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Abstract. As a product of the development of science and technology, smart meters
have been widely used all over the world because of its rich functions and reliable use. The
fault detection of smart meters has become more and more important. How to quickly
determine the fault types of smart meters has become a key problem. In this paper,
a fault detection method based on a one-dimensional convolution neural network and
model integration is proposed. Firstly, the data and features which are highly related to
the fault types of smart meters are screened out from the fault data set of smart meters.
Secondly, the structure and model of a one-dimensional convolution neural network are
established. In this paper, a one-dimensional convolution network structure with one
batch normalization (BN) layer, two convolution-pooling layers, two fully connected
layers, and one dropout layer is selected. Finally, we integrated the network by adding a
dropout layer and the network performance is evaluated by the index, which is verified on
the public data set and tested on the smart meter fault data set in the power grid system.
The results show that the proposed has a significant improvement in the accuracy of fault
classification after model integration.
Keywords: Smart meter, fault classification, one-dimensional convolution neural net-
work, model integration.

1. INTRODUCTION. To further reduce the operation cost and facilitate the opera-
tion and maintenance of power grid departments [1], requirements can grid system through
the analysis of the data of smart meters to send information to determine whether the
smart meters failure and the failure types [2], which can directly send professional main-
tenance personnel point to point of fault meters for repair.

There are many existing fault classification methods for predicting the fault of smart
meters. Use belief network to extract feature and classify with SVM [3] can improve
the accuracy of fault diagnosis of metering automation terminal. Manually construct
the overall structure of fault diagnosis [4] with a reliability function can simplify the
cumbersome information. Unfortunately, manual fault prediction method [4–6] often
introduce difficulties cause subjective judgments are always not the best scheme, while
the conventional machine learning methods [3, 7–9] have trouble in fitting a complex data
set which will cut down the accuracy of prediction.

Recent advances in machine learning have mainly been driven by deep convolution
neural networks (CNNs [10]) due to their superior capabilities to automatically learn
important features from data [11]. They have improved the state-of-the-art not only in
many computer vision tasks [12, 13], but also in a number of power grid fault diagnosis
[14–20]. Different from previous methods that use manual knowledge to build structure,
CNN models learn information from a large amount of data set automatically. However,
there is still no public data set for meter fault diagnosis. So that we request for and get
nearly 70,000 smart meter fault information from a city’s power grid.

In this paper, we propose a one-dimensional convolution neural network to predict me-
ter failure. We make some change based on an architecture of CNN, which is simple but
effective in non-Linear regression. We follow the idea of integration [7] to improve the orig-
inal model. Compared with conventional machine learning methods, a one-dimensional
CNN model has a better ability to fit data set and get 15% increase of accuracy, while
reduces a lot of manual operation. Meanwhile, the integration of models gets more than
5% increase. It shows that integrate models with different parameters do can improve the
accuracy, which can be a trick for further study.

2. Analysis of meter data. The data of the meter fault data set studied in this paper
comes from nearly 70,000 smart meter fault information collected by a power grid in a
city, which records the voltage, current, and power values collected during the fault of
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each meter, as well as information such as city ID, work order identification, putting into
use time and other information.

In this paper, the fault types in the smart electricity meter fault data are firstly counted
statistically. Then, based on the observation and analysis of various data indicators, a
total of ten data are selected to classify the fault types, and the data is per-processed to
ensure data input can be used normally into the network.

2.1. Smart meter fault type statistics. This paper makes a statistical analysis of the
fault types of smart electricity meter fault data. There are nine fault types, whose specific
names and sample numbers are shown in Fig.1.

Terminal 

power off 

Phase A voltage 

phase failure

Phase A 

voltage loss

Phase B voltage 

phase failure

Phase B 

voltage loss

Phase C voltage 

phase failure

Phase C 

voltage loss

Terminal 

power on

Manual reset of 

maximum demand

Figure 1. Fault type name and sample number distribution

The number of samples of each fault type is basically in an order of magnitude, so it
can be used as the condition of the final fault classification. In this paper, nine fault types
are numbered from 1 to 9 in Tab 1. Subsequently, the number is taken as the output of
the classification model to facilitate the calculation of the loss function.

Table 1. Correspondence table of fault type names and numbers

Fault type name Serial number
A phase voltage break 1

A phase voltage loss (phase loss) 2
B phase voltage phase break 3

B phase voltage loss (phase loss) 4
C phase voltage phase break 5

C phase voltage loss (phase loss) 6
Terminal powered on 7
Terminal powered off 8

Maximum demand manual reset 9

2.2. Smart meter fault data selecting. After counting the number of various fault
types, it is necessary to filter out the data items that are highly correlated with the
fault type and have a significant impact on the fault type from the entire grid data
as the basis for subsequent fault classification. According to observation, analysis, and
logical judgment, a total of ten data items are selected as the classification basis in the
paper, including phase A voltage, phase B voltage, phase C voltage, phase A current,
phase B current, phase C current, total forward active power electric energy, work order
identification, running energy meter ID, and collection object identification code.
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2.3. Smart meter fault data per-process. As there are absent data in the smart meter
fault data set, which need to be filled in. According to the actual working conditions, for
each phase current and voltage data and total energy data, we choose to fill with zero; As
for work order identification, running energy meter ID, and collection object identification
code, we choose to fill with the average value of the entire data set.

3. One-dimensional convolution neural network model and integration method.

3.1. One-dimensional convolution neural network structure. Different from BP
neural network, the convolution neural network consists of a convolution layer, pooling
layer, and full connection layer. Since the target task is to classify fault types according to
a series of data values, the one-dimensional convolution structure is suitable for this task.
The neural network structure used in this paper includes a BN layer, two convolution
layers, two pooling layers, and two full connection layers. The specific structure is shown
in Fig.2.
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Figure 2. Neural network structure diagram

The BN layer is used to normalize the input small batch data to accelerate the train-
ing speed and improve the generalization ability of the model. Two convolution layers
are responsible for extracting features from the input data, and two pooling layers are
located behind the two convolution layers respectively for data compression and param-
eter reduction. After that, the extracted features are flattened and input into the fully
connected layer, and the value of the model classification is output, that is, the code of
the calculated fault type. In order to integrate the model, a Dropout layer is added before
each of the two fully connected layers, which can form different network structures and
further improve the generalization ability of the network.

3.2. Model integration approach. The purpose of the integrated approach is to supply
a maximum flexibility in choosing a family of models and is a method for estimating
uncertainty. Neural network model has a great ability to fit data set, but there are
some factors which will probably make the model converge to a local optimal solution,
such as initial value of weight and order of training data. For just one training process,
the model does not necessarily get the global optimal solution. However, if there are
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enough well-trained models, the sum of them will be closer to the real optimal solution.
Integrate models with different parameters will correct errors, reduce and cancel bias so as
to improve the classification accuracy. In this paper, the method of model integration is
adopted to train with different data set, and then the same test data is classified. Finally,
the classification results are integrated to determine the final category.

After the data set was divided into a training set and test set in a ratio of 7:3, the
whole training set was named as TR and the test set as TE. On the premise of keeping
the proportion of TR categories unchanged, we randomly selected m sub sets from the
training set TR and denoted as TRi(i = 1, 2, ...,m) . The starting model is named as M0,
which is trained in the sub-training sets TRi(i = 1, 2, ...,m) separately and m well-trained
models were obtained, denoted as Mi(i = 1, 2, ...,m). Then we randomly selected n test
data from the test sets TEj(j = 1, 2, ..., n) and feed them into all the trained models
Mi(i = 1, 2, ...,m) in turn, and denoted the test result of test data of qth tested in the
pth model as ypq. Therefore, the output matrix of Y with n rows and m columns can
be obtained, in which, each row is the classification value of a certain data in different
models, and each column is the classification value of different data in the same model.

Finally, the output matrix Y is summed up by the number of rows n, denoted as Ȳ ,
which is a one-dimensional vector with length n. In other words, the mean value of the
output values of n data through m models, and is used as the classification value of the
test data of the model TEj(j = 1, 2, ..., n).

3.3. Evaluation index of the neural network classification model. In this paper,
the evaluation index of the model classification results is selected as R2score, and its value
is calculated by the sum of regressive squares (SSR) and the sum of residual squares
(SSE).

If the real observed value, namely the tag value, is denoted as yi, the average tag value
is denoted as ȳ, and the classification value is denoted as ŷi, then the calculation formula
of the regressive sum of squares is shown in formula(1), namely the error between the
classification value and the average label value. This value reflects the sum of squared
deviations of the correlation between the independent variable and the dependent variable.

SSR =
n∑
i=1

(ŷi − ȳ)2 (1)

The calculation formula of the residual sum of squares SSE is shown in formula(2),
which reflects the fitting degree of the model.

SSE =
n∑
i=1

(ŷi − yi)2 (2)

R2score, as known as the determination coefficient, is calculated by formula(3), which
reflects the proportion of dependent variables that can be explained by independent vari-
ables. Its value is close to 1, indicating that independent variables can better fit into
dependent variables and have better classification performance.

R2score = 1− SSE

SSE + SSR
(3)

4. Neural network training process. In the process of neural network training in this
paper, the data set is divided into training set and test set with the ratio of 7:3. The
mini-batch gradient descent method is adopted and each training process selects a certain



Smart Meter Fault Prediction Based on One-dimensional Convolution Neural Network Integrated Model 183

size of mini-batch data from the training set, inputs it into the neural network, and the
classification result is obtained.

The training processing is as a normal CNN network, the optimization algorithm and
loss function are calculated by comparing classification results and labels, the calculation
result of the loss function is back propagated, and the network parameters are updated
time to time. After the reciprocating training reaches a certain number of times, the loss
function value remains stable, the training ends, and the obtained network structure is
tested on the test set.

4.1. Batch size. In this paper, the mini-batch gradient descent method is adopted during
training, that is, the batch size of data is randomly selected from the training set for each
training and put into the network model for training. If the batch setting is too small,
the model convergence is too slow; If the batch setting is too large, it will be affected by
machine memory.

4.2. Learning rate. During the learning process, setting an efficient learning rate is a
very key step in calling the optimization function is called and its value will have an
impact on the rate of gradient descent. The initial learning rate setting is too small and
the model converges slowly. If the initial learning rate is set too large, the model cannot
converge to the optimal solution.

4.3. Loss function. The loss function is used to measure the deviation between the
classified value and the true value in the training process, and now many types have been
developed, mainly including L1 Loss, MSE L1 Loss, and Smooth L1 Loss. L1 Loss is also
known as an average absolute error, and its calculation formula is shown in formula(4).

loss = |xi − yi| (4)

MSE L1 Loss also becomes a mean square error, and the calculation formula is shown
in formula(5).

loss = (xi − yi)2 (5)

Smooth L1 Loss is the smooth version of L1 Loss. We usually adopt Smooth L1 Loss
when the error is less than 1 and L1 Loss when the error is greater than 1. The calculation
equation is shown in formula(6).

loss =

{
0.5(xi − yi)2 |xi − yi| < 1
|xi − yi| |xi − yi| ≥ 1.

(6)

4.4. Optimization algorithm. The function of the optimization algorithm is to adjust
the network weight during the training to minimize or maximize the selected loss func-
tion. Common optimization algorithms include SGD, ASGD, Adam, etc. SGD needs to
adjust the learning rate artificially, so this algorithm is not used in the experiment. SGD
optimization is to update the weight wt(denoted as ∇Q(w)) with the gradient of the loss
function in each iteration. The updating formula is shown in formula(7).

wt+1 = w̄t − η∇Q(w) (7)

Where η is the learning rate, and the calculation equation w̄t is formula(8).

w̄t = wt (8)

Compared with SGD, the weight updating formula of ASGD is similar to formula(7),
but the calculation equation w̄t is different, as shown in formula(9).
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w̄t =

{
wt t < t0

1
t−t0+1

∑t
τ=t0

wτ t ≥ t0.
(9)

Adam algorithm, as known as the adaptive time estimation method, can calculate its
adaptive learning rate for each parameter. The weight updating equation is formula(10).

wt+1 = wt −
η√
ῡt + ε

m̄t (10)

Where η is the initial learning rate, ε is the set minimum value, m̄t and ῡt are shown
in formula(11) and formula(12) respectively.

m̄t =
mt

1− βt1
(11)

ῡt =
υt

1− βt2
(12)

Where β1 and β2 are per-set.

5. Experimental results and analysis. The selection of a series of super parameters,
algorithms, and functions during the neural network model and model training will have
an impact on the network classification performance. To obtain the best network clas-
sification performance, the smart electricity meter fault data should be used to conduct
uni-variate experiments on these super parameters, algorithms and functions.

5.1. Model validation. Before selecting the optimal hyper-parameter, the classification
performance of the one-dimensional convolution neural network used in this paper is
verified on the common data set. In this paper, four common data-sets are selected from
the third-party library Sklearn, and the names and number of categories of all kinds of
data sets are shown in Tab 2.

Table 2. Name of public data-set and number of classification categories

Data set name The number of categories
Iris 3

wine 3
cancer 2
MNIST 10

Meter failure data set 9

In this paper, all kinds of data sets are divided into training sets and test sets according
to 7:3. After 100 times of training on the training set, the proposed CNN network is tested,
and the test results are shown in Tab 3.

Table 3. Test results of network model on the common data set

Data set L1Loss R2score
Iris 0.121 0.953

wine 0.043 0.936
cancer 0.034 0.974
MNIST 0.236 0.928
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Among them, various super parameters and algorithms are temporarily selected as:
batch size is equal to 64, the initial learning rate is set as 0.01, the optimization algorithm
is Adam, and the loss function is L1 Loss.

It can be seen from the experimental results that the performance of the neural network
is good, and the value on the relatively standard classification data set can get more than
0.9, indicating that the neural network model can complete the classification task.

5.2. Hyper-parametric training. After verifying the classification performance of the
neural network structure on the public data set, the input data set is replaced by the
smart electricity meter fault data set for experiments, and various super-parameters,
optimization algorithms, and loss functions are trained to select the best super-parameters
and functions.

Taking the optimization algorithm as an example to facilitate the experiment, three
optimization algorithms that do not need to manually select the learning rate are tested
in this paper. By comparing the performance of the network model on the test set after
the training is completed, the experimental results are listed in Tab 4.

Table 4. Test results of network model using different optimization algo-
rithms on ammeter data set

Optimization algorithm L1 Loss R2score
ASGD 1.216 0.663

RMSprop 1.104 0.711
Adam 1.097 0.715

It can be seen from the test results that RMSprop and Adam have significantly better
test results than the former, ASGD. To determine which one to choose between RMSprop
and Adam, the paper makes a judgment by observing the curves of the two optimization
algorithms in the training process, as shown in Fig.3.

It can be seen from Figure 4 that although the convergence value of RMSprop is close
to Adam, the RMSprop curve has a large burr during the whole training process, which
affects the performance of the model. Therefore, the Adam optimization algorithm is
selected in this paper. In the same way, experiments can be carried out on other super
parameters and functions and the best choice can be made.

After experiments, it can be concluded that the network model has the best performance
when the batch size is 1280, the initial learning rate is 0.008, the optimization algorithm
is Adam, and the loss function is Smooth L1 Loss.

5.3. Model integration. Finally, the model integration is carried out based on the
original neural network model, and the Dropout layer is added before each fully connected
layer. After that, the new network model is trained and the test set is tested after training.

When testing, data is randomly selected from the test set as input feed to the network
model, and the Dropout layer is enabled to iterative classify the selected inputs, meaning
that a small part of the network model is disabled for each test and the inputs are
categorized using a different network model.

output result of each iteration was recorded, the mean value was taken as the final
classification result, and the index R2score was calculated. Tab 5 lists the test results
of the network model on the common data-set and the smart meter fault data-set before
and after model integration.

It can be seen from the test results in the table that the evaluation indexes are fur-
ther improved and the network performance is improved after adopting the model fusion
method.
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     L1Loss              MSELoss              R2score
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Figure 3. Neural network structure diagram

Table 5. Index test values before and after model fusion

Data-set norm model’s R2score our model’s R2score Indicators
Iris 0.953 0.972 0.019

wine 0.936 0.968 0.032
cancer 0.974 0.985 0.011
MNIST 0.928 0.965 0.037

Meter fault 0.692 0.753 0.061

5.4. Algorithm contrast. To reflect the one-dimensional convolution neural network
algorithm used in this paper on the power grid failure data sets of advantage, this pa-
per implements a number of commonly used algorithms for fault diagnosis in the power
system. Besides, the experimental results on failure data sets of the real power grid, and
compared with the results of a one-dimensional convolution neural network algorithm,
the experimental results are recorded in Tab 6.

As can be seen from the experimental data in Table 6, both the traditional image
classification data set MNIST and the power grid fault data set studied in this paper,
the classification performance and evaluation indexes of the one-dimensional convolution
network algorithm are superior to those of the classical machine learning algorithms.
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Table 6. Experimental results of algorithm comparison

SVM Decision tree Random forests 1-D CNN
MNIST 0.9518 0.7403 0.9621 0.9921

Meter fault 0.3698 0.4805 0.5328 0.7528

6. CONCLUSIONS. In this paper, a one-dimensional convolution neural network al-
gorithm is adopted to train the smart meter fault data collected by the smart grid, and
realize the classification, prediction, and judgment of the fault types of smart meters, to
improve the diagnosis and maintenance speed of the power grid system after the failure
of smart meters. Firstly, We select key data and fill the missing data items to solve data
quality problems. After that, we build a one-dimensional convolution neural network
integrated model, verify the classification task of this model on the common data set.
Finally, we train model parameters using the smart electricity meter fault data set and
compare the performance with other algorithms. It can be seen from the results that the
one-dimensional convolution neural network is better than traditional methods. Besides,
the model integration do can improve the performance of the original model. There are
wide development at the smart meter fault prediction in the future. Researchers can at-
tempt to use a more complex model to get the highest accuracy and apply it at the power
grid system.
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