithms are described in Sect. 3. The
comparison results of different algorithms are evaluated in Sect. 4 and the application of
the proposed algorithm in the optimal allocation of distributed generation is presented in
Sect. 4. Finally, the conclusion of this article is given in Sect. 6.

2. Related work and basic theory.

2.1. Equilibrium optimizer algorithm. The EO algorithm uses a mass conservation
model to define and describe the particle concentration changes in the solution. The
particle in the solution is in equilibrium or a dynamically changing state. According to
the mass of leaving, entering, and being generated in solution, the ordinary differential
equation of time and mass can be established, which follows the rules of conservation of
mass, is expressed as:

v
dc

dt
= qce + g − qc (1)

In Eq.(1), c and v indicated the concentration and volume respectively in this control
volume, so v dc

dt
represents the change rate of mass over time. q represents the flow into

and out of the system. ce indicates the concentration of the solution in the equilibrium
state with a production rate of 0. And g is the mass production rate of the system.

According to the mass balance equation of concentration in a control volume, the update
equation of the EO algorithm is described as follows:

~c = ~ce + (~c− ~ce) · ~F +
~g

~λv
· (1− ~F ) (2)

~λ is a set of random vectors from 0 to 1. An accurate definition of exponential term
(F ) can achieve the algorithm’s optimal coordination in the exploration and development
capabilities. The exponential term (F ) is defined as:

~F = msign(~a− 0.5) · (e−~λt − 1) (3)

~a is a random vector between 0 and 1, and m is a fixed value used to control the search
ability of the algorithm. The value of m is proportional to the exploration ability of the
algorithm, which means that when the value of m is more considerable, the algorithm has
a stronger exploration performance. sgin stands for the sign function. The time (t) is
defined as a function of the number of iterations (iter), the predefined maximum number
of iterations (max iter), and a2:

t = (1− iter

max iter
)a2

iter
max iter (4)

where a2 is a constant representing the exploitation capability of the algorithm.
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The generation rate (~g) impacts the exploitation phase by providing the exact solution.
It is described as follow:

~g = ~g0 · ~F (5)

where ~g0 is the initial generation rate:

~g0 = ~gcp · (~ce − ~c · ~λ) (6)

~gcp =

{
0.5a1 a2 ≥ gp

0 a2 < gp
(7)

In order to stabilize the exploration and exploitation capabilities of the algorithm, gp
is set to 0.5. a1 and a2 are random numbers from 0 to 1. ~gcp is a set of vectors, each
value in the vector is equal to the comparison result of gp and a2.

The four best particles (E1, E2, E3, E4) and their average particles (Eave) in the search
process constitute the equilibrium pool. It plays an essential role in balancing algorithm
exploitation and exploration capabilities. Randomly select a particle from the equilib-
rium candidates, and use the single particle selected in the equilibrium pool to update
each particle in the solution according to specific rules. This paper uses fitness(ci) to
represent a value of vector ci under a specific objective function. As mentioned earlier,
the equilibrium optimizer algorithm is described as follows:

Algorithm 1 EO algorithm

1: Assign parameters: v = 1, gp = 0.5, m = 2
2: Initializing the concentration of particles
3: Initializing the concentration of equilibrium candidates:E1, E2, E3, E4, Eave and its
fitness

4: while iter < max iter do
5: for i = 1: number of particles do
6: Calculate fitness of ith particle
7: if fitness(ci) < fitness(E1) then E1 = ci, fitness(E1) = fitness(ci)
8: else if fitness(ci) < fitness(E2) then E2 = ci, fitness(E2) = fitness(ci)
9: else if fitness(ci) < fitness(E3) then E3 = ci, fitness(E3) = fitness(ci)

10: else if fitness(ci) < fitness(E4) then E4 = ci, fitness(E4) = fitness(ci)
11: end if
12: end for
13: Calculate Eave
14: Construct the equilibrium pool: Epool = {E1, E2, E3, E4, Eave}
15: for i = 1: number of particles do
16: Update concentrations ci by Eq.(2)
17: end for
18: iter = iter + 1
19: end while

2.2. The basis for optimal allocation of distributed generation. The optimal allo-
cation of distributed generation can be divided into two stages: determining the optimal
location of DGs and determining the optimal sizing of DGs. The objective function of
the first stage is given in Sect. 2.2.2. And the objective function of the second stage is
the minimum active power loss, which is introduced in Sect. 5.
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2.2.1. Power flow calculation in distribution network. The analysis and calculation of
load flow are significant and fundamental in any power system, an essential tool to study
various planning and operation power systems. Newton-Raphson method is a classic
algorithm based on the iterative process, which is widely used to calculate and analyze
load flow. Through power flow calculation and analysis, each node’s voltage value and
voltage phase angle can be obtained. For the problem of non-linear equations, iteration is
a powerful solution tool. In order to solve a set of simultaneous non-linear equations with
a specific number of unknowns, an iterative method is used to approximate the solution of
the nonlinear equations. A set of simultaneous equations are given by utilizing the power
balance equation to define the active and reactive power of the network with N nodes:{

∆Pi = Pi − Ui
∑N

j=1 Uj(Gijcosδij +Bijsinδij) = 0

∆Qi = Qi − Ui
∑N

j=1 Uj(Gijsinδij −Bijcosδij) = 0
(8)

Here, Pi and Qi represent the injected active power and reactive power of node i. The
voltage of bus i is Ui, and Uj represents the voltage of the node j connected to node i.
The conductance and susceptance between two nodes are defined as Gij and Bij. And
the δij is the difference of voltage phase angle.

The mathematical basis of the Newton-Raphson method is the Taylor series shown in
Eq.(9):

f (x1 + ∆x1,x2 + ∆x2, ..., xn + ∆xn)− f (x1, x2, ..., xn) =
∂f

∂x1

∆x1

+
∂f

∂x2

∆x2 + ...+
∂f

∂xn
∆xn

(9)

According to the nodal power balance equations in Eq.(8) and Taylor series in Eq.(9),
a set of simultaneous non-linear equations about voltage and voltage phase angle (∆|V |
and ∆δ) can be described as:[

∆P
∆Q

]
=

[
J1 J2

J3 J4

] [
∆δ
∆|V |
|V |

]
(10)

In a network with n nodes, there is a slack bus. Assuming that there are no PV nodes,
Ji is a (n−1)×(n−1) matrix. In each iteration, the values of ∆δi and ∆|V |i obtained from
the equation is used to change δi and |V |i until the resulting value meets the condition of
convergence. {

δt+1
i = δti + ∆δti

|V |t+1
i = |V |ti + ∆|V |ti

(11)

After the power flow calculation in the system, accurate information of each bus is
obtained, which is conducive to planning the power system and estimating various indexes.

2.2.2. Loss sensitivity factor. The sensitivity factor method is determining the best poten-
tial positions of nodes according to power losses of each node. This method was initially
commonly used to solve the problem of optimal allocation of capacitors. The sensitivity
factor selects the potential optimal position from many nodes to reduce the solution space
and operational complexity of the algorithm. It is advantageous to use the proposed al-
gorithm to determine the suitable sizing of DGs. The real power loss (Pl) is described as
follow:
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Pl =
n∑
i=1

n∑
j=1

[αij (PiPj +QiQj) + βij (QiPj − PiQj)] (12)

where:

αij =
Rij

UiUj
cos δij (13)

βij =
Rij

UiUj
sin δij (14)

where Rij represents the resistance between two nodes. The sensitivity factor correspond-
ing to the node i (Si) can be obtained from real power loss and nodal real injection
power:

Si =
∂Pl
∂Pi

= 2
n∑
i=1

(αijPj − βijQj) (15)

The nodal sensitivity factors are sorted in descending order to select a certain number of
potential optimal nodes based on priority. Then the distributed generators are arranged
on these selected nodes.

3. Compact equilibrium optimizer algorithm and two different parallel strat-
egy. There are two main parts to this section. The first part introduces how to use
compact technology to improve the equilibrium optimizer algorithm. Next, the second
part presents the different equilibrium pool structures of two parallel algorithms, then the
specific steps of the two parallel algorithms are described in detail.

3.1. Compact EO. The basis of compact technology is the probability model which
represents the distribution of individuals of the entire population. Chuang and Chen
[42] estimated the likely structure of the feasible solutions to guide the algorithm to
gradually find the possible optimal solution by explicitly building a probabilistic model.
All algorithms can be abstractly simplified into a combined search and selection process for
promising solutions within the search space. In the equilibrium optimizer algorithm, the
search and selection operations are performed for the concentration of N particles. Due
to the massive scale of the actual problem, the problem’s procedures may take up a lot of
memory space. The compact method establishes a certain population probability model to
simulate the distribution of all individuals in the population with less space, which means
that the operations of the probabilistic model represent the entire population. Therefore,
the operation of the probability model is the operation of the entire population.

Suppose the individuals in the population obey a Gaussian probability distribution
function (PDF) with a mathematical expectation of µ and a variance of σ2. The proba-
bility vector (PV) to simulate the distribution of all individuals in the population [43,44].
PV is a 2× n matrix and can be defined as:

PV t =
[
µt, σt

]t
(16)

In order to keep the area of the PDF function equal to 1, the truncated normal distri-
bution limits the value range of the variable and is defined as:

PDF =

√
2
π
e−

(x−µ)2

2σ2

δ
(
erf

(
µ+1√

2δ

)
− erf

(
µ−1√

2δ

)) , (17)
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Algorithm 2 Compact EO with interval

1: Assign parameters: v = 1, gp = 0.5, m = 2
2: Initializing the concentration of particles
3: Initializing the concentration of equilibrium candidates:E1, E2, E3, E4, Eave and its
fitness

4: Initializing the µ and σ
5: while iter < max iter do
6: if (iter is a multiple of val)
7: Get c via the inverse function of Eq.(18)
8: end if
9: cold = c

10: Calculate Eave
11: Construct the equilibrium pool: Epool = {E1, E2, E3, E4, Eave}
12: Update concentrations c by Eq.(2)
13: Calculate fitness of c
14: if fitness(c) < fitness(E1) then E1 = c, fitness(E1) = fitness(c)
15: else if fitness(c) < fitness(E2) then E2 = c, fitness(E2) = fitness(c)
16: else if fitness(c) < fitness(E3) then E3 = c, fitness(E3) = fitness(c)
17: else if fitness(c) < fitness(E4) then E4 = c, fitness(E4) = fitness(c)
18: end if
19: Compare fitness(c) and fitness(cold), get winner and loser
20: Use winner and loser update PV by Eq.(19)(20)
21: iter = iter + 1
22: end while

CDF is calculated as follows:

CDF =

∫ x

−1

PDFdx =
erf

(
µ+1√

2δ

)
+ erf

(
x−µ√

2δ

)
erf

(
µ+1√

2δ

)
− erf

(
µ−1√

2δ

) , (18)

where erf represents the Gauss error function.
At the beginning of the compact method, in each dimension i, a randomly generated

number r ranging from 0 to 1 as an input of the inverse function of CDF, where the
inverse function of CDF is composed of parameters µi and δi in PV, then a solution is
generated. Repeat this process to get a set of vectors c, and use vector c to represent the
concentration of N particles in the EO algorithm. This is the beginning of the application
of compact technology to the EO algorithm.

In order to facilitate the subsequent update and modification of the PV status, the
initial values of µ[i] and σ[i] are respectively defined as 0 and 10. Each individual is
recorded and updated, compares the generated new individual with the original individual
to determine the winner and loser, then utilizes the winner and loser to update the
PV [45]. The updated rule of µ and σ values is respectively given as follows:

µt+1 [i] = µt [i] +
1

Np

(winner [i]− loser [i]) (19)

(
σt+1 [i]

)2
=
(
σt [i]

)2
+
(
µt [i]

)2 −
(
µt+1 [i]

)2
+

1

Np

(
winner [i]2 − loser [i]2

)
(20)

In order to take advantage of the renewal role of the equilibrium pool, the idea of interval
update is proposed. In the traditional compact method, it should be noted that the
concentration of particles generated by PV has happened in the process of each iteration,
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which may weaken the search performance of particles. Thereby the method of update
interval is proposed, which combines the excellent performance of the EO algorithm with
the compact technology to reduce memory. And experiments were carried out for different
intervals. Finally, the most suitable interval val for the algorithm is selected. The compact
EO algorithm with interval is described in Algorithm 2.

Algorithm 3 Private pcEO algorithm

1: g is the number of groups, G(i) represents the i-th group
2: Assign parameters: v = 1, gp = 0.5, m = 2
3: Initializing the concentration of particles of each group
4: Initializing the concentration of equilibrium candidates:E1, E2, E3, E4, Eave and their
fitness of each group

5: Initializing the µ and σ of each group
6: while iter < max iter do
7: if (iter is a multiple of val)
8: Get c of each group via the inverse function of Eq.(18)
9: end

10: cold = c
11: for i = 1 : g do
12: Construct the equilibrium pool of each group: G(i).Epool =
{G(i).E1, G(i).E2, G(i).E3, G(i).E4, G(i).Eave}

13: Update concentrations G(i).c by Eq.(2)
14: Calculate fitness of G(i).c
15: if fitness(G(i).c) < fitness(G(i).E1) then G(i).E1 =

G(i).c, fitness(G(i).E1) = fitness(G(i).c)
16: else if fitness(G(i).c) < fitness(G(i).E2) then G(i).E2 =

G(i).c, fitness(G(i).E2) = fitness(G(i).c)
17: else if fitness(G(i).c) < fitness(G(i).E3) then G(i).E3 =

G(i).c, fitness(G(i).E3) = fitness(G(i).c)
18: else if fitness(G(i).c) < fitness(G(i).E4) then G(i).E4 =

G(i).c, fitness(G(i).E4) = fitness(G(i).c)
19: end if
20: end for
21: for i = 1 : g do
22: Compare fitness(G(i).c) and fitness(G(i).cold), get winner and loser to up-

date PV by Eq.(19)(20)
23: end for
24: for i = 1 : g do
25: Randomly select a group k (k 6= i)
26: if(fitness(G(i).E1) > fitness(G(k).E1))
27: Get new and fitness(new) from G(i).E1 and G(k).E1 by crossover opera-

tion, update G(i).E1 and fitness(G(i).E1)
28: Update G(i).PV by crossover operation
29: else Disturb and update G(i).E1

30: end if
31: end for
32: iter = iter + 1
33: end while
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Algorithm 4 Public pcEO algorithm

1: g is the number of groups, G(i) represents the i-th group
2: Assign parameters: v = 1, gp = 0.5, m = 2
3: Initializing the concentration of particles of each group
4: Initializing the concentration of equilibrium candidates:E1, E2, E3, E4, Eave
5: Initializing the µ and σ of each group
6: while iter < max iter do
7: if (iter is a multiple of val)
8: Get c of each group via the inverse function of Eq.(18)
9: end if

10: cold = c
11: Construct the equilibrium pool: Epool = {E1, E2, E3, E4, Eave}
12: Update concentrations G(i).c by Eq.(2)
13: Calculate fitness of G(i).c
14: if fitness(G(i).c) < fitness(E1) then E1 = G(i).c, fitness(E1) =

fitness(G(i).c)
15: else if fitness(G(i).c) < fitness(E2) then E2 = G(i).c, fitness(E2) =

fitness(G(i).c)
16: else if fitness(G(i).c) < fitness(E3) then E3 = G(i).c, fitness(E3) =

fitness(G(i).c)
17: else if fitness(G(i).c) < fitness(E4) then E4 = G(i).c, fitness(E4) =

fitness(G(i).c)
18: end if
19: for i = 1 : g do
20: Compare fitness(G(i).c) and fitness(G(i).cold), get winner and loser to up-

date PV by Eq.(19)(20)
21: end for
22: if (iter is a multiple of val)
23: Sort fitness of each group G(i).c
24: Update PV of the worst group by crossover operation
25: end if
26: Disturb Ei randomly selected from equilibrium pool, then update E1

27: iter = iter + 1
28: end while

3.2. Two kinds of parallel algorithms. Through the previous contents, the compact
EO algorithm is improved and proposed. In the case of less memory space, the per-
formance of the compact algorithm can be achieve positive results. In order to further
enhance the performance of the proposed algorithm, there are two parallel algorithms with
different structures are proposed. The parallel communication method can be improve the
ability and speed of algorithm to find the global optimal solution [46]. Parallel technology
is used to divide the overall population into several independent groups to emphasize the
diversity of solutions. The valuable information of each group is constantly exchanged
by its own and other groups. Because of the various characteristics of the algorithm,
parallel communication strategies are adopted, which means that parallel communication
methods are flexible and diverse.

Aiming at the differences in equilibrium pools, the methods of public and private equi-
librium pools are proposed in this article. A private equilibrium pool means that each
group has its equilibrium pool and utilizes the pool to update the individuals in their
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group. The process does not interfere operations performed on the other groups in any
way. On the contrary, the equilibrium pool is public and collective for each group in the
public pcEO algorithm, which means that each group’s particles are updated by one mu-
tual equilibrium pool. This paper mainly uses crossover and disturbance operator as the
communication strategy between different groups. As a result of the different structures of
the equilibrium pool, the cross and disturbance operators for two parallel communication
strategies are also different. The specific process is shown in the following algorithm 3,4.

There are some differences between the two parallel communication operations. In the
private pcEO algorithm, the crossover operation is executed for E1 which belongs to two
groups. Compared to the private pcEO algorithm, the crossover operation of two different
equilibrium pools cannot be carried out due to there is no second equilibrium pool in the
public pcEO algorithm. The public pcEO algorithm only performs random disturbance
operations on the particles in the collective equilibrium pool. These differences can be
seen in Fig. 1. However, the two parallel algorithms have the same perturbation operation
on PV. Meanwhile, memory space should not be ignored. Due to the different structures
of the equilibrium pool, the memory space occupied by the equilibrium pool remains
different. This article provides a detailed analysis of memory space in the following
experiments.

(a) private parallel strategy (b) public parallel strategy

Figure 1. two parallel strategies

4. Experimental analysis.

4.1. Experimental benchmark functions and algorithm parameters informa-
tion. In this paper, CEC 2014 is used as the standard function for testing and evaluating
the algorithm’s performance, and CEC 2014 consists of four categories of functions, which
include unimodal functions, multimodal functions, hybrid functions, and composition
functions. The unimodal functions (F1-F3) have a single optimum solution, which shows
the performance of algorithm in finding a single optimal value. The practical problems
often have more than one optimal solution. In the field of optimization, the extremum
problem of the multimodal function is worth study to research in problematic issues.
The multimodal functions (F4-F16) require the algorithm to have the ability of a global
search ability to avoid falling into the local optimum. The hybrid functions (F17-F22)
and composition functions (F23-F30) challenge the ability of algorithms to solve complex
optimization problems [47].
D is defined as the dimension of the test function and the dimensions of the algorithms

tested in this section are all 10. For convenience, all test algorithms maintain the same
parameter settings as above. The settings of these parameters are shown in Table 1.
Similarly, to provide a fair comparison, it is noted the total number of function calls
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of different algorithms on each benchmark function remains the same. In Table 1, Pn
represented the population size, and there may be differences in the population size of
different algorithms.

First of all, the influence of the interval on the EO algorithm is analyzed and evaluated
through the experimental results of four categories of functions in this paper. Then the
optimal interval is selected for the following experiments and improvement. Next, the
compact EO algorithm is compared with other improved compact algorithms including
cCS, cPSO, cBA, and cDE algorithms in this article. Subsequently, there are two im-
proved parallel cEO algorithms are compared with the proposed cEO and the initial EO
algorithm. Finally, the proposed private pcEO and public pcEO algorithms are com-
pared with other common and classic algorithms, including PSO, GA, GWO, BOA, and
gravitational search algorithm (GSA) [48].

Table 1. The parameter settings of related algorithms

Name Parameter

cCS Virtual Pn = 200, Pa = 0.25
cPSO Virtual Pn = 200, phi1 = −0.2, phi2 = −0.07, phi3 = 3.74,

γ1 = 1, γ2 = 1
cBA Virtual Pn = 200, loudness = 0.5, pulserate = 0.5, fmin = 0, fmax = 2
cDE Virtual Pn = 200, F = 0.5, Cr = 0.5
PSO Pn = 30, c1 = 2.0, c2 = 2.0, w = 0.9
GA Pn = 30, mutation rate = 0.5, crossover rate = 0.4
BOA Pn = 30, probabibility switch = 0.8, power exponent = 0.1,

sensory modality = 0.01
GSA Pn = 30, alfa = 20, Rpower = 1, G0 = 100
GWO Pn = 30, a decreases linearly from 2 to 0
EO v = 1, gp = 0.5, m = 2, Pn = 30
cEO Virtual Pn = 200, v = 1, gp = 0.5, m = 2
Private pcEO Virtual Pn = 200, v = 1, gp = 0.5, m = 2, groups = 4
Public pcEO Virtual Pn = 200, v = 1, gp = 0.5, m = 2, groups = 4

4.2. Comparison of different interval on compact EO algorithm. According to
the four categories of functions on CEC 2014, the cEO algorithm with different intervals
is tested on the four categories of functions that the purpose is to analyze the influence of
interval on different categories of functions to find the most suitable interval. Although
the interval is different, the total number of function calls for different algorithms on
experimental benchmark functions is the same. In order to minimize the error, the number
of evaluations for all functions is set to 50,000. The algorithm is tested 20 times on each
benchmark function to get the average. This section uses fi to highlight changes in
results, fi is the evaluation of the final convergence result of the algorithm and is defined
as follows:

fi = log10 (Fi − F ∗i ) . (21)

where Fi is the convergence results of the algorithm in the test function i, and F ∗i is the
value of the optimal solution is defined in CEC 2014 functions. The smaller the value of
fi, the better the algorithm will perform. In Fig. 2, the y-axis is defined as the average
of the fi of all functions of the same category and the x-axis represents the value of the
interval. The test results of the interval on four categories functions are shown in Fig. 2.



130 X.W. Xu, T.S. Pan, P.C. Song, C.C. Hu and S.C. Chu

0 5 10 15 20 25 30

3

3.5

4

4.5

5

5.5

6

6.5

(a) unimodal functions

0 5 10 15 20 25 30

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(b) multimodal functions

0 5 10 15 20 25 30

2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

(c) hybrid functions

0 5 10 15 20 25 30

2.4

2.42

2.44

2.46

2.48

2.5

2.52

2.54

(d) composition functions

Figure 2. The results of the interval on four categories of functions

The chart of the simple multimodal and hybrid functions indicates that the best results
would be obtained when the interval is close to 10. As the interval becomes bigger, the
performance of the algorithm becomes worse in the multimodal functions. The algorithm
performs well and steadily in the unimodal functions until the interval reaches a specific
value in the first chart. Unlike the above three categories of functions above, the algorithm
shows instability in the composition functions. It is illustrated that the optimal value of
the interval may be different in the four categories of functions. In order to play the role
of compact technology, the value of interval is as small as possible. When the value of
interval is 7, good results are achieved on the four categories of functions, so the algorithm
selected the 7 as the value of interval for subsequent comparison and improvement.

4.3. cEO algorithm compared with other compact algorithms. The main work
of this section is to compare the cEO algorithm with other compact algorithms. These
algorithms include cCS, cPSO, cBA and cDE algorithms. All algorithms were performed
20 times on each benchmark function and ensure that all evaluation times of algorithm
are 35000. At the same time, means, variance, and the optimal value of functions are
recorded. Unlike the experiment in the previous section, the Fi is used to evaluate the
results of the algorithm in the following experiments. The various information about the
algorithm is listed in Table 1.

In order to make the experimental results more obvious and accurate, this paper uses
Wilcoxon’s sign rank test to test each performance of algorithm at a significant level
α = 0.05. The symbol (<) indicates that the algorithm has poor performance compared
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with the compact EO algorithm on the tested benchmark function. The meaning of
symbol (>) is opposite to symbol (<) which means that the performance of this algorithm
is better. And the symbol (=) illustrates that the final performance of two algorithms is
the same. The comparison results are illustrated in Table 2.

Table 2. Comparison results of the cEO with cCS, cPSO, cBA, and cDE
under Wilcoxon’s signed rank test at the significant level α = 0.05

Function cCS cPSO cBA cDE cEO

F1 2.2165e+07 < 4.4544e+06 < 1.2827e+06 < 1.6240e+06 < 2.4728e+05
F2 2.3738e+09 < 6.1044e+06 < 1.5812e+04 > 6.6887e+07 < 2.6152e+04
F3 1.8622e+04 < 6.4851e+03 < 7.6821e+04 < 6.2305e+03 < 9.6989e+02
F4 6.4214e+02 < 4.4164e+02 < 4.0515e+02 = 4.4657e+02 < 4.2370e+02
F5 5.2034e+02 < 5.2047e+02 < 5.2006e+02 < 5.2017e+02 < 5.2002e+02
F6 6.0878e+02 < 6.0634e+02 < 6.1573e+02 < 6.0509e+02 < 6.0071e+02
F7 7.4529e+02 < 7.0122e+02 < 7.2539e+02 < 7.0171e+02 < 7.0013e+02
F8 8.6085e+02 < 8.4262e+02 < 9.7228e+02 < 8.0895e+02 > 8.1060e+02
F9 9.5826e+02 < 9.4744e+02 < 1.0909e+03 < 9.2567e+02 < 9.1155e+02
F10 2.2902e+03 < 1.9814e+03 < 2.1076e+03 < 1.1085e+03 > 1.1729e+03
F11 2.4826e+03 < 2.1241e+03 < 2.7229e+03 < 1.8709e+03 < 1.4255e+03
F12 1.2012e+03 < 1.2010e+03 < 1.2024e+03 < 1.2006e+03 < 1.2002e+03
F13 1.3018e+03 < 1.3006e+03 < 1.3009e+03 < 1.3006e+03 < 1.3002e+03
F14 1.4091e+03 < 1.4007e+03 < 1.4004e+03 < 1.4006e+03 < 1.4002e+03
F15 2.0729e+03 < 1.5041e+03 < 1.5761e+03 < 1.5056e+03 < 1.5017e+03
F16 1.6036e+03 < 1.6031e+03 < 1.6047e+03 < 1.6031e+03 < 1.6023e+03
F17 6.0677e+04 < 1.0603e+04 < 1.0442e+05 < 1.4619e+05 < 4.3188e+03
F18 1.0681e+05 < 1.0949e+04 > 1.6366e+04 < 1.7172e+04 < 1.2080e+04
F19 1.9085e+03 < 1.9048e+03 < 2.0493e+03 < 1.9023e+03 < 1.9022e+03
F20 6.3931e+03 < 3.2777e+03 < 3.4913e+04 < 7.5439e+03 < 2.9434e+03
F21 8.8056e+03 < 7.3161e+03 < 7.1409e+03 < 1.2765e+04 < 5.8578e+03
F22 2.2889e+03 < 2.3672e+03 < 2.7809e+03 < 2.2224e+03 = 2.2460e+03
F23 2.6668e+03 < 2.5182e+03 = 2.6296e+03 < 2.6317e+03 < 2.5259e+03
F24 2.5825e+03 < 2.5606e+03 < 2.7273e+03 < 2.5402e+03 < 2.5239e+03
F25 2.6873e+03 < 2.6834e+03 > 2.7048e+03 < 2.6861e+03 = 2.6866e+03
F26 2.7015e+03 < 2.7006e+03 < 2.8441e+03 < 2.7005e+03 < 2.7001e+03
F27 2.8855e+03 = 3.1702e+03 < 3.5401e+03 < 2.9637e+03 = 2.9784e+03
F28 3.4899e+03 < 3.2195e+03 = 4.0794e+03 < 3.2814e+03 < 3.2426e+03
F29 5.9112e+04 = 4.2958e+06 < 4.3426e+03 = 3.1152e+03 = 1.9202e+05
F30 6.0647e+03 < 6.0166e+03 < 4.7499e+03 < 3.2882e+03 = 3.8377e+03

<=> 28/0/2 26/2/2 27/1/2 23/2/5 -

According to the experimental results in Table 2, the performance of the cEO algo-
rithm is better than other compact algorithms. Compared with cCS, the cEO algorithm
almost wins all benchmark functions. Besides, compared with the cPSO, only two results
of benchmark functions are inferior to the cPSO. The results of cBA comparisons are
similar to cPSO, and the proposed cEO algorithm wins on 27 benchmark functions. In
the comparisons with cDE algorithm, the EO algorithm wins on 23 tested benchmark
functions. The experimental results effectively prove that the performance of the cEO
algorithm is better than other compact algorithms.
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Figure 3. Comparison of convergence curves between cEO and other com-
pact algorithms
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Table 3. Comparison of memory space, dimension and population size

Name Population Size Dimension Memory Size

EO 30 10 30×D + 5×D
cEO 1 10 1×D + 2×D + 5×D
private pcEO 4 10 4×D + 8×D + 20×D
public pcEO 4 10 4×D + 8×D + 5×D

Table 4. Comparison results of the two proposed parallel algorithms with
cEO and EO algorithm under Wilcoxon’s signed rank test at the significant
level α = 0.05

Functions EO cEO private pcEO public pcEO

F1 7.9558e+04 > > 2.5873e+05 = = 3.6095e+05 < 3.3412e+05 =
F2 2.6555e+03 = = 7.3492e+03 < < 3.8920e+03 < 3.7685e+03 =
F3 8.6962e+02 > = 1.0066e+03 = = 1.0881e+03 < 1.0103e+03 =
F4 4.2815e+02 < < 4.3287e+02 < < 4.0689e+02 = 4.0732e+02 <
F5 5.2040e+02 < < 5.1869e+02 > = 5.2007e+02 < 5.2002e+02 >
F6 6.0096e+02 = = 6.0164e+02 < < 6.0114e+02 = 6.0117e+02 <
F7 7.0004e+02 > > 7.0009e+02 > = 7.0019e+02 < 7.0010e+02 >
F8 8.0523e+02 > > 8.1145e+02 = = 8.1473e+02 < 8.1209e+02 =
F9 9.1218e+02 > = 9.1423e+02 = < 9.1871e+02 < 9.1271e+02 >
F10 1.1464e+03 > > 1.1773e+03 = = 1.3001e+03 < 1.2419e+03 =
F11 1.5121e+03 = < 1.4314e+03 > < 1.5987e+03 < 1.4203e+03 >
F12 1.2010e+03 < < 1.2002e+03 = = 1.2003e+03 < 1.2002e+03 =
F13 1.3002e+03 < < 1.3001e+03 = = 1.3001e+03 = 1.3001e+03 <
F14 1.4003e+03 < < 1.4002e+03 < < 1.4001e+03 < 1.4001e+03 =
F15 1.5016e+03 < < 1.5011e+03 < < 1.5011e+03 = 1.5011e+03 <
F16 1.6025e+03 < = 1.6022e+03 = = 1.6023e+03 = 1.6025e+03 <
F17 5.0406e+03 < < 4.4342e+03 < < 3.7736e+03 = 3.9639e+03 <
F18 9.6672e+03 < < 1.0277e+04 < < 9.2188e+03 = 9.4171e+03 <
F19 1.9019e+03 = = 1.9025e+03 < < 1.9019e+03 = 1.9021e+03 <
F20 2.4490e+03 = = 3.9137e+03 < < 2.8775e+03 < 2.8766e+03 =
F21 2.7188e+03 > > 6.7739e+03 < < 3.7411e+03 > 5.8156e+03 <
F22 2.2447e+03 < = 2.2573e+03 < < 2.2297e+03 = 2.2447e+03 <
F23 2.6295e+03 < < 2.5518e+03 < > 2.5000e+03 > 2.5949e+03 <
F24 2.5256e+03 < = 2.5407e+03 < < 2.5255e+03 = 2.5317e+03 <
F25 2.6874e+03 = < 2.6893e+03 = < 2.6950e+03 < 2.6812e+03 >
F26 2.7002e+03 < < 2.7001e+03 = < 2.7001e+03 < 2.7001e+03 >
F27 2.9907e+03 < = 2.9711e+03 < = 2.9233e+03 = 3.0292e+03 <
F28 3.2373e+03 < < 3.2137e+03 < < 3.0443e+03 = 3.1736e+03 <
F29 3.7358e+05 < < 2.3344e+05 < < 3.3492e+03 > 3.5995e+03 <
F30 3.7336e+03 = = 4.0323e+03 < < 3.8392e+03 < 3.7469e+03 =

<=> 16/7/7 17/10/3 - 15/9/6

<=> 14/11/5 19/10/1 15/12/3 -
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Table 5. Comparison results of the two proposed parallel algorithms with
PSO, GA, BOA, GSA, and GWO algorithm under Wilcoxon’s signed rank
test at the significant level α = 0.05

Function PSO GA BOA GSA GWO private pcEO public pcEO

F1 1.6820e+08 << 9.2891e+07 << 1.7198e+08 << 4.1604e+08 << 6.8036e+06 << 3.6095e+05 3.3412e+05
F2 1.6404e+10 << 4.0420e+09 << 4.2552e+09 << 9.3971e+09 << 1.0512e+08 << 3.8920e+03 3.7685e+03
F3 2.4940e+05 << 3.0503e+05 << 1.4363e+04 << 6.0976e+04 << 7.2798e+03 << 1.0881e+03 1.0103e+03
F4 3.6413e+03 << 1.3053e+03 << 2.3635e+03 << 4.0797e+03 << 4.4051e+02 << 4.0689e+02 4.0732e+02
F5 5.2084e+02 << 5.2008e+02 << 5.2049e+02 << 5.2083e+02 << 5.2042e+02 << 5.2007e+02 5.2002e+02
F6 6.1309e+02 << 6.0968e+02 << 6.0857e+02 << 6.1249e+02 << 6.0267e+02 << 6.0114e+02 6.0117e+02
F7 8.8639e+02 << 7.8092e+02 << 8.8953e+02 << 9.2426e+02 << 7.0131e+02 << 7.0019e+02 7.0010e+02
F8 9.3325e+02 << 8.7100e+02 << 8.6794e+02 << 8.9647e+02 << 8.1346e+02 =< 8.1473e+02 8.1209e+02
F9 1.0263e+03 << 9.6606e+02 << 9.7105e+02 << 9.9676e+02 << 9.1668e+02 =< 9.1871e+02 9.1271e+02
F10 2.5541e+03 << 1.8815e+03 << 2.7434e+03 << 3.2119e+03 << 1.3976e+03 << 1.3001e+03 1.2419e+03
F11 3.4158e+03 << 2.9082e+03 << 2.7421e+03 << 3.3676e+03 << 1.5446e+03 =< 1.5987e+03 1.4203e+03
F12 1.2028e+03 << 1.2013e+03 << 1.2017e+03 << 1.2030e+03 << 1.2009e+03 << 1.2003e+03 1.2002e+03
F13 1.3049e+03 << 1.3026e+03 << 1.3045e+03 << 1.3050e+03 << 1.3002e+03 << 1.3001e+03 1.3001e+03
F14 1.4390e+03 << 1.4148e+03 << 1.4355e+03 << 1.4460e+03 << 1.4003e+03 << 1.4001e+03 1.4001e+03
F15 2.6527e+05 << 7.8113e+03 << 4.3794e+03 << 3.9042e+04 << 1.5018e+03 << 1.5011e+03 1.5011e+03
F16 1.6044e+03 << 1.6039e+03 << 1.6037e+03 << 1.6042e+03 << 1.6026e+03 << 1.6023e+03 1.6025e+03
F17 6.0062e+06 << 3.9675e+06 << 3.7368e+05 << 4.7720e+06 << 7.1402e+04 << 3.7736e+03 3.9639e+03
F18 4.4743e+07 << 2.4335e+07 << 5.7841e+05 << 9.7701e+07 << 9.5649e+03 << 9.2188e+03 9.4171e+03
F19 1.9443e+03 << 1.9341e+03 << 1.9472e+03 << 1.9801e+03 << 1.9031e+03 << 1.9019e+03 1.9021e+03
F20 4.1986e+05 << 2.4321e+07 << 9.7790e+03 << 2.8477e+06 << 7.0792e+03 << 2.8775e+03 2.8766e+03
F21 1.9704e+06 << 2.1705e+06 << 1.9491e+05 << 1.9492e+06 << 9.4017e+03 << 3.7411e+03 5.8156e+03
F22 2.6421e+03 << 2.6135e+03 << 2.4212e+03 << 2.6940e+03 << 2.2894e+03 << 2.2297e+03 2.2447e+03
F23 2.8748e+03 << 2.5518e+03 <= 2.5000e+03 >> 2.9270e+03 << 2.6339e+03 << 2.5000e+03 2.5949e+03
F24 2.6499e+03 << 2.5888e+03 << 2.5925e+03 << 2.6290e+03 << 2.5312e+03 <= 2.5255e+03 2.5317e+03
F25 2.7151e+03 << 2.7000e+03 << 2.6979e+03 << 2.7095e+03 << 2.7000e+03 << 2.6950e+03 2.6812e+03
F26 2.7084e+03 << 2.7091e+03 << 2.7097e+03 << 2.7177e+03 << 2.7002e+03 << 2.7001e+03 2.7001e+03
F27 3.4287e+03 << 3.2184e+03 << 2.9434e+03 <= 3.5602e+03 << 3.0425e+03 << 2.9233e+03 3.0292e+03
F28 4.5731e+03 << 3.6885e+03 << 3.4578e+03 << 4.7881e+03 << 3.2520e+03 << 3.0443e+03 3.1736e+03
F29 5.7196e+06 << 5.9818e+06 << 1.7537e+04 << 7.5842e+07 << 4.0480e+05 << 3.3492e+03 3.5995e+03
F30 7.0434e+04 << 5.4395e+04 << 1.3839e+04 << 1.6629e+05 << 4.2285e+03 << 3.8392e+03 3.7469e+03

<=> 30/0/0 30/0/0 29/0/1 30/0/0 27/3/0 -

<=> 30/0/0 29/1/0 28/1/1 30/0/0 29/1/0 -

In order to further show the experimental results of the performance of the algorithm,
the convergence curve is used to visually illustrate the degree of convergence of the algo-
rithm in Fig. 3. For four categories of functions, this paper selects some representative
functions to analyze and display. It can be seen that many algorithms quickly find the
optimal value in unimodal functions F2, F3. In the multimodal functions F6, F9, F10,
F11 and F16, the convergence speed of the proposed algorithm cEO is obviously faster
than other compact algorithms. In addition, the cEO also performs well in the hybrid
functions and composition functions.

4.4. Comparison of two parallel cEO algorithms. In order to verify the improve-
ment effect of parallel technology, this paper compares the two parallel compact EO
algorithms with the initial EO algorithm and the cEO algorithm.

Before the comparison, we first analyze the memory space of four kinds of algorithms.
As mentioned in Sect. 3.2, the structure of the public equilibrium pool is different from
that of the private equilibrium pool. It can be predicted that the memory space of the
private pcEO algorithm is larger than that of the public pcEO algorithm. The information
of population size and differences in memory space about proposed algorithms are shown
in Table 3.

In the EO algorithm, the population size is set to 30, plus the five particles of the
equilibrium pool, so the memory space size is 35 × D. In the two parallel compact EO
algorithms, each group of PV represents the distribution of population and must be
recorded, including µ and σ vector. As a result of each group has its independent
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Figure 4. Comparison of convergence curves between two proposed pEO
algorithms and other standard algorithms
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equilibrium pool in the process of private pcEO algorithm, the memory space is more
(Pn − 1)× 5×D than the public pcEO algorithm, where Pn is the population size.

In the experiments of Sect. 4.4 and 4.5, each algorithm was run 20 times on the
benchmark function and evaluation times was 30000. Through the average result of the
experiment in Table 4, compared with other improved EO algorithms, the public pcEO
algorithm can obtain more competitive results.

4.5. Comparison with other common and classic algorithms. This section’s main
objective is to compare two parallel compact algorithms with other general algorithms,
including the PSO, GA, GSA, GWO, and BOA algorithm. The detailed definition infor-
mation of these algorithms can be found in Table 1.

The detailed results of the comparison are shown in Table 5. The penultimate row
of the table represents the experimental results of the private pcEO algorithm compared
with other algorithms. Compared with GSA, PSO, and GA algorithm, the private pcEO
achieves better results on all benchmark functions as well as compared with the homolo-
gous algorithm GWO, the proposed private pcEO performs better on 27 tested benchmark
functions. The comparison results in the last row are shown that the performance of public
pcEO is the same as that of private pcEO.

The convergence curve is obtained in Fig. 4, and then some representative functions are
selected for analysis from the experimental results. For multimodal and hybrid functions,
two parallel cEO algorithm shows great advantages compared with other algorithms.
The parallel cEO algorithms have a fast convergence speed and avoid falling into local
optimum, especially in the F5, F10, F11, F16, F24 functions. The public pcEO uses less
memory space however it also obtained better results than the private pcEO algorithm
in the F1, F6, F9, F10, F12, F24 functions. The results further confirm the ability of
convergence of the public pcEO algorithm.

5. Optimal placement of distributed generation. The concept of Newton-Raphson
power flow calculation and loss sensitivity factor is introduced in Sect. 2.2. This section
aims to use proposed parallel cEO algorithms to plan the optimal placement of distributed
generation.

Algorithm 5 The steps of using the method of loss sensitivity factors to find the optimal
location.

1: After reading line and load data of system, using Newton-Raphson power flow
method to calculate voltage angle and voltage magnitude by Eq.(8)(10)(11).
2: Calculate load flow and loss sensitivity factors by Eq.(12)(13)(14)(15).
3: Store the nodal sensitivity factors in the array in descending order.
4: Select the buses as the best suitable locations.

Accurately planning of the position and sizing of distributed generators is of great
significance to power system optimization. The arrangement of suitable locations for
distributed generator units can effectively decrease the system losses and costs. Therefore,
it is essential to determine a practical possible scheme and process. Concurrently, the
planning of location and sizing of DGs should be assessed and analyzed through a power
flow program for distribution networks. First of all, an accurate and reliable mathematical
model is necessary to evaluate various indicators in the power system.

The analysis and evaluation of the optimal locations for DGs in the power system are
based on node power loss. According to the previously described loss sensitivity factors,
the Newton-Raphson method must first be used to calculate the active and reactive power
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losses for all buses. The locations corresponding to the buses that have the highest
loss are selected as the potential best locations of DGs placement. Then the sensitivity
factors of the node are sorted in descending order to choose a certain number of potential
optimal nodes based on priority by Eq.(15). The reason is that buses with high losses can
reduce more loss than low. This approach aims to reduce the complexity of searching by
identifying potential positions, which helps the subsequent algorithm determine the most
suitable distributed generator size. The specific steps are shown in Algorithm 5.

Table 6. Initial Bus data of the system

Bus Type V sp PGi QGi PLi QLi Qmin Qmax

1 Slack Bus 1.04 0 0 0 0 0 0
2 PV Bus 1.023 50 40.0 27.7 52.7 -40 50
3 PQ Bus 1.09 0 0 2.2 1.6 0 0
4 PV Bus 1.06 0 0 7.6 1.6 0 0
5 PV Bus 1.01 0 37.0 94.2 19.0 -40 40
6 PQ Bus 1.0 0 0 0.0 0.0 0 0
7 PV Bus 1.0 0 0 22.8 10.9 0 0
8 PV Bus 1.06 0 37.3 30.0 30.0 -10 40
9 PQ Bus 1.05 0 0 0.0 0.0 0 0
10 PQ Bus 1.0 0 19.0 5.8 2.0 0 0
11 PV Bus 1.082 0 16.2 0.0 0.0 -6 24
12 PQ Bus 1.09 0 0 11.2 7.5 0 0
13 PV Bus 1.071 0 10.6 0.0 0.0 -6 24
14 PQ Bus 1.0 0 0 6.2 1.6 0 0
15 PQ Bus 1.053 0 0 8.2 2.5 0 0
16 PQ Bus 1.0 0 3.2 3.5 1.8 0 0
17 PV Bus 1.02 0 0 9.0 5.8 0 0
18 PQ Bus 1.0 0 2.2 3.2 0.9 0 0
19 PQ Bus 1.0 0 0 9.5 3.4 0 0
20 PQ Bus 1.01 0 0 2.2 0.7 0 0
21 PQ Bus 1.0 0 0 17.5 11.2 0 0
22 PQ Bus 1.05 0 2.2 0.0 0.0 0 0
23 PQ Bus 1.02 0 0 3.2 1.6 0 0
24 PQ Bus 1.03 0 4.3 8.7 6.7 0 0
25 PQ Bus 1.0 0 0 0.0 0.0 0 0
26 PQ Bus 1.0 0 0 3.5 2.3 0 0
27 PQ Bus 1.09 0 0 0.0 0.0 0 0
28 PQ Bus 1.08 0 0 0.0 0.0 0 0
29 PQ Bus 1.0 0 0 2.4 0.9 0 0
30 PQ Bus 1.04 0 0 10.6 1.9 0 0

Next, according to the buses with suitable locations, the proposed algorithm is used for
finding optimal sizing of the DGs. There are several common and classic algorithms that
have been used for optimal sizing of distributed generation. Two parallel cEO algorithms
are compared with GA, PSO, GSA, and BOA algorithms in this section to determine
which algorithm is best for application. The population size of PSO, GA, GSA, and
BOA algorithms is all set to 30. Meanwhile, the number of groups for both parallel cEO
algorithms is set to 4. Thereby, the memory space of other algorithms is larger than two
parallel compact EO algorithms, especially for the public pcEO algorithm. The times
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Table 7. Line data of the system

From To R X B/2

1 2 0.0472 0.0379 0.0045
1 3 0.0119 0.2560 0.0042
2 4 0.0460 0.2559 0.0085
3 4 0.0120 0.0379 0.0102
2 5 0.0472 0.1983 0.0209
2 6 0.0472 0.1304 0.0187
4 6 0.0119 0.2090 0.0045
5 7 0.0460 0.1160 0.0102
6 7 0.0267 0.0820 0.0085
6 8 0.0120 0.0420 0.0045
6 9 0.0 0.2080 0.0
6 10 0.0 0.5560 0.0
9 11 0.0 0.2080 0.0
9 10 0.0 0.1100 0.0
4 12 0.0 0.2560 0.0
12 13 0.0 0.1400 0.0
12 14 0.0636 0.2559 0.0
12 15 0.0662 0.1304 0.0
12 16 0.0945 0.1987 0.0
14 15 0.2210 0.1997 0.0
16 17 0.0824 0.1923 0.0
15 18 0.1073 0.2185 0.0
18 19 0.0639 0.1292 0.0
19 20 0.0340 0.0680 0.0
10 20 0.0936 0.2090 0.0
10 17 0.0324 0.0845 0.0
10 21 0.0348 0.0749 0.0
10 22 0.0727 0.1499 0.0
21 23 0.0116 0.0236 0.0
15 23 0.1000 0.2020 0.0
22 24 0.1150 0.1790 0.0
23 24 0.1320 0.2700 0.0
24 25 0.1885 0.3292 0.0
25 26 0.2544 0.3800 0.0
25 27 0.1093 0.2087 0.0
28 27 0.0169 0.3960 0.0
27 29 0.2198 0.4153 0.0
27 30 0.3202 0.6027 0.0
29 30 0.2399 0.4533 0.0
8 28 0.0636 0.2000 0.0214
6 28 0.0169 0.0599 0.065

of function evaluation for all algorithms are set to 1200, and other parameters are the
same as the previous section. The objective of this paper is to minimize active power
loss. Each algorithm needs to use the Newton-Raphson power flow solution to calculate
the active power loss of the system during each search step. The initial bus data and line
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Figure 5. Comparison results of different algorithms in the optimal allo-
cation of DGs
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Figure 6. Comparison results of convergence curve with the different algorithms.

data of the 30 bus system are respectively shown in Table 6 and Table 7 where PGi and
QGi respectively represented the active and reactive power emitted by the power supply.
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Furthermore, PLi and QLi respectively represent the active and reactive power consumed
by the load. V sp means the voltage of the bus and Qmin and Qmax limit the reactive
power of the bus. In Table 7, R and X are indicated the impedance of the line and B/2
is the ground admittance.

In order to test and evaluate the performance of the proposed algorithms under dif-
ferent conditions, the influence of the number of potential locations is considered in the
algorithm. Fig. 5 is shown the comparison results of different algorithms in the optimal
sizing of DGs while the number of potential sites is set to 10. Similarly, while the number
of potential locations is set to 20, results are illustrated in Fig. 5 where dim represented
the number of potential sites.

Compared with other common algorithms, two parallel cEO algorithms can achieve the
minimum total active power in both cases. In contrast, PSO and GSA algorithm are
showed instability in the various number of potential locations. Next, the convergence
ability of algorithms is evaluated in the article in both cases, and the results are shown in
Fig. 6. Compared to the convergence curves of different algorithms, the proposed parallel
cEO algorithms focus on implementing the ability of global search and avoids falling into
the local optimum.

6. Conclusion. Two improved EO algorithms based on compact and parallel commu-
nication technology are proposed to determine the optimal allocation of the DG units in
this paper. The basis of the EO algorithm is the establishment of a mass conservation
model, which represents the change process of the mass in the solution under both dy-
namic and static equilibrium state. The purpose of this paper is to minimize the active
power loss in the distribution power system. Compact technology can express the dis-
tributed characteristics of distributed generators in large power systems and take up less
memory space. The interval update method can take advantage of the exploration ability
of the equilibrium algorithm and advance better balance the EO algorithm and a compact
scheme. Next, two parallel cEO algorithms with different structures of the equilibrium
pool are proposed. Parallel communication strategy is different as a result of the different
structures of the equilibrium pool of both two algorithms. Compared with other common
algorithms the public pcEO algorithm takes less memory space and has good convergence
performance. The objective of Sect. 5 is to find optimal sizing of the DGs, and introduce
that compared with other algorithms, two parallel cEO algorithms can obtain better re-
sults and faster convergence speed. The proposed approach by adopting some advanced
schemes [49–52].
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