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Abstract. Wearing a safety helmet is an important part of safe production. In view of
the complex scenes of the construction site and the small size of the helmets, an adaptive
feature enhancement algorithm called SKC-SSD (Selective Kernel and Channel SSD) is
proposed. The self-attention mechanism is used to improve the original SSD in this
paper. Different from other methods of increasing the depth and width of the network,
we perform adaptive feature enhancement on the feature map from the perspective of the
channel and the receptive field (RF). We analyze the performance of two self-attention
feature enhanced network blocks, and find that both of them are well compatible with
SSD. In addition, we also find that the two have complementary advantages. Based on
the above findings, we propose SKCNet to enhance the feature maps extracted by original
SSD. In order to evaluate the effectiveness of SKC-SSD, we construct multiple networks
for ablation study and comparative experiment on the Safety-Helmet-Wearing-Dataset.
The experimental results show that our network has excellent accuracy and robustness
compared with the original SSD and other control networks. The mAP is 5.1% higher
than the original SSD, and can achieve real-time detection on the GPU.
Keywords: CNN, Helmet wearing detection, Self-attention, Feature enhancement

1. Introduction. Helmet is a common personal protective equipment (PPE) [1]. Rel-
evant studies show that wearing safety helmet can significantly reduce the probability
of workers suffering from brain injury and ensures job safety to a certain extent. Many
serious production and construction accidents are directly related to the fact that the
construction workers do not wear safety helmets. Almost all countries have statutory reg-
ulations that safety helmet must be worn on construction sites [2]. However, some workers
often violate these regulations due to comfort and other reasons, which directly threatens
the personal safety of them. Managers use many methods to supervise the wearing of
safety helmets in the construction site. The detection methods based on hardware need
additional hardware equipments, which have a higher cost and greatly reduce the comfort
of the constructors wearing safety helmets. Although the accuracy rate of manual on-site
supervision is high, the operation area of general construction site is large and scattered,
and the monitoring managers are prone to fatigue, which usually leads to missed inspec-
tions. Therefore, it is of great significance to supervise the wearing of safety helmets on
the construction site effectively and automatically. The detection methods based on im-
age processing have the advantages of low cost, fast deployment and can realize automatic
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detection all day. In recent years, These methods have attracted the attention of more
and more researchers.

Because the scene of construction site and the posture of workers are generally complex,
and helmets usually appear in the form of small targets in images, the detection of helmet
wearing has always been a challenging research field [3]. In the past decade, related
scholars have researched and developed many technologies to automatically detect the
wearing of helmets. Liu et al. [4] used the skin-color detection method to locate the face
area, and estimated the area above the face as the helmet area. Then, take Hu moment
as the feature vector of the image, and use Support Vector Machine (SVM) to judge the
wearing condition of the helmet finally. Rubaiyat et al. [5] used Histogram of Oriented
Gradient (HOG) to locate the position of workers, and then use Hough transform to
detect the safety helmet. Zhou et al. [6] detected the face region and extract the statistical
features, local binary pattern features and fast principal component analysis features of
the region. Finally, BP artificial neural network and classifier are used to classify and
predict the wearing of safety helmet. However, the above methods based on traditional
image processing and machine learning have some problems, such as difficult to design
features manually and poor ability to adapt to environmental changes [7, 8]. Traditional
target detection algorithms based on artificial feature extraction cannot meet the needs
of helmet wearing detection in complex scenes.

With the continuous development and application of computer vision technology and
convolutional neural network (CNN), it is possible to automatically detect the wearing of
safety helmet in the construction site with complex environment. Convolutional neural
network plays an important role in the field of target detection because of its advantages
of self-learning and generalization ability. The emergence of excellent convolutional neural
network structures, such as AlexNet [9], VGGNet [10], GoogLeNet [11], has promoted the
development of target detection [12]. In recent years, target detection algorithms based
on CNN are mainly divided into two categories: two-stage target detection algorithm
and single-stage target detection algorithm. Two-stage target detection algorithms are
represented by R-CNN [13], Fast R-CNN [14], Faster R-CNN [15], R-FCN [16], Mask
R-CNN [17], etc. This kind of algorithm divides the detection into two stages, including
the extraction of regions proposal and the prediction of candidate target classes and po-
sitions. Single-stage target detection algorithms are represented by SSD [18], DSSD [19],
RFBNet [20], YOLO [21], etc. Different from the two-stage target detection algorithm,
the single-stage target detection algorithm directly generates the class and location infor-
mation of the target to be detected by regression. Compared with the two-stage target
detection algorithm, it not only ensures the high accuracy relatively, but also greatly
improves the detection efficiency, which makes the field of target detection get explosive
development.

Target detection algorithm based on CNN has been widely used in the field of helmet
detection. Yan et al. [22] used two independent CNN to extract the image features of
workers and combine the traditional machine learning method with Random Forest (RF).
They propose an intelligent recognition algorithm for helmet wearing detection based on
DCNN and RF. Shen et al. [23] and Fan et al. [24] proposed a helmet wearing detection
method based on the combination of face detection and other network models. However,
because of relying on face detection to locate workers, the algorithm cannot detect workers
with their backs to the monitor. More importantly, the above methods use a combination
of multiple models, which makes them have high detection accuracy, but this mechanism
greatly improves the complexity of the algorithm, and it is hard to achieve real-time
detection. Fang et al. [25] proposed to use the improved YOLO by MobileNet [26] to
detect the wearing of safety helmet, and take worker as the training label unit rather
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than helmets. Although the difficulty of small target detection is reduced, it is easy to
cause missing detection when the clothing color of worker is similar to the background
color. What’s more, there is a problem that YOLO cannot precisely locate the target [27].
SSD combines the regression idea of YOLO with anchor mechanism of Faster R-CNN,
which not only ensures the detection speed but also the prediction accuracy. However,
SSD still has some problems, such as low detection accuracy for small targets.

In this paper, we analyze the limitation of SSD network. SSD only adds several addi-
tional convolution layers for multi-scale detection. This paper considers that the quality
of features extracted from these convolution layers is relatively poor, which affects the
improvement of SSD on the accuracy of helmet wearing detection task. Previous research
works [28, 29] have proved that deepening the depth and widening the width of the net-
work can improve the performance of the network to a certain extent, but this will make
network training more and more difficult, mainly because of gradient disappearance or
gradient explosion. To solve this problem, we enhance the feature from the perspective of
channel and receptive field. Inspired by SENet [30] and SKNet [31], we propose a novel
network called SKC-SSD for helmet wear detection. We perform ablation study on the
Safety-Helmet-Wearing-Dataset [32], which proves the effectiveness of our method. Ex-
periments show that, compared with the original SSD, our method greatly improves the
detection accuracy and can achieve real-time detection.

2. Methodology.

2.1. SSD object detection. SSD is a classic single-stage object detection algorithm,
compared with the two-stage detection algorithm, it has achieved a great improvement
in efficiency. At the same time, the accuracy is also considered. It has been widely
used in the object detection task. SSD uses VGG16 as the backbone network of feature
extraction, and adds additional convolution layers to obtain more features for feature
fusion. The shallow feature map has rich details, but has not enough semantic information.
However, the deep feature map contains a large number of semantic feature information
with translation invariance, but it loses a lot of details. Therefore, SSD not only does
object detection on the final feature map, but also integrates other five feature map
information. After getting six feature maps extracted by backbone feature extraction
network, the multi-stage feature map is regressed and classified to generate a series of
regression boxes and classification scores, and then the Non-Maximum Suppression (NMS)
algorithm is used to filter the regression boxes, the prediction results are finally obtained.

SSD sets different sizes of default boxes sk for calculation units of the k-th feature
map used for regression. m is the number of feature maps, and smax is the maximum
proportion of the default box to the feature map (generally set to 0.9). smin represents
the minimum proportion of the default box to the feature map (generally set to 0.2).

sk = smin +
smax − smin

m− 1
(k − 1), k ∈ [1,m] (1)

In the feature map used for regression, each calculation unit generates several anchors,
including two squares and several rectangles. The side lengths of the two squares in the
k-th feature map are as follows:

{
lmin = sk

lmax =
√
sk+1 × sk

(2)
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lmax and lmin represent the side lengths of the larger square and the smaller square,
respectively. The length and width of the rectangle are:width =

√
ratio× sk

length =
1

width

(3)

Among them, the number of ratio determines the number of rectangular anchors.
Through the multi-layer feature map prediction mechanism, SSD can find a batch of
anchors that are closest to the ground truth in size and position (i.e., the largest IOU) in
the receptive fields with various sizes. While improving the detection speed, it maintains
high accuracy. SSD has achieved good detection results in VOC data set, but when it is
applied to Safety-Helmet-Wearing-Dataset, the phenomenon of missing detection of small
objects often occurs. We think that the original SSD relies on the Conv4 2 and FC7 layer
to detect small objects. Although the resolution is high, the feature layer is shallow and
lacks deeper semantic information. With the increase of the depth of the feature layer,
the network loses shallow feature information, which affects the detection effect of small
objects. The network structure of SSD is shown in the Figure 1.

Figure 1. The network structure of SSD

2.2. Adaptive channel selection strategy. Squeeze-and-Excitation Net (SENet) aims
to guide the network to learn the interdependence and importance between different chan-
nels, enhance the useful features according to the importance, and suppress the useless
features for the detection task, so as to achieve better detection results. SENet mainly
includes three operations: Squeeze, Exception and Reweight. The network structure is
shown in the Figure 2.

Figure 2. The network structure of SENet

Among them, Ftr represents performing convolution and pooling operations on the
feature map X to obtain the feature map U with the number of channels C, and use it
as the initial input of SENet.
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Ftr : X → U,X ∈ RW ′×H′×C′
, U ∈ RW×H×C (4)

Fsq corresponds to the Squeeze operation, i.e., global average pooling is performed on
the input feature layer U whose height and width are H and W respectively, and then
the feature zc whose size is 1Ö1 and the number of channels is C is output.

zc = Fsq(Uc) =
1

H ×W

H∑
i=1

W∑
j=1

Uc(i, j), z ∈ RC (5)

After the Squeeze operation, perform an Excitation operation Fex on zc to generate
weight vector s for channels.

s = Fex(z,W ) = σ[W2δ(W1z)],W1 ∈ R
C
r
×C ,W2 ∈ RC×C

r (6)

Among them, z is the output of the Squeeze operation, W1, W2 represent the Fully Con-
nected (FC) operation, δ is the ReLU activation function, and σ is the Sigmoid activation
function. In order to reduce the complexity of the model and improve the generalization
ability, a bottleneck structure containing two fully connected layers is adopted here. The
first FC layer plays a role of dimensionality reduction. The dimensionality reduction co-
efficient r is a hyperparameter (generally set to 16). Then, ReLU is used to activate, the
second FC layer is used to restore the original dimension and Sigmoid function is used
to get the weight of each channel. Finally, the Reweight operation Fscale is performed
to multiply the initial input feature map and the weight vector s channel by channel to
obtain the feature map X̃ which has been feature enhanced.

X̃ = Fscale(Uc, sc) = Uc · sc, X̃ ∈ RW×H×C (7)

Through the three operations of Squeeze, Exception and Reweight, the network can
adaptively learn the weight coefficient of each channel, enhance the nonlinear relationship
between the channels, and this attention mechanism can make the network pay more
attention to the channel with the largest amount of information.

2.3. Adaptive receptive field selection strategy. Inspired by the fact that cortical
neurons can dynamically adjust their receptive fields according to different stimulus, dif-
ferent convolution kernels are designed to extract features. Then the different information
guided by each branch is used for feature fusion through Softmax. SKNet mainly includes
three operations: Split, Fuse and Select. The structure diagram is shown in the Figure 3.

Figure 3. The network structure of SKNet
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For any input feature map X ∈ Rh×w×c, firstly the Split operation is performed, and
convolute X using different sizes of convolution kernels respectively. F̃ , F̂ are composed of
efficient grouping/depth convolution, batch normalization and ReLU activation functions,

and new feature maps Ũ , Û are obtained respectively.

F̃ : X → Ũ , Ũ ∈ Rh×w×c (8)

F̂ : X → Û , Û ∈ Rh×w×c (9)

The basic idea of Fuse is to use gates to control the information flow of multiple
branches, so that these branches carry information of different scales to the neurons in
the next layer. Firstly, the results of multiple branches are summed channel by channel to
obtain the feature map U , and then the average pooling operation Fgp is used to embed
the global information to obtain the vector S.

U = Ũ + Û , U ∈ Rh×w×c

Sc = Fgp(Uc) =
1

H ×W

H∑
i=1

W∑
j=1

Uc(i, j)
(10)

In order to provide more accurate guidance for adaptive receptive field selection, the
fully connected operation W is used to compress S into a more compact feature Z, where
δ is the ReLU function, and B represents batch normalization. The number of compressed
channels is d, and the attenuation rate r is used to control its value (generally set to 16),
and L is the minimum value of d (generally set to 32).Z = Ffc(s) = δ[B(Ws)],W ∈ Rd×c

d = max(
c

r
, L)

(11)

In the case of two branches, Ffc outputs two matrices A and B, where matrix B is

redundant matrix, B = 1 − A. In the Select operation, F̃ and F̂ are weighted by two
vectors obtained by Softmax processing of matrixes A and B, and then the final feature
map V is obtained by adding them. Where Ac is the c-th row of matrix A and ac is the
c-th element of a. Bc and bc are the same as Ac and ac respectively.

Vc = ac · Ũc + bc · Ûc, V = [V1, V2, ..., Vc], Vc ∈ Rh×w

ac =
eAcZ

eAcZ + eBcZ

bc =
eBcZ

eAcZ + eBcZ

(12)

The essence of SKNet is to use multi-size convolution kernels in the network, and
then perform multi-branch information fusion. Through this mechanism, the network can
adaptively select the size of the receptive field, thereby enhancing the feature map.

2.4. SKC-SSD safety helmet wearing detection model. In this paper, SSD algo-
rithm is applied to the helmet wearing detection task. Different from other tasks, the
background of helmet wearing detection is generally complex, and the helmet often ap-
pears in the form of small objects in the image which brings great difficulties to the
detection. The original SSD multi-feature maps fusion mechanism provides an excellent
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idea for the simultaneous detection of large and small targets in the image. However, this
paper argues that the feature extraction effect of original SSD on each feature layer limits
the improvement of accuracy for helmet wearing detection task. Although Resnet101 [33]
and other deep feature extraction networks can extract deeper features, they cannot
achieve real-time detection due to the large number of network layers. Therefore, we pro-
posed SKCNet, which enhances the feature extracted from the SSD backbone network to
improve the detection performance of the original SSD for the helmet wearing detection
task.

SKCNet adds two parallel convolutions after initial inputting the feature map, and
both convolutions use a 3 × 3 size convolution kernel. The difference is that the second
convolution is a dilated convolution with a dilation rate of 2. Dilated convolution not
only increases the receptive field of the feature map, but also avoids the loss of feature
information due to the use of pooling operations. Without increasing the number of
parameters, the receptive field of a 5× 5 convolution kernel is achieved. The two-branch
convolution kernel we used is shown in Figure 4.

(a) (b)

Figure 4. The structure of kernels of parallel convolution. (a) is an ordi-
nary convolution kernel with a size of 3×3, and (b) is a dilated convolution
kernel with a size of 3×3 and dilation rate of 2. Dilated convolution greatly
increases the receptive field of the input feature map without increasing the
number of parameters.

In order to fuse the multi-branch feature information, we do the padding operation
while doing the dilated convolution to obtain output feature maps of same size. At the
same time, in order to reduce the number of parameters, we adopt a group convolution
operation. The schematic diagram of group convolution in each branch of SKCNet is
shown in Figure 5.

Among them, G represents the number of groups, C is the number of channels, and H
and W represent height and width respectively. Two feature maps with same width and
number of channels are generated from two branches. After adding the two feature maps
channel by channel, global average pooling is performed, and the global receptive field
information is embedded. Then the global eigenvectors are further compressed through
the fully connected layer. The data with good spatial distribution makes it easier for the
network to learn the classification features of each target. In order to accelerate the con-
vergence and improve the accuracy of the model, the batch normalization regularization
process is performed on each batch, and the ReLU function is used for activation. Then
use fully connected operation and Softmax activation to process the compressed vector
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Figure 5. The schematic diagram of group convolution in each branch of SKCNet

into two weight vectors, and multiply them with the feature maps processed by parallel
convolution and add them to realize the adaptive selection of receptive field. The feature
maps obtained by the above operations are then processed by global average pooling to
further embed global information. In order to make the network learn the non-linear
relationship between the channels better, we perform two fully connected operations and
Sigmoid activation on the obtained vectors embedded with global information to get the
channel weight vectors, and multiply them with the feature map channel by channel. Fi-
nally, the feature map after the adaptive selection of receptive field and the channel is
obtained. We call the above operation block SKCNet. Note that all of the above fully
connected layers are implemented by convolution operations with kernels size of 1 × 1.
The structure of SKCNet is shown in Figure 6.

Figure 6. The network structure of SKCNet

This paper improves the feature extraction network on the basis of the SDD backbone
network. In order to make SKCNet retain more channel information and maintain good
compatibility, the input and output of SKCNet do not change the number of channels. So,
we replace the Conv4 3 and Fc7 layers whose channel output is the same as their upper
convolutional layer with SKCNet, and added one SKCNet after the Conv8 2, Conv9 2,
Conv10 2, and Conv11 2 layers whose channel output is smaller than their upper convolu-
tional layer respectively. On the basis of SSD multi-scale regression, feature enhancement
is carried out through adaptive selection mechanism of receptive field and channel. The
structure diagram of SKC-SSD is shown in Figure 7.

3. Experiment.

3.1. Experimental platform and model training. All experiments are conducted on
a workstation equipped with NVIDIA Geforce GTX 1080Ti 11G for experimental training
and testing. The CUDA version is 10.1, the cudnn version is 7.6.5, and the deep learning
framework is Tensorflow 2.2. During the training process, online data enhancement is
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Figure 7. The network structure of SKC-SSD

performed on the training set, and transformations such as scaling, inversion, contrast
change and brightness change are performed on the training image randomly. Set 10−3

as the initial learning rate lr, the model is trained for 128 epochs. Then we dropped lr
to 10−4 and trained model for 128 epochs. Finally, set lr to 10−5 and perform multi-
group cycle training, each group has 64 epochs. Record the optimal weight of each group,
and use the early-stopping mechanism to prevent the model from overfitting during the
training process.

3.2. Ablation study and comparative analysis. In order to verify that the adaptive
selection mechanism of receptive field and channel can improve the detection accuracy of
the SSD, and to prove the effectiveness of the SKCNet in the helmet wearing detection
task. In addition to the original SSD, we designed three control networks for ablation
study. At the same position described in Section 2.4, we add SENet, SKNet, SENet and
SKNet (SENet is in front of SKNet) to form SE-SSD, SK-SSD, SE-SK-SSD, respectively.
We use the same training set and test set to train and test the five network models. The
results are shown in Table 1 and Figure 8.

As shown in Table 1 and Figure 8, the four methods improve the mAP of the original
SSD for helmet wearing detection to a certain extent. Among them, SKC-SSD has the best
performance, but the detection efficiency is reduced, mainly because the algorithm adds
several SKCNet feature enhancement blocks, which leads to the increase of calculation.
However, because SKCNet does not increase the network depth too much, and thanks
to the group convolution and parallel acceleration of the GPU, our method can still
achieve real-time detection. This verifies the feasibility of optimizing the SSD algorithm
from the perspective of the channel and the receptive field in the task of wearing helmet
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Table 1. Comparison of the effects of SSD incorporating different modules

Channel selection RF selection Enhanced first Method mAP(%) FPS

– SSD 82.1 43
X – SE-SSD 83.6 41

X – SK-SSD 84.8 36
X X Channel SE-SK-SSD 86.4 35
X X Receptive field SKC-SSD(ours) 87.2 35

Figure 8. The PR curve of safety helmet wearing for different algorithms

detection. Compared with the original SSD, the mAP of SE-SSD and SK-SSD is increased
by 1.5% and 2.7% respectively, indicating that in this detection task, adaptive selection
of receptive fields is more effective than adaptive selection of channel. At the same time,
compared with the original SSD, the mAP of SE-SK-SSD and SKC-SSD is increased by
4.3% and 5.1% respectively, which proves that SKNet and SENet have good compatibility
and complementarity. More importantly, it is better to perform the adaptive selection
of the receptive field first rather than the channel. In order to visually show how our
proposed SKCNet works in the helmet detection task, we input the image shown in the
third column of figure 11 to the network. And visualize the weights of adaptive selection
of receptive field and channel of SKCNet behind Conv4 2, and the result is shown in the
figure 9. (both number of output channels of adaptive selection are 512.)

As shown in Figure 9, SKCNet adaptively selects the receptive field and channel re-
spectively on the feature map output by the Conv4 2. As shown in Figure 9(a), SKCNet
has different weights distribution ranges for the kernels with two different receptive field
sizes. We think that the reason for this is that the input image contains many small
targets. Therefore, SKCNet makes a relatively large distribution range for the kernel
with a smaller receptive field to extract more detailed information. As shown in Figure
9(b), SKCNet performs adaptive channel weights redistribution on the feature map after
the adaptive receptive field selection to improve the importance of channel information
which is useful for the task. To further verify our conclusion, we train several new feature
extraction networks which are basically the same as backbone network of SSD. SENet,
SKNet, SE-SKNet and SKCNet are added to the shallow network respectively. The rea-
son for doing this is to show the differences of each module more intuitively by visualizing
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(a) (b)

Figure 9. Visualization of SKCNet weights behind conv4 2 in SKC-SSD.
(a) is the line chart of the weights of the adaptive selection of receptive
field. (b) is the line chart of the weights of the adaptive selection of channel.

the feature map processed by these blocks. Since the pixel value of each channel after
these block processing is relatively small, which is not conducive to visualization, we use
standard scores (z scores) to process the pixels of each channel of the output feature maps.
The pixel processing process is as equation (13).



pixi = zi ×m+ b

zi =
xi − x̄√∑n
i=1(xi−x̄)2

n−1

pixi = 0, if pixi < 0

pixi = 255, if pixi > 255

(13)

Among them, i is the i-th pixel in a channel, x̄ is the average value of all pixels of the
channel, n is the number of pixels, m is the magnification factor, and b is the bias. In the
experiment, m is set to 64 and b is set to 128. Finally, all pixel values are limited to [0,
255]. The feature maps obtained by five networks processing the same picture is shown
in the Figure 10.

It can be seen from Figure 10(b) that the features extracted from the original SSD
backbone network are relatively fuzzy. Figure 10(c) shows that the feature map output
by SENet has a lot of channel blanks or unobvious features. In addition, in some feature
maps, such as the 43rd and 54th channels in Figure 10(c), are clearer than the original
SSD. We think this is the result of channel selection by SENet. As shown in Figure 10(d),
the features extracted by SKNet are clearer than those by SENet, indicating that more
detailed features can be extracted by adaptive selection of receptive field. As shown in
Figure 10(e), compared with SKNet, some channels of SE-SKNet with the addition of
SENet are blurred or sharpened, which is more conducive to feature extraction. It can
be seen from Figure 10(f) that our proposed SKCNet extracts a large number of features
that are not extracted by other networks, such as the 14th, 23rd, and 32nd channels. By
analyzing Figure 10(e) and Figure 10(f), we think that if the channel adaptive selection is
performed first, the SENet will redistribute channel weights in advance according to the
feature map processed by the 3Ö3 size convolution kernel. However, this redistribution
may not be suitable for adaptive selection of receptive fields in the next step. More
importantly, the feature map processed by the adaptive selection of channel may lose
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(a) (b) (c)

(d) (e) (f)

Figure 10. Comparison of feature maps visualization of different models
(the number of output channels is 64). (a) is the input image. (b) is the
output of original SSD. (c) is the output of SENet. (d) is the output of
SKNet. (e) is the output of SE-SKNet. (f) is the output of our SKCNet.

some of the original features needed for adaptive selection of the receptive field. We think
this is the main reason why SE-SK-SSD has worse performance than our SKC-SSD.

Figure 11 shows part of the detection results of five networks. The first column of
Figure 11 contains both large and small targets relatively. The original SSD has a poor
detection effect on small targets, and there are more cases of missed detection. SE-SK-
SSD and SKC-SSD have good small target detection capabilities, but none of the networks
detects the target on the leftmost side of the image. We think that this is caused by the
few obscured target samples in the training set, and all networks have not learned the
corresponding features well. Except for the original SSD, other networks have detected
all the targets blocked by building materials in the second column, but SKC-SSD has
significantly improved the confidence of each target. For a large number of overlapping
small targets in the third column, the original SSD, SE-SSD and SK-SSD all have missed
detection. SKC-SSD not only detects all targets, but also has higher confidence than
other networks.

4. Conclusions. Aiming at the problems of complex background, large number of small
targets and difficult detection of helmet wearing detection task, we proposed the SKC-
SSD algorithm to improve the detection performance of SSD. Unlike most other improved
algorithms, we improve the original SSD from the perspective of channel and receptive
field feature enhancement. Compared with the original SSD, mAP is improved by 5.1%.
The algorithm does not massively increase the network depth, so SKC-SSD not only sig-
nificantly improves the accuracy of detection, but also achieves real-time detection, and
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 11. Comparison of detection results of different models. (a) is the
input image. (b) is the detection result of original SSD. (c) is the detection
result of SE-SSD. (d) is the detection result of SK-SSD. (e) is the detection
result of SE-SK-SSD. (f) is the detection result of our SKC-SSD.
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gets good detection results on the verification set. In order to further verify the effective-
ness of SKCNet, we constructed new networks using SENet and SKNet, and conducted
ablation study. By analyzing the experimental results, we come to our conclusion. The
contributions of this paper are as follows: (a) We propose a new idea and method for
helmet wearing detection, that is to improve the network from the perspective of channel
and receptive field instead of increasing the network depth massively. While improving
the accuracy, it also ensures the detection efficiency and can achieve real-time detection.
(b) In the helmet wearing detection task, we prove that SENet and SKNet have good com-
plementarity, and can be well compatible with the multi-feature maps fusion mechanism
of the SSD to improve the detection effect. (c) Through the visualization of weight data
and feature maps, we figure out the role of SENet, SKNet and SKCNet and explain how
they work in the helmet wearing detection task. (d) Through experiments, we verify the
different effects of relative position of SENet and SKNet on network performance when
they are combined, and get the conclusion that conducting adaptive selection of receptive
field first will get a better detection effect in the task of helmet detection.

Although our model has achieved good results, there are still some limitations. First
of all, there will still be missed detections when detecting extremely small or occluded
targets. Secondly, although our method can achieve real-time detection, compared with
the original SSD, FPS still has a reduction. In future work, we will add more occluded
target images to augment the data set and continue to optimize our model to solve the
above problems in a targeted manner.
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