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Abstract. Fine-grained vehicle classification is a challenging task in computer vision
due to the low intra-class variance. Some methods have been developed to improve the
accuracy of fine-grained vehicle classification by improving the ability of discriminative
features extraction, but there is still room for further improvement in the localization
accuracy of vehicle discriminative regions. Based on deep convolutional neural networks,
we focus on finding a more efficient structure that pays more attention to the discrimina-
tive image regions to enhance the ability of fine-grained vehicle classification. We propose
a novel Multi-Scale Discriminative Regions Attention Network (MS-DRAN), which ex-
tracts feature maps through ResNet-50 backbone network and generates multi-scale feature
maps by a Feature Pyramid Network (FPN). Then, MS-DRAN generates discriminative
regions attention maps on the multi-scale feature maps. The attention maps from shallow
layer perform pixel-level multiplication with the feature maps from deeper layer. By this
way, the network gradually extracts a more discriminating feature maps for classification.
We also design a multi-task loss function to associate the classification results for each
scale and optimize the network parameter in training. Lastly, we validate the MS-DRAN
on Stanford Cars-196 dataset and CompCars dataset and achieves 94.3% and 98.1% in
accuracy, respectively.
Keywords: fine-grained classification; vehicle classification; discriminative feature map;
multi-scale attention map; attention mechanism.
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1. Introduction. With the development of society, transportation security and social
safety have received considerable attention, which leads a great deal of research in ve-
hicle classification [1–5], vehicle detection [6–11], Vehicle instance segmentation [12–14]
and fine-grained vehicle classification [15–18]. Benefitting from the rapid development
of convolutional neural networks (CNNs) [19, 20], research fields mentioned above have
made significant progresses, the performance of many applications have been significantly
improved. However, there still exits challenges in these fields. For fine-grained vehicle
classification task, improving the classification network to extract finer discriminative fea-
tures and make it more focused on vehicle discriminative regions is the critical issue to
improve classification accuracy. We focus on fine-grained vehicle classification task, which
aims to identify the make, model, and year of vehicles, such as Volkswagen, Passat, 2015.
Due to the low inter-class variance of vehicles in appearance, generic classification net-
works [21, 22] are already struggling to achieve satisfactory accuracy. The reason is that
these classification networks do not have an effective mechanism to notice the discrimina-
tive regions of the image which is critical to the fine-grained classification. Therefore, this
paper provides an in-depth study on the problem of how to effectively make the network
automatically generate higher attention to discriminative regions, so that the network
can better extract discriminative features and improve fine-grained vehicle classification
accuracy.

Before the deep learning era, image classification was dominated by the traditional
image classification methods. Lim et al. [23] use Gabor filters to extract features for car
recognition. Support Vector Machine method (SVM) [24] is one of the machine learning
methods based on statistic theory. Based on SVM, Sinatra et al. [25] use PCA dimen-
sionality reduction method to reduce the dimensionality of the features of the vehicle
image, and use SVM to classify the vehicle image. Mehran et al. [26] proposed a vehicle
recognition method based on features of vehicle rear part. The method first detects the
rear part of the vehicle, then extracts features, and finally classifies the vehicle using a
hybrid dynamic Bayesian network. Arróspide et al. [27] use Histogram of Oriented Gra-
dient (HOG) features for vehicle classification. Vehicle classification methods based on
traditional methods mostly use SIFT and HOG features, these hand-designed features are
cumbersome, poorly robust, and difficult to apply to fine-grained classification.

With the successful application of deep convolutional neural networks [21,28–31], some
fine-grained vehicle classification works based on CNNs proposed some novel approaches
and made remarkable progress. Hu et al. [32] proposed a spatially weighted pooling strat-
egy that considerable improves the robustness and effectiveness of the feature representa-
tion of most dominant DCNNs. In [33], the authors proposed an iterative discrimination
CNN (ID-CNN) based on selective multi-convolutional region (SMCR) feature extrac-
tion, and achieved state-of-the-art performance on the Stanford Cars-196 dataset [34].
Ma et al. [18] proposed a channel max pooling (CMP) which divides the feature maps
within each sub-group into a new one and reduces the number of parameters. They
achieved advanced 97.89% in accuracy on the CompCars dataset [35]. These works fo-
cus on improving the structure of the networks to extract more discriminative features
and achieve effective improvements. There are also some works that attempt to improve
the loss function for fine-grained classification. In [36] the authors proposed a general-
ized large-margin softmax (L-Softmax) loss which explicitly compacts the intra-class and
separates the inter-class between features. Wen et al. [37] proposed center loss function
which learns a center for deep features of each class and penalizes the distances between
the deep features and their corresponding class centers. In [17], the authors proposed a
Dual Cross-Entropy Loss built on CE loss and improved the classification performance
on small-sample datasets [38,39].
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The critical issue for fine-grained vehicle classification is whether the classification net-
work can draw more attention to the discriminative regions of the vehicle image. We be-
lieve that although the inter-class variance in fine-grained vehicle classification is low, the
classification network can still accomplish accurate fine-grained classification by identify-
ing certain discriminative regions of vehicle appearance. Inspired by the novel idea in [40]
which maps the predicted class score back to the previous convolutional layer to generate
the class activation maps (CAMs) that highlight the class-specific discriminative regions.
We propose a novel Multi-Scale Discriminative Regions Attention Network (MS-DRAN)
which generates discriminative regions attention maps on multi-scale feature maps un-
der the guidance of the gradients from scores of each category. The attention maps from
shallow layer are down-sampled to half of its original size and perform element-level multi-
plication with the feature maps from deeper layer. Specifically, a ResNet-50 [41] backbone
network and a Feature Pyramid Network (FPN) [42] are used to extract feature pyramid
maps. At each scale of the feature pyramid maps, we perform Global Average Pooling
(GAP) [43] to get a K-dimensional vector, and then a full connection layer and a K-way
Softmax layer are performed to output the categorical probabilities. The discriminative
regions attention maps are generated under the guidance of the gradients from scores of
each category at 8x and 16x down-sampled feature maps. To facilitate description, we
call the discriminative regions attention maps as the attention maps. The attention maps
from the shallow layer (8x down-sampled scale) are down-sampled to half of its original
size and perform pixel-level multiplication with the feature maps from the deeper layer
(16x down-sampled scale). To eliminate the perturbation to the feature maps caused
by the multiplication operation, an additional normalization operation is performed on
the attention maps. We also improve the loss function by adding an additional inter-
class ranking loss term to enforce the finer-scale (or the deeper-scale) to generate more
confident predictions. We train and validate MS-DRAN on Stanford Cars-196 [34] and
CompCars [35] fine-grained vehicle classification datasets, and the experimental results
demonstrate the effectiveness of our proposed method.

The main contribution of this paper is to propose a novel method to generate attention
maps for discriminative regions, and to make the responses of attention maps to discrim-
inative regions progressively more accurate by using multi-scale pyramidal feature maps.
Compared with other methods, the MS-DRAN proposed in this paper does not require
additional vehicle component annotations to enable the network to accurately locate vehi-
cle discriminative component regions. We also design a sensible visualization experiment
to map the attention map generated by the network to the original image, which visual-
izes the distribution characteristics of the regions of interest when the network classifies
vehicles at a fine-grained level.

2. Related Work.

2.1. Fine-grained Classification Methods. The task of fine-grained classification is
to identify the subclass under the broad category. Research topics related to fine-grained
classification include identification of different species of birds [44–47], dogs [48], flow-
ers [49], vehicles [15–18,32–35], aircraft [50,51], and etc. Some early approaches [52–55] did
not use any part annotations, but their performance has been eclipsed by methods devel-
oped to explicitly take advantages of the structure present in fine-grained classes [56–60].
In [34, 61], the authors tried to reconstruct a 3-D representation of the target by us-
ing 2-D part annotations for fine-grained classification. However, part annotations for
large-scale datasets are very labor-intensive, which limits the applications of fine-grained
classification algorithms in other domains.



Multi-Scale Discriminative Regions Attention Network for Fine-grained Vehicle Classification 167

Some works aimed to find localized regions or parts in an unsupervised way. Zhang et
al. [62] proposed to learn a set of part detectors by analyzing filter responses from CNN
that respond to specific patterns consistently in an unsupervised way. Methods [63–65]
proposed to zoom in on discriminative local regions to improve the performance of fine-
grained classification. Zheng et al. [66] proposed a multiple attention convolutional neural
network which uses channel grouping network to locate the discriminative partial regions.

2.2. Convolutional Networks. Since AlexNet [67] won the 2012 ImageNet competi-
tion, Convolutional networks have evolved considerably. VGGNet [21] uses small-scale
convolutional kernels and pooling kernels to construct deep architecture for extraction of
features at low spatial resolution. In [29], the authors introduced a structure known as
inception block which allows abstraction of features at different spatial scales. In 2015, He
et al. [30] proposed ResNet which leads to the conception of skip connections. Afterward,
this concept was used by most of the succeeding networks, such as Inception-ResNet [68],
ResNeXt [41], etc. In the past few years, some works focus on the improvement archi-
tectural design of the network, such as channel boosting [69], attention mechanism [70],
etc

3. Method. Although vehicles produced by the same make are stylistically very uniform,
there are still many details that differ from one model to another, and if these details
are observed, the specific model of the vehicle can be identified, as shown in Figure 1,
experienced experts can accurately identify the make, model, and year of the vehicle based
on some of its partial appearances (e.g., headlights, taillights, grille, etc.).

Figure 1. Each column from left to right is the local appearance of Audi
3, Audi A4L, Audi A6L, BMW X1, and Audi RS6. Each row from top to
bottom is the front view of the front lights, the oblique view of the front
lights, the front view of the tail lights, and the grilles. It is easy for humans
to identify the vehicle type by their local appearance

To categorize vehicle types at a fine-grained level, it is necessary to equip the classi-
fication networks with the capability to extract discriminative features. We propose the
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Multi-Scale Discriminative Regions Attention Network (MS-DRAN, as shown in Figure
2), which aims at supervising multi-scale discriminative regions attention maps when we
train the network for the task of fine-grained vehicle classification. In this way, the net-
work gradually generates increasingly accurate predictions from shallow feature maps to
deep feature maps. The proposed MS-DRAN predicts categorical scores at each scale of
the pyramid feature maps, and the prediction from the last scale is the final prediction.
Gradients from the scores of each category at the first and the second scale are used to
generate discriminative regions attention maps, which will be described in detail in Sec-
tion 3.2. The discriminative regions attention maps help the network pay more attention
to the discriminative regions, which is helpful for fine-grained vehicle classification.

Figure 2. Framework of the Multi-Scale Discriminative Regions Attention
Network (MS-DRAN).

3.1. Class-Discriminative Feature Maps. Convolutional features naturally retain spa-
tial information that would be lost in fully-connected layers, which limits the sensitivity
of the classification networks to discriminative regions. Even though some approaches
attempt to improve the loss function or perform attention mechanism on feature maps,
these methods still struggle to eliminate the destruction of spatial information by the
fully-connected layers. To solve this issue, we design an architecture to generate class-
discriminative maps.

Let Fcdisc ∈ Ru×v×k be the class-discriminative feature maps of category c, where u and
v denote the width and height of the class-discriminative feature map, and k denotes the
number of categories. The score for category c, yc is the output of the fully-connected
layer. The class-discriminative feature map is calculated as

F c
disc = LeakyReLU

(
∂yc

∂AS

)
(1)

AS is the last convolutional layer of the pyramid feature map at scale S. Consider that
an increase or decrease in the gradient of each pixel on the class-discriminative feature
map has an effect on yc, we apply a Leaky ReLU to the gradient of the score for classes.
Without performing the Leaky ReLU, pixels with negative gradients will introduce too
much interference in global average pooling (GAP).

3.2. Discriminative Regions Attention Maps. The discriminative regions feature
maps generated at a specific scale assign weight to each channel of the feature map. For
the k category predictions, a total of k groups of the discriminative regions feature maps



Multi-Scale Discriminative Regions Attention Network for Fine-grained Vehicle Classification 169

are derived. We use FS ∈ Ru
2
× v

2
×k to represent the attention maps on the scale S. FS is

calculated as

FS = Conv

(∑
x,y

wcAc
S (x, y)

)
c ∈ (1, k) (2)

wc is calculated as

wc = GAP (Fcdisc) c ∈ (1, k) (3)

We perform global average pooling on the class-discriminative feature maps for each group
to derive k vectors with dimension k. Followed by a convolutional layer, the attention
map is down-sampled to half of its original size. The attention map generation details are
shown in Figure 3.

Figure 3. Details of the attention map generation.

3.2.1. Prediction Head. Given an input image X, the CNN backbone network and FPN
extracts deep representations at multi-scale that are represented as

AS = Wo ∗ X (4)

where ∗ denotes a set of operations of convolution, pooling and activation, and Wo de-
notes the overall parameters of the CNN backbone network and FPN. For facilitating the
description, we denote the feature maps of 8x, 16x, and 32x downsampling by A1,A2,
and A3. As shown in Figure 2, there are total three prediction heads for categorical
predictions. The probability distribution p over fine-grained categories is calculated as

pS = f (A′S) (5)

where f(.) represents a set of operations of GAP, fully-connected layer, and softmax. A′S
represents the last convolutional feature map before the prediction head A′1 = A1

A′2 = F1
c(x, y)A2

c(x, y) c ∈ (1, k)
A′3 = F2

c(x, y)A3
c(x, y)

(6)
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The proposed MS-DRAN is optimized by two types of supervision, i.e. intra-scale clas-
sification loss and inter-scale pairwise ranking loss. The loss function for an image X is
defined as

L (X) =
3∑

S=1

(Lcls (YS,Y
∗)) +

2∑
S=1

(
Lrank

(
ycS, y

c
S+1

))
(7)

where YS and Y∗ denote the prediction over categories at scale S and the ground truth
label over categories, respectively. Lcls represents classification loss, which is a focal-loss
form as

Lcls = − (1− ycS)γlogycS (8)

ycS is the prediction probability on the correct category label c. Lrank is the ranking loss
which is given by

Lrank
(
ycS, y

c
S+1

)
= max

{
0, ycS − ycS+1 + m

}
(9)

The ranking loss can enforce the finer-scale (or the deeper-scale) to generate more confi-
dent predictions. We set the m = 0.005 by default.

4. Experiment. In this section, we first introduce the datasets and our experimental
settings. Then, the evaluation metrics are presented. Finally, we report the results on
the benchmark datasets and show the analysis.

4.1. Datasets. To evaluate the proposed MS-DRAN, we comprehensively evaluate the
MS-DRAN on the CompCars dataset [35]and Stanford Cars-196 dataset [34], which have
been widely applied to evaluating the performance of fine-grained vehicle classification.
CompCars dataset for fine-grained vehicle classification contains 30955 vehicle images
from 431 models and it is split into two parts in a 50%−50% ratio for training and testing,
respectively. Stanford Cars-196 dataset contains 16185 images from 196 car models. The
detailed statistics of the category numbers and the dataset partition are summarized in
Table 1.

Table 1. The statistics of fine-grained vehicle classification datasets.

Datasets Category Training split Test split
Stanford Cars-196 196 8144 8041
CompCars 431 36456 15627

4.2. Evaluation Metrics. The performance of the fine-grained vehicle classification is
evaluated by overall accuracy, which is calculated as

Overall Accuracy =

∑k
c=1 P (c)

N
(10)

where P (c) is the accurate prediction times of class c,N is the quantity of samples.

4.3. End-to-end Training. The experiment uses the Pytorch deep learning framework,
which is carried out on the AMD Ryzen 3600X CPU@4.4GHz with 16GB RAM, and
uses the NVIDIA GTX1080Ti GPU for acceleration. Before the training, the backbone
network of the proposed MS-DRAN is pre-trained on ImageNet [71]. We use ResNet-50
as the backbone network. The training process spans 100 epochs, and the SGD-with
momentum optimization method is adopted. The learning rate is set to 10−1 for the first
50 epochs, and divided by 10 at 65 and 90 epochs. The momentum is set to 0.9.
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4.4. Baselines. We use the method in [72], ResNet-50, SE-ResNet [73], VGG19, and
DenseNet161-CMP [18] as our baselines. The structure settings of ResNet-50 and VGG19
are described in below.

1)The vehicle classification network based on VGG19 consists of two parts, the backbone
network and classifier. The numbers of the hidden nodes for the fully-connected layer are
256 for Stanford Cars-196 and 512 for CompCars, respectively. A P-way softmax layer is
adopted, where P is the number of categories in the dataset.

2)The vehicle classification network based on ResNet-50 is similar as VGG19 based
classification network. The fully-connected layer has 256 nodes for Stanford Cars-196 and
512 for CompCars, respectively, and a P-way softmax layer is adopted. In addition, we
construct another classifier with a GAP layer and fully-connected layer, which we call
it ResNet-50-GAP. The ResNet-50, SE-ResNet, VGG19, and ResNet-GAP are trained
on each car dataset. For the training set, we use the SGD-with momentum. The hyper-
parameters are same as the proposed MS-DRAN. For the method in [72] and DenseNet161-
CMP, we use the validation results from the papers.

4.5. Results and Analysis.

4.5.1. Comparison with Baselines. Table 2 shows the recognition results on each fine-
grained vehicle dataset. On the Stanford Cars-196 dataset, the VGG19 network achieves
90.6% in accuracy on Cars-196 dataset and 92.5% on CompCars dataset. Due to the
greater number of parameters and deeper network structure, ResNet-50 achieves 90.8%
in accuracy on Cars-196 dataset and 94.0% on CompCars dataset, which outperforms
0.2% and 1.5% than VGG19. With the same backbone network, ResNet-50-GAP and
SE-ResNet outperform ResNet-50 by 0.5% and 1.3% on Cars-196 dataset, respectively,
and outperform ResNet-50 by 0.3% and 0.2% on CompCars dataset, respectively. Method
in [72] makes the CNN streams to automatically learn to attend critical object parts via a
deep attention-based spatially recursing model, and achieves 93.4% in accuracy on Cars-
196 dataset. The DenseNet161-CMP learns more robust discriminative features by the
so-called channel max pooling (CMP) and achieves 93.7% in accuracy on Cars-196 dataset
and 97.9% on CompCars dataset. It can be seen that the accuracy of fine-grained vehicle
classification can be significantly improved by leveraging discriminative features. The
MS-DRAN we proposed achieves the highest accuracy in Table 2 on both the Stanford
Cars-196 dataset and CompCars dataset, with accuracies of 94.3% and 98.1%, respectively.

Table 2. Comparison of recognition results on Stanford Cars-196 dataset
and CompCars dataset

Methods
Overall Accuracy

Stanford Cars-196 CompCars
VGG19 90.6 92.5
ResNet-50 90.8 94.0
ResNet-50-GAP 91.3 94.3
SE-ResNet 92.1 94.2
Wu et al. [72] 93.4 83.0
DenseNet161-CMP 93.7 97.9
MS-DRAN (ours) 94.3 98.1

4.5.2. Ablation Studies. In this section, we conduct ablation studies to verify the effective-
ness of the components of the proposed MS-DRAN separately. We use the classification
network composed of ResNet-50 backbone network, fully-connected layer, and a P-way
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Softmax layer as the baseline. All the ablation studies are carried out on CompCars
dataset. As shown in Table 3, the baseline classification network achieves 94.6% accu-
racy. We add a GAP layer in front of the fully-connected layer, the performance of the
network increased. The accuracy has increased by 0.7%. By adding a FPN, the network
outputs classification results at each of the three scales, the accuracies are 94.6%, 95.1%,
and 95.5% for 8x, 16x, and 32x downsampling feature maps, respectively. At the last
scale, the accuracy improves by only 0.2%. Then, we validate the proposed MS-DRAN
without the additional constraint Lrank in the loss function, and the network achieves
97.8% in accuracy. With the constraint Lrank, the MS-DRAN ultimately achieves an
accuracy of 98.1%.

Table 3. Ablation study of the MS-DRAN on CompCars dataset.

model
Overall accuracy

ResNet-50 Fc+softmax GAP FPN Attention map Lrank
X X 94.6
X X 95.3
X X X 95.5
X X X X 97.8
X X X X X 98.1

4.5.3. Visualization and Discussion. We show qualitative results of the discriminative
regions that are highlighted in Figure 4. We chose the last scale of the classification
pipeline for visualization. For ease of description, we use A3 (x, y) ∈ Ru3×v3×k to represent
the element on position (x, y) of the last feature map at the last scale. The score from
the correct category Sc, we obtain

Sc =
∑
k

wc
k

∑
x,y A

k
3 (x, y)

u3 × v3
(11)

We define Mc as the discriminative regions for class c, where each element of Mc is given
by

Mc (x, y) =
∑
k

wc
kA3 (x, y) (12)

We then use the Nearest-neighbor algorithm to amplify Mc to the original image size
and visualize Mc and the original image together. After training, the highlight regions
tend to be located in the discriminative parts such as lights, vehicle logo, grille, etc.
Therefore, the proposed MS-DRAN has significantly beneficial effects on discriminative
feature extraction and location, which makes the network obtain better performance.
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Figure 4. Visualization of the discriminative regions. We map each spa-
tial location in the attention map back to the patch in the original image.
The results show that the proposed MS-DRAN pays more attention to the
discriminative regions of the vehicle.

5. Conclusion. In this paper, we propose a novel multi-scale discriminative region atten-
tion network (MS-DRAN) for fine-grained vehicle classification. The proposed MS-DRAN
generates discriminative regions attention maps on multi-scale feature maps under the
guidance of the gradients from scores of each category. The attention maps from shallow
layer are down-sampled to half of its original size and perform pixel-level multiplication
with the feature maps from the deeper layer. With such a design, the classification net-
work gradually extracts more refined and robust discriminative features. The validation
on Stanford Cars-196 dataset and CompCars dataset shows that the proposed MS-DRAN
achieves state-of-the-art performance. In the future it may be illuminating to deploy our
method on other high-level tasks than categorization, such as fine-grained vehicle detec-
tion.
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