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Abstract. In the optimization process of multi-objective firefly algorithm, the popula-
tion is easy to fall into local optimum, which leads to poor population distribution and
convergence. In order to solve this problem, this paper proposes a multi-objective fire-
fly algorithm with hierarchical learning (MOFA-HL). Firstly, the hierarchical learning
method is proposed, population is layered by non-dominant sorting to obtain individuals
at each level, and the dominant individuals at the front level guide the individuals at
the back level to learn, which is beneficial to search more high-quality solutions. Then,
mutation operation is carried out on the population to enhance the local search ability of
the algorithm. Finally, the mutated population is merged with the previous generation
population, and the excellent individuals with the same population size as the previous
generation are selected to enter the next generation by non-dominant sorting and crowd-
ing distance calculation. Eight test functions in the series of ZDT and DTLZ are used
to test MOFA-HL. MOFA-HL is compared with four classical algorithms and four new
algorithms. The results show that MOFA-HL can better improve the distribution and
convergence of the population.
Keywords: Multi-objective optimization, Firefly algorithm, Non-dominant sorting, Hi-
erarchical learning, Crowding distance calculation.
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1. Introduction. In the real world, there are many multi-objective optimization prob-
lems (MOPs). For example, flexible job shop scheduling requires minimum production
costs and total electricity costs [1], optimal allocation of water resources requires maxi-
mum environmental and economic benefits [2], vehicle routing planning requires minimum
operating cost and customer dissatisfaction [3], block-chain network security requires im-
proving the performance of block chain network and reducing the possibility of malicious
nodes clustering [4], etc. MOPs may involve multiple conflicting objectives to be opti-
mized simultaneously, and the performance improvement of one sub-problem may lead to
the performance degradation of other sub-problems. In order to balance the performance
of each sub-problem, a set of non-dominated and equivalent solution sets are usually
solved.

In the past thirty years, Multi-objective Evolutionary Algorithms (MOEAs) have been
widely favored in the field of multi-objective optimization due to its population-based
searching characteristics and the effectiveness of MOPs solving. Depending on how they
evolve, MOEAs can be divided into the following categories:

(1) MOEAs based on the Pareto dominance relationship. Such as NSGA [5],
NSGA-II [6], SPEA [7], SPEA2 [8], NSGA-III [9], etc. This kind of algorithms take the
Pareto dominance relationship as the solution selection mechanism, few parameters, sim-
ple structure and easy implementation. However, due to their single selection mechanism,
they are not effective when dealing with many-objective optimization problems, so other
mechanisms need to be added to enhance algorithms performance.

(2) MOEAs based on objective decomposition. Such as MOEA/D [10], MOEA/D-
DE [11], MOEA-D-AWA [12], etc. They decompose a multi-objective optimization prob-
lem (MOP) into a set of scalar sub-problems using uniformly distributed aggregation
weight vectors. Once a high quality solution of a sub-problem is found, their superior
information will quickly spread to other individuals in the neighborhood, thus speeding
up the rate of population convergence. Nevertheless, the effect is not good when dealing
with some irregular Pareto front. Generally, adaptive weight adjustment technique is used
to improve algorithm performance.

(3) MOEAs based on evaluation metrics. Such as IBEA [13], SMS-EMOA [14],
HypE [15], etc. This kind of algorithms use evaluation metrics as fitness evaluation
function to be embedded into algorithm to guide the optimization process of MOEAs.
Their purposes are clear, but with the addition of evaluation metrics, MOEAs will become
more complex and time-consuming. Therefore, it is necessary to consider the efficiency
and complexity of algorithm when designing such algorithms.

(4) MOEAs based on swarm intelligence. Such as MOPSO [16], MOPSO-D [17],
NMPSO [18], CMOPSO [19], MOFA [20], CFMOFA [21], etc. This kind of algorithms
extend some swarm intelligence techniques with good performance to the field of multi-
objective optimization, and swarm intelligence algorithms have unique optimization meth-
ods and strong adaptability, such as the common particle swarm optimization algo-
rithm [22]. In reality, there are many application cases of swarm intelligence technology,
such as complex optimization problem [23], watermarking technology optimization prob-
lem [24], clustering problem [25]. MOEAs based on swarm intelligence not only needs to
combine the basic idea of swarm intelligence algorithm, but also needs to combine the
decomposition idea of multi-objective optimization field or the Pareto dominance rela-
tionship of multi-objective optimization field, as well as other strategies to achieve the
purpose of optimization.

Multi-objective firefly algorithm (MOFA) [20] is a swarm intelligence algorithm for
solving multi-objective optimization problems by simulating the firefly flight mode. The
firefly flight direction is determined by comparing the Pareto dominance relationship of
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objective values. MOFA is an extension of the single objective firefly algorithm (FA), and
some improved algorithms [26–28] on FA are of great reference significance for improving
MOFA. MOFA has few parameters, simple structure and is easy to implement, but the
population is easy to fall into the local optimum in the optimization process, which leads
to poor distribution and convergence of the population. For this reason, this paper pro-
poses a multi-objective firefly algorithm with hierarchical learning (MOFA-HL).The main
contributions of this paper can be summarized as follows:

(a) Hierarchical learning mechanism. We abandon the traditional random attraction
model and propose a hierarchical learning mechanism: the non-dominated sorting algo-
rithm [6] is adopted to sort the population, so that the high-ranking fireflies can guide the
low-ranking fireflies to fly, so as to avoid blind flight, improve flight efficiency and improve
the convergence and distribution of the population.

(b) Mutation operation. By mutating the population, the local search ability of the
algorithm is enhanced, so that the algorithm can obtain more high-quality solutions close
to the real Pareto front, and the distribution and convergence of the population are also
improved.

(c) In order to fully verify the performance of MOFA-HL, MOFA-HL is used to solve
the ZDT and DTLZ series test problems and good results is obtained.

2. Relevant Knowledge.

2.1. Multi-objective optimization problem. The mathematical definition of multi-
objective optimization problem is as follows [29]:

min
X

F (X) = (f1(X), f2(X), . . . , fM(X))T

s.t. gi(X) ≤ 0, i = 1, 2, . . . , p
hj(X) = 0, j = 1, 2, . . . , q

(1)

where X = (x1, x2, . . . , xD)T ∈ Ω ⊂ RD is the decision vector, Ω is known as the decision
space, D is the number of decision variables, F (X) ⊂ RM is the objective vector, M is
the number of objectives. All F (X) constitute the unknown objective space, gi(X) is
inequality constraints, hj(X) is equality constraints.

Definition 2.1. (Pareto dominance relationship) The solution X dominates the
solution Y , if and only if :{

fi(X) ≤ fi(Y ),∀i = 1, 2, . . . , D
fj(X) < fj(Y ),∃j = 1, 2, . . . , D

(2)

Let’s call X ≺ Y , and say that X is a better solution than Y .

Definition 2.2. (Non-dominant relationship) If the following conditions are satis-
fied, the solution X and Y are not dominated by each other :{

fi(X) < fi(Y ),∃i = 1, 2, . . . , D
fj(X) > fj(Y ),∃j = 1, 2, . . . , D, j 6= i

(3)

At this point, it is considered that the solution X and Y are equivalent, and they belong
to the non-dominant relation.

Definition 2.3. (Pareto optimal solution set) Pareto optimal solution set (PS) is
the set constituted by all Pareto optimal solutions on the decision space.

Definition 2.4. (Pareto front) Pareto front (PF) is the point set corresponding to the
optimal solution set of Pareto in the objective space.
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2.2. The basic multi-objective firefly algorithm. Multi-objective firefly algorithm
(MOFA) [20] regards points in the search space as fireflies, and simulates the process
of attracting fireflies to high-brightness fireflies as optimization and location iterative
updating process.

(1) Attraction. For any given two fireflies i and j, the attraction between firefly i
and j can be expressed as:

βij (rij) = β0e
−γr2ij (4)

where β0 is the attraction at r = 0, usually take β0 = 1. γ is the light absorption
coefficient, γ ∈ [0.01, 100]. rij is the Euclidean distance between firefly i and j.

(2)Firefly position update. In MOFA, firefly position update is divided into two
situations.

In one case, if firefly j dominates i, the position of firefly i is updated as:

xi(t+ 1) = xi(t) + βij (rij) · (xj(t)− xi(t)) + αt · εti (5)

where t is the number of current iterations. xi and xj are the spatial positions of firefly
i and j respectively. βij(rij) is the attraction between firefly i and j. αt is a constant,
α ∈ [0, 1]. εti is a vector of random numbers drawn from a Gaussian distribution or
uniform distribution.

The other case is that no individual is found to dominate a firefly i, the firefly i moves:

xt+1
i = gt∗ + αtε

t
i (6)

where gt∗ is the best solution found for a given set of random weights in the current
population. For a minimization problem, in order to do random walks more efficiently, we
can find the current best gt∗ which minimizes a combined objective ψ(x) via the weighted
sum using the following methods:

ψ(x) =
M∑
m=1

wmfm,
M∑
m=1

wm = 1 (7)

here wm = pm/M , where pm are random numbers that follow a uniform distribution,
pm ∈ [0, 1]. M is the objective number. A random weight assignment operation is
performed to generate M uniformly distributed wm. In order to make gt∗ not unique, the
weight wm should be selected at random at each iteration, so that the obtained gt∗ can
make fireflies fly in different directions.

2.3. MOFA defect analysis. When a firefly does not have a non-dominant individual,
MOFA adopts the global optimal individual gt∗ guidance, and theoretically the selected gt∗
can make the population evolve in different directions. However, for a minimization prob-
lem, when the m-th objective value fm of an individual i is far less then other individual
objective values, its fm still occupies a large proportion in the combined ψ(x) even if the
weight wm is biggest. The ψ(x) of individual i might be much smaller than that of other
individuals. Although gt∗ may be selected differently at each iteration, gt∗ will get closer
and closer to the position of individual i, resulting in local optimization of the algorithm
and ultimately poor distribution and convergence of the population.

Figure 1 shows the test results of MOFA on the ZDT2 [30] test function with different
iterations. With 300 iterations as the termination condition, the Elite Population (ELP),
Evolution Population (EVP) and real Pareto front (PF) of 30, 120 and 300 iterations were
retained respectively, and their distribution maps are drawn. By observing Figure 1, with
the increase of iterations, it can be found that the blue EVP gradually converged towards
a certain place in the evolutionary process, and the solution of other regions could not
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be found, so that the remaining ELP gradually show non-uniform distribution and poor
convergence.
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Figure 1. Population distribution of MOFA on the ZDT2 test function

3. The proposed MOFA-HL. In the process of MOFA optimization, the population
is easy to fall into local optimum, which leads to poor distribution and convergence of
the population. Therefore, this paper proposes a multi-objective firefly algorithm with
hierarchical learning (MOFA-HL), which adopts three strategies of hierarchical learning,
mutation operation and crowding distance calculation to improve the distribution and
convergence of the population.

3.1. Hierarchical learning. In order to enable the algorithm to search for more high-
quality solutions with better distribution and convergence, MOFA-HL adopts hierarchical
learning method to replace the global optimal individual gt∗ guidance method. Hierarchi-
cal learning consists of two steps: 1) The population is layered. 2) Identifying which
individuals guide and learn from it. The specific process is as follows:

(1) Hierarchy. The main method of hierarchy is non-dominant sorting, which is
used to divide the population into different levels. Adopting the fast non-dominated
sorting algorithm proposed by Deb et al. [6]: 1) Adding all the first ranking non-dominant
individuals in the solution set P to the solution set F1. 2) Removing the individuals
belonging to the solution set F1 from the solution set P , and now adding all the first
ranking non-dominant individuals in the solution set P to the solution set F2. Repeating
the above steps until every individual in P is added to a certain set Fi, and finally
obtaining set F1, F2, . . . , Fn. As shown in Figure 2, the fireflies are placed in a non-
dominant sorting to obtain Pareto front of different levels. The main purpose of hierarchy
is to obtain the layered individuals by using the non-dominated sorting, to find the non-
dominated individuals in a targeted way and to make reasonable use of the computing
resources, which is different from the mode of MOFA to randomly find the non-dominated
individuals.

(2) Learning. After the above hierarchical steps, the superior upper layer individuals
are the main learning objects of the lower layer individuals. There may be multiple indi-
viduals in each layer, in order to determine which individual xFip in Fi layer is specifically

guided by the individual x
Fi−1
q in the Fi−1 layer. Firstly, formula 4 shows that the nearest

distance between individuals generates the greatest attraction in between layers, so it is
most appropriate for xFiq in the Fi layer to learn from the nearest individual x

Fi−1
p in the

Fi−1 layer. Then, by calculating the Euclidean distance between individuals in the Fi and

Fi−1 layer, the individual x
Fi−1
p in the Fi−1 layer , which is closest to xFiq in the Fi layer,
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Figure 2. Schematic diagram of hierarchical learning in fireflies. In the
schematic diagram, the fireflies are placed in a non-dominated sorting to
obtain the F1, F2 and F3 layer. Fireflies learning in the way that individual
c at the F3 layer learns from individual b at the F2 layer, and individual b
at the F2 layer learns from individual a at the F1 layer

is selected as the learning object, as shown in Figure 2. And formula 8 is used to update
the position of firefly xFiq in the Fi layer:

xFiq (t+ 1) = xFiq (t) + βqp (rqp) ·
(
xFi−1
p (t)− xFiq (t)

)
+ αt · εtq (8)

where εtq is a random number vector with a normal distribution, εtq ∈ [−1, 1]. βqp (rqp) is

the attraction between xFiq and x
Fi−1
p . rqp is the Euclidean distance between the nearest

previous layer individual x
Fi−1
p to xFiq . αt is a constant, αt ∈ [0, 1].

When the positions of all the individuals in the Fi layer are updated, the individuals
in the Fi−1 layer repeat the above learning process and continue to learn from better
individuals in the previous layer until the end of the learning process in the F2 layer, and
new individuals in F ′2, F

′
3, . . . , F

′
n layer are obtained.

The hierarchical learning method of MOFA-HL has the following advantages: 1) It
makes the population converge to a better front, and makes rational use of computing
resources without blindly searching for non-dominant individuals to learn. 2) Choosing
a better Pareto front as the guide layer can enable the population to search for more
high-quality solutions close to the real Pareto front, which ensures the distribution and
convergence of the population.

3.2. Mutation operation. Hierarchical learning can only reach the F2 layer, because
the individuals of F1 layer do not have guidance level, so the individuals at F1 layer have
no learning layer. In order to make the individuals in the F1 layer have the ability of
optimizing, and the individuals in F ′2, F

′
3, . . . , F

′
n layer have the local random searching

ability after hierarchical learning, so as to maintain the diversity of the population and
prevent the premature convergence of the population, the individuals in the F1 layer and
F ′2, F

′
3, . . . , F

′
n layer are merged, and the mutation operation is carried out on the merged

population.
Mutation operation in genetic algorithm is used for reference [31]. Let the value range of

the k-th dimension variable of individual xi (xi1, xi2, . . . , xid) be [V ar−minik, V ar−maxik],
l dimensions of individual xi are randomly selected for mutation. The proportion between
l and the total dimension d (mutation rate, mu) should not be too large. In order to avoid
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large differences between solutions before and after mutation, which would destroy the
tendency of approaching the optimal solution, mu is set to 1/d after many experiments.
The mutation formula for individual xi is as follows:

xik(t+ 1) = xik(t) + sigma · (V ar−maxik−V ar−minik) · εtik (9)

where k represents the k-th dimension of the i-th individual, sigma is the step size factor,
sigma ∈ (0, 1]. εik is a random number that fits a normal distribution, εtik ∈ [−1, 1]
. Figure 3 shows a schematic diagram of local mutation in fireflies. Figure 3 shows a
schematic diagram of local mutation in fireflies. In the diagram, firefly a locally mutates
into fireflies b, c, d, and f. The local mutation operation maintains the population diversity
and improves the tendency of firefly to approach the optimal solution.
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Figure 3. Schematic diagram of local mutation in fireflies

3.3. Crowding distance calculation. In order to screen out excellent individuals with
a population size of N to enter the next generation evolution, the population Qt after the
above mutation is merged with the previous generation population Pt into 2N population
Rt, and then N excellent individuals are selected from Rt for the next generation by
non-dominant sorting.

When K(K < N) individuals are screened from F1, F2, . . . , Fl−1 layer, the number of
the remaining N−K individuals is less than that of the Fl layer. If N−K individuals are
randomly screened from the Fl layer, it is possible to make the population distribution
worse. Therefore, the crowding distance calculation (CD) method proposed by Deb et
al. [6] is used as a reference in this paper. By calculating the crowding distance of all the
individuals in the Fl layer, N −K individuals with better crowding distance are selected
to maintain the distribution of the population. Note that CD is only calculated for a
certain layer of individuals, not for all individuals. The CD of the i-th individual xFli in
the Fl layer is calculated as follows:

CD
x
Fl
i

=
M∑
m=1

 fm
x
Fl
i+1

− fm
x
Fl
i−1

f
Fl,m
max − fFl,mmin

 (10)

where M is the number of objectives. The m-th objective value of all individuals in Fl
layer is respectively arranged in ascending order. fm

x
Fl
i+1

is the objective value of individual

xFli+1, f
m

x
Fl
i−1

is the m-th objective value of individual xFli−1, f
Fl,m
max and f

Fl,m
min are respectively

the maximum and minimum value of the m-th objective of all individuals in the Fl layer.
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Obviously, if the difference between the objective values of xFli−1 and xFli+1 is larger, then

correspondingly, the CD of xFli is going to be larger, and the probability of xFli being
selected is going to be higher.

3.4. The basic steps of MOFA-HL.

Input: N (population size), mu (mutation rate), sigma (step factor), β0 (initial
attraction), γ (light absorption coefficient), α (disturbance factor).

Output: P (final population).
1 Pt � Random Initialization(N);
2 while termination criterion not fulfilled do
3 F � Calculate the non-dominated front number of each solution in Pt;
4 P1 ← φ ;
5 for i = 1 to Max(F )− 1 do
6 xFi+1

� The solution xFi+1 for the (i+ 1)-th front learns from the
solution xFi for the nearest neighbor of the i-th front by (8);

7 P1 ← P1 ∪
{
xFi+1

}
;

8 end for
9 P1 ← P1 ∪

{
xF1
}

;
10 Qt � Mutation(P1, mu, sigma);
11 Rt ← Qt ∪ Pt;
12 Pt+1 � N elite individuals are selected by non-dominated sorting and

crowding distance calculation in Rt;
13 end whlie
14 return P ;

4. Experiment and analysis.

4.1. Experiment settings. MOFA-HL is compared with four classical MOEAs (NSGA-
II [6], SPEA2 [8], MOEA/D [10], MOPSO [16]) and four new MOEAs (NMPSO [18],
CMOPSO [19], MOFA [20], CFMOFA [21]). We obtained some experimental data of the
algorithm through Platemo [32] platform. Each algorithm is run 30 times independently
to save the mean value and standard deviation of each evaluation metric. Specifically, the
population size is set to 100 for 2-objectives MOPs and the number of function evaluations
is 30000; the population size is set to and 200 for 3-objectives MOPs, and the number of
function evaluations is 120000. Parameter Settings of each algorithm are shown in Table
1.

Table 1. Parameter Settings of each algorithm

Algorithm Parameter setting

NSGA-II, MOEA/D, SPEA2, MOPSO, Parameter setting

NMPSO, CMOPSO using PlatEMO platform

MOFA α = 0.2, β0 = 1, γ = 1

CFMOFA α = 0.2, β0 = 1, γ = 1,m = 2

MOFA-HL α = 0.2, β0 = 1, γ = 1, sigma = 0.2,mu = 0.1
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4.2. Test function. In order to test the performance of algorithms on MOPs, eight test
functions in the ZDT series [30] (2-objectives MOPs) designed by Zitzler et al. and the
DTLZ series [33] (3-objectives MOPs) designed by Deb et al. are used for testing. The
eight test functions are defined in Table 2.

Table 2. Test function definition

Problem Definition Constraints

ZDT1 f1(x) = x1, f2(x) = g(x) ∗
(

1−
√
x1/g(x)

)
g(x) = 1 + 9

∑n
i=2 xi/(n− 1)

n = 30, 0 ≤ xi ≤ 1
i = 1, . . . , n

ZDT2 f1(x) = x1, f2(x) = g(x) ∗
(
1− (x1/g(x))2

)
g(x) = 1 + 9

∑n
i=2 xi/(n− 1)

n = 30, 0 ≤ xi ≤ 1
i = 1, . . . , n

ZDT3
f1(x) = x1

f2(x) = g(x) ∗
(

1−
√
x1/g(x)− x1 sin (10πx1) /g(x)

)
g(x) = 1 + 9

∑n
i=2 xi/(n− 1)

n = 30, 0 ≤ xi ≤ 1
i = 1, . . . , n

ZDT6
f1(x) = 1− e(−4x1) sin6 (6πx1)

f2(x) = g(x) ∗
(
1− (f1(x)/g(x))2

)
g(x) = 1 + 9

(∑n
i=2 xi/(n− 1)

)0.25 n = 10, 0 ≤ xi ≤ 1
i = 1, . . . , n

DTLZ1

f1(X) = 1
2
x1x2 · · ·xM−1 (1 + g (XM ))

f2(X) = 1
2
x1x2 · · · (1− xM−1) (1 + g (XM ))

...
...
fM−1(X) = 1

2
x1 (1− x2) (1 + g (XM ))

fM (X) = 1
2

(1− x1) (1 + g (XM ))

g (XM ) = 100 ∗ [|XM |+
∑
xi∈XM

(xi − 0.5)2 − cos (20π (xi − 0.5))]

|XM | = n−M + 1

n = 7
0 ≤ xi ≤ 1
M = 3
i = 1, . . . , n

DTLZ2

f1(X) = (1 + g (XM )) cos (x1π/2) · · · cos (xM−2π/2) cos (xM−1π/2)
f2(X) = (1 + g (XM )) cos (x1π/2) · · · cos (xM−2π/2) sin (xM−1π/2)
f3(X) = (1 + g (XM )) cos (x1π/2) · · · sin (xM−2π/2)
...
...
fM (X) = (1 + g (XM )) sin (x1π/2)

g (XM ) =
∑
xi∈XM

(xi − 0.5)2

n = 12
0 ≤ xi ≤ 1
M = 3
i = 1, . . . , n

DTLZ3

f1(X) = (1 + g (XM )) cos (x1π/2) · · · cos (xM−2π/2) cos (xM−1π/2)
f2(X) = (1 + g (XM )) cos (x1π/2) · · · cos (xM−2π/2) sin (xM−1π/2)
f3(x) = (1 + g (XM )) cos (x1π/2) · · · sin (xM−2π/2),
...
...
fM (X) = (1 + g (XM )) sin (x1π/2)

g (XM ) = 100 ∗ [|XM|+
∑
xi∈XM

(xi − 0.5)2 − cos (20π (xi − 0.5))]

|XM | = n−M + 1

n = 12
0 ≤ xi ≤ 1
M = 3
i = 1, . . . , n

DTLZ4

f1(X) = (1 + g (XM )) cos (xα1 π/2) · · · cos (xαM−2π/2) cos (xαM−1π/2)
f2(X) = (1 + g (XM )) cos (xα1 π/2) · · · cos (xαM−2π/2) sin (xαM−1π/2)
f3(X) = (1 + g (XM )) cos (xα1 π/2) · · · sin (xαM−2π/2)
...
...
fM (X) = (1 + g (XM )) sin (xα1 π/2)

g (XM ) =
∑
xi∈xM

(xi − 0.5)2

n = 12
0 ≤ xi ≤ 1
M = 3
i = 1, . . . , n
a = 100

4.3. Evaluation metrics. In order to evaluate the optimization performance of algo-
rithms, SP is used to evaluate the distribution of algorithms, and IGD is used to evaluate
the distribution and convergence of algorithms.

(1) Spacing (SP). SP [34] refers to the standard deviation of the distance between
each individual in the approximate Pareto front (PFknown) and its nearest individual. Its
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calculation formula is as follows:

SP =

√√√√ 1

n− 1

n∑
i=1

(
d̄− di

)2
(11)

di = min
j∈PFknown

‖i− j‖, (i, j = 1, 2, . . . , n) (12)

where d̄ is the average of all di, di is the minimum Euclidean distance between individual
i and j in the approximate Pareto front (PFknown),n is the number of approximate Pareto
front solutions obtained, M is the objective number. When SP value is 0, it means that
all individuals are equidistant from each other. The smaller the SP value, the better the
distribution of the algorithm.

(2) Inverted Generational Distance (IGD). IGD [34] measures the distance be-
tween the real PF and the approximate PF obtained by the algorithm. Its calculation
formula is as follows:

IGD =

∑
j∈PFtrue d

′
j

n
(13)

d′j = min
i∈PFknown

‖j − i‖, (i, j = 1, 2, . . . , n) (14)

where d′j represents the minimum Euclidean distance from individual j in the real Pareto
front (PFtrue) to individual i in the approximate Pareto front (PFknown). This metric
can reflect not only the convergence of the algorithm but also the distribution of the
algorithm. The smaller the IGD value, the better the convergence and distribution of the
algorithm.

4.4. Experimental results and analysis. The proposed MOFA-HL is compared with
four classical algorithms (NSGAII, MOEA/D, SPEA2, MOPSO) and four new algorithms
(NMPSO, CMOPSO, MOFA, CFMOFA) on the MOPs of ZDT series (2-objectives) and
DTLZ series (3-objectives), respectively.

Table 3 presents the mean and standard deviation of SP values and the ”+/-/≈”
results obtained by nine MOEAs on the eight MOPs. The Wilcoxon rank sum test with a
significance level of 0.05 is performed on the SP values of each MOEA and the proposed
MOFA-HL. The symbol ’+’ indicates that the corresponding algorithm is better than
MOFA-HL, ’-’ indicates that the corresponding algorithm is worse than MOFA-HL, and
’≈’ indicates that the corresponding algorithm is statistically similar to MOFA-HL.

Table 3 shows that MOFA-HL and NSGA-II, MOEA/D, SPEA2, MOPSO, MOFA,
NMPSO, CMOPSO and CFMOFA have an advantageous ratio of 8/8, 6/8, 4/8, 7/8, 8/8,
8/8 respectively on the eight MOPs. MOFA-HL has an advantage ratio of 6/9 among
the nine algorithms, which is equivalent to SPEA2 and CMOPSO in terms of distribution
quality.

In order to make full use of the obtained data, Friedman test is carried out on the
experimental results of 30 runs of the nine algorithms, and the performance of the nine
algorithms is further analyzed. Table 4 shows the rank-mean results and rankings of the
nine algorithms on SP. As can be seen from Table 4, MOFA-HL ranks the first, and its
rank-mean is 2.25. In Table 3, through Wilcoxon rank sum test, MOFA-HL is found to
have similar quality with SPEA2 and CMOPSO in terms of distribution, while in Table
4, Friedman test shows a gap between MOFA-HL and SPEA2 and CMOPSO, and the
results show that MOFA-HL is superior.

Then, we compare the convergence rates of the proposed MOFA-HL with the eight
MOEAs. Due to space constraints, Figure 4 plots the convergence curves of the SP of
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Table 3. Mean and standard deviation of the nine algorithms on SP, where
gray indicates the best, and the smaller SP, the better. The more ’-’, the better
the distribution of MOFA-HL

Problem NSGA-IIMOEA/D SPEA2 MOPSO MOFA NMPSOCMOPSOCFMOFAMOFA-HL

ZDT1

mean
(std.)

rank sum

6.9752e-3

(6.25e-4)
-

7.0958e-3

(1.87e-3)
-

4.0474e-3
(3.29e-4)

+

1.2626e-2

(2.19e-3)
-

3.9693e-2

(7.94e-2)
-

4.3766e-2

(1.18e-2)
-

3.9046e-3
(2.04e-4)

+

1.1568e-2

(1.64e-3)
-

6.8124e-3

(1.52e-3)

ZDT2

mean

(std.)
rank sum

7.2598e-3
(6.36e-4)

-

1.4090e-2
(1.03e-2)

-

6.2935e-3
(2.11e-4)

-

8.4062e-3
(5.52e-3)

-

3.2835e-2
(1.93e-2)

-

3.2078e-2
(4.44e-3)

-

3.2331e-3

(2.35e-4)

+

1.4066e-2
(3.96e-3)

-

6.2474e-3
(2.38e-4)

ZDT3

mean
(std.)

rank sum

8.7830e-3

(8.26e-4)
-

2.0984e-2

(3.35e-3)
-

7.0569e-3

(3.54e-4)
-

1.2738e-2

(3.75e-3)
-

6.3703e-2

(6.11e-2)
-

1.0682e-1

(4.36e-3)
-

6.5923e-3

(2.93e-4)
-

1.7453e-2

(2.53e-3)
-

6.2357e-3

(3.24e-4)

ZDT6

mean

(std.)

rank sum

7.8285e-3
(4.62e-4)

-

5.7362e-3
(3.81e-4)

-

3.2450e-3
(2.12e-4)

+

5.8783e-2
(8.63e-2)

-

3.2749e-2
(2.38e-2)

-

8.5436e-3
(5.12e-3)

-

5.4792e-2
(7.97e-2)

-

1.4070e-1
(2.24e-1)

-

4.4598e-3
(2.51e-5)

DTLZ1

mean

(std.)
rank sum

2.8490e-2

(5.35e-3)

-

2.4506e-4

(5.37e-5)
+

4.9566e-2

(3.42e-1)

-

2.6709e+0

(1.69e+0)

-

1.5243e+1

(3.55e+0)

-

2.9575e-2

(3.24e-3)

-

2.6453e-1

(1.10e+0)

-

1.0522e+1

(1.43e-1)

-

2.5003e-2

(3.23e-4)

DTLZ2

mean
(std.)

rank sum

4.5259e-2

(4.23e-3)
-

4.2185e-2

(2.13e-5)
-

2.8425e-2
(1.52e-3)

+

4.7728e-2

(4.38e-3)
-

4.9441e-2

(2.71e-3)
-

4.2096e-2

(2.42e-3)
-

2.8760e-2
(2.34e-3)

+

4.3571e-2

(2.14e-4)
-

4.1702e-2

(1.56e-3)

DTLZ3

mean

(std.)

rank sum

1.5567e-1
(5.87e-1)

-

5.3726e-2
(1.54e-4)

-

1.8039e+0
(3.47e+0)

-

1.9408e+1
(1.60e+1)

-

2.7586e+1
(9.02e+0)

-

5.5523e-2
(2.42e-2)

-

3.8894e+0
(3.41e+0)

-

1.1645e+1
(2.38e+0)

-

5.2084e-2
(2.15e-3)

DTLZ4

mean
(std.)

rank sum

4.0149e-2

(2.26e-3)
-

3.8042e-2

(2.16e-2)
≈

2.0542e-2

(1.22e-3)
+

3.5994e-2

(3.25e-2)
≈

1.1508e-1

(2.59e-2)
-

3.8243e-2

(2.41e-3)
-

2.2085e-2

(2.15e-3)
+

4.0094e-2

(8.04e-4)
-

3.5221e-2

(3.26e-3)

+/-/≈ 0/8/0 1/6/1 4/4/0 0/7/1 0/8/0 0/8/0 4/4/0 0/8/0

Table 4. Rank-mean results and ranking of nine algorithms on SP

Average ranking Algorithm Rank-mean value

1 MOFA-HL 2.25
2 SPEA2 2.63
3 CMOPSO 3.38
4 MOEA/D 4.38
5 NSGA-II 4.75
6 NMPSO 6.00
7 MOPSO 6.38
8 CFMOFA 6.88
9 MOFA 8.38

the nine algorithms on ZDT1 and DTLZ2. In order to facilitate observation, logarithm
of the vertical axis value is taken to enlarge the graph. On the ZDT1 with 2-objectives,
MOFA-HL shows a fast convergence rate. On the DTLZ2 of the 3-objectives, MOFA-HL
has the fastest convergence speed and good stability, and it shows the best distribution
performance.

Table 5 shows the mean and standard deviation of the nine algorithms on IGD and the
results of ”+/-/≈”. As can be seen from Table 5, MOFA-HL compared with the other
eight algorithms. MOFA-HL perform best in five of the eight MOPs, follow by MOEA/D
with two, and finally CMOPSO with one. MOFA-HL and NSGA-II, MOEA/D, SPEA2,
MOPSO, MOFA, NMPSO, CMOPSO and CFMOFA have an advantageous ratio of 6/8,
6/8, 6/8, 8/8, 8/8, 6/8, 7/8, 8/8 respectively on the eight MOPs.
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Figure 4. SP convergence curve of nine algorithms

Table 5. Mean and standard deviation of the nine algorithms on IGD, where
gray indicates the best, and the smaller IGD, the better. The more ’-’, the better
the distribution and convergence of MOFA-HL

Problem NSGA-IIMOEA/D SPEA2 MOPSO MOFA NMPSOCMOPSOCFMOFAMOFA-HL

ZDT1

mean
(std.)

rank sum

5.0963e-3

(1.45e-4)
-

1.2915e-2

(9.61e-3)
-

4.5465e-3

(6.32e-5)
-

8.0493e-1

(2.22e-1)
-

3.1782e-2

(4.36e-3)
-

2.9412e-2

(1.30e-2)
-

4.8735e-3

(8.91e-5)
-

8.9560e-3

(9.92e-4)
-

4.4408e-3

(5.36e-4)

ZDT2

mean

(std.)
rank sum

5.6344e-3

(3.36e-4)

-

2.7171e-2

(4.31e-2)

-

5.1285e-3

(2.56e-5)

-

1.6829e+0

(4.93e-1)

-

6.4161e-2

(2.38e-2)

-

1.9362e-2

(3.53e-3)

-

5.4237e-3

(2.36e-4)

-

1.3116e-2

(4.71e-3)

-

5.1004e-3

(2.36e-4)

ZDT3

mean
(std.)

rank sum

7.2029e-3

(2.54e-3)
-

2.9571e-2

(2.11e-2)
-

6.1241e-3

(5.36e-3)
-

8.6502e-1

(2.23e-1)
-

4.9602e-2

(9.68e-3)
-

1.0026e-1

(4.51e-3)
-

5.0225e-3

(4.78e-5)
+

1.4541e-2

(2.61e-3)
-

6.0172e-3

(1.36e-4)

ZDT6

mean

(std.)

rank sum

4.3775e-3
(5.12e-4)

-

7.2116e-3
(4.23e-3)

-

4.2068e-3
(1.45e-5)

-

1.9850e-1
(1.01e+0)

-

3.3622e-1
(1.07e-1)

-

5.3250e-3
(2.65e-4)

-

4.1006e-3
(5.37e-5)

-

9.7681e-2
(1.76e-1)

-

4.0275e-3
(1.32e-5)

DTLZ1

mean
(std.)

rank sum

3.2031e-2

(2.45e-4)
≈

2.1919e-2

(2.47e-5)
+

2.2026e-2

(5.36e-5)
+

4.1617e+0

(2.03e+0)
-

1.4568e+2

(1.42e+0)
-

2.7466e-2

(1.85e-4)
+

5.9684e-1

(7.56e-1)
-

1.5554e+2

(3.41e+0)
-

3.1633e-2

(3.63e-3)

DTLZ2

mean

(std.)

rank sum

5.8514e-2
(1.36e-3)

-

4.6884e-2
(2.58e-7)

-

4.7040e-2
(4.36e-4)

-

7.5068e-2
(5.45e-3)

-

5.6509e-2
(7.56e-4)

-

6.4267e-2
(2.78e-3)

-

4.9549e-2
(2.89e-4)

-

6.8044e-2
(1.36e-3)

-

4.4567e-2
(4.12e-4)

DTLZ3

mean

(std.)
rank sum

5.1257e-2

(5.36e-3)
+

4.0040e-2

(4.75e-4)
+

4.1519e-2

(4.23e-4)
+

5.7123e+1

(4.39e+1)

-

4.8802e-1

(4.38e-1)

-

9.8786e-2

(1.87e-1)
+

4.5236e+1

(2.79e+1)

-

7.2140e+1

(4.50e+0)

-

4.0080e-1

(2.56e-2)

DTLZ4

mean
(std.)

rank sum

5.5278e-2
(2.34e-3)

-

1.6432e-1
(2.74e-1)

-

6.4742e-2
(5.63e-2)

-

2.0930e-1
(8.18e-2)

-

6.9505e-1
(1.65e-1)

-

8.9140e-2
(1.23e-1)

-

5.1225e-2
(4.25e-4)

-

9.1016e-2
(7.95e-3)

-

5.0534e-2
(2.34e-3)

+/-/≈ 1/6/1 2/6/0 2/6/0 0/8/0 0/8/0 2/6/0 1/7/0 0/8/0

Through Friedman test, the experimental data obtained from 30 runs of the nine al-
gorithms are deeply analyzed. Table 6 shows the rank-mean results and rankings of the
nine algorithms on IGD. As can be seen from Table 6, MOFA-HL ranks the first with
a rank mean of 2.13. The results show that MOFA-HL has the best distribution and
convergence.

Similarly, in order to clearly know the convergence curves of the nine algorithms on
the IGD, Figure 5 shows the convergence curves of the nine algorithms on ZDT1 and
DTLZ2. Since MOFA-HL adopts a hierarchical learning method, its evolution is char-
acterized by gradual progression, and its evolution process is relatively slow. Therefore,
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Table 6. Rank-mean results and ranking of nine algorithms on IGD

Average ranking Algorithm Rank-mean value

1 MOFA-HL 2.13
2 SPEA2 2.63
3 CMOPSO 3.50
4 NSGA-II 4.00
5 MOEA/D 4.50
6 NMPSO 5.63
7 CFMOFA 6.75
8 MOFA 7.50
9 MOPSO 8.38

the convergence speed of MOFA-HL in the early stage is slightly worse than that of other
algorithms, but with the increase of the number of evaluation times, the convergence of
MOFA-HL will continue to improve. In Figure 5, the convergence speed of MOFA-HL on
the ZDT1 of the 2-objectives is continuously accelerated, and the final IGD is superior
to other algorithms. MOFA-HL shows unique advantages when dealing with the DTLZ
problems of 3-objectives, and MOFA-HL shows the fastest and stable convergence speed
on DTLZ2. In general, MOFA-HL has the best distribution and convergence.
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Figure 5. IGD convergence curve of nine algorithms

To show the fitting effect between the approximate PF and the real PF of the nine
algorithms. Table 7 presents the Pareto front fitting graphs of MOFA-HL and 4 classic
MOEAs on the eight MOPs. Table 8 presents the Pareto front fitting graphs of MOFA-
HL and 4 new MOEAs on the eight MOPs. In each figure, the black dot set represents
the real Pareto front point set, while the red dot set represents the approximate Pareto
front point set obtained by each algorithm. According to Table 7 and Table 8, MOFA-
HL and SPEA2 show good convergence and distribution, and the fitting effect is similar,
which indirectly indicates that the Friedman test comprehensive ranking between them
is similar. NSGA-II, MOEA/D, NMPSO and CMOPSO all show moderate fitting effect.
MOPSO, MOFA and CFMOFA are far from close to the real Pareto front in some of the
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3-objectives MOPs, showing poor fitting effect. On the whole, the fitting results of all the
algorithms are consistent with the Friedman test ranking.

Table 7. Pareto front fitting diagram of MOFA-HL and four classic
MOEAs

Problem NSGA-II MOEA/D SPEA2 MOPSO MOFA-HL
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Table 8. Pareto front fitting diagram of MOFA-HL and four new MOEAs

Problem MOFA NMPSO CMOPSO CFMOFA MOFA-HL
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5. Conclusions. In reality, multi-objective optimization problems are increasingly com-
plicated, so it is particularly important to design more efficient and feasible multi-objective
optimization algorithms. In view of the optimization process of MOFA, the population
is easy to fall into local optimum, and more high-quality solutions cannot be found,
which leads to poor convergence and distribution of the population. In this paper, multi-
objective firefly algorithm with hierarchical learning (MOFA-HL) is proposed. In this
algorithm, hierarchical learning method is proposed, which enables the population to
learn towards the superior front individuals and obtain more solutions close to the real
Pareto front. After hierarchical learning, the population is operated with local mutation
to promote the population to search for high-quality solutions in a small range. Finally,
the crowding distance calculation is used to maintain the population distribution in the
process of preserving the elite solution. Under the cooperation of multi-strategy, the al-
gorithm can find more high-quality solutions with better distribution and convergence.
MOFA-HL was compared with 4 classical and 4 new MOEAs, and the experimental data
are tested by Friedman test. Meanwhile, the convergence curves of nine algorithms on
some MOPs and the Pareto front fitting graphs of nine algorithms are plotted. The re-
sults show that MOFA-HL has the best overall ranking, which show that MOFA-HL can
effectively improve the distribution and convergence of the population.
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