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ABSTRACT. The optimal operation of cascade hydropower plants is a high-dimensional,
multi constrained and nonlinear problem. In order to improve the efficiency of water
resource utilization, an accurate model is required to reflect the actual optimal schedul-
ing problem. This research proposed an improved artificial bee colony algorithm based
on parallel compact technology for the power generation problem of cascade hydropower
plants. The improved algorithm is tested on several selected functions, and it achieves
better convergence speed and calculation accuracy with less memory compared with other
optimization algorithms.
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1. Introduction. Intelligent algorithms are usually used to solve all kinds of non-linear
and non-differentiable mathematical problems as well as practical problems. However,
there is no perfect optimization algorithm so far, and various approaches are being im-
proved to solve the increasingly complex problems.

The Artificial Bee Colony (ABC) algorithm is a type of swarm intelligence model,
which simulates the behavior of bee colony foraging and can be used to effectively solve
complex optimization problems [1-4]. The ABC scheme includes four elements such as
food source, employed bees, onlookers and scouts. A food source is a feasible solution of
the optimization problem, and the quality of a food source represents the fitness of this
solution. In the ABC algorithm, the number of employed bees is equal to the number
of food sources. The task of the employed bee is to find the food source information
and share it with the onlookers with a certain probability which is the selection strategy
calculated by roulette according to the fitness of the food source. Onlookers select food
sources according to the nectar amount told by the employed bees in the search area of
the hive and scouts search for new food sources near the hive. During the search for new
food sources the onlookers make greedy selection based on the information given by the
employed bees. If a food source has not been updated after a certain number of iterations,
the employed bee for this food source will become a scout and starts to look for a new
food source.

The ABC scheme has been used in many applications, such as telecommunication,
signal and image processing, neural networks, data mining, control, NP class problems,
traffic problems, multi-objective problems and etc. [5-13]. In many application scenarios,
it is often necessary to process and store a large amount of data in order to calculate each
of the food sources, and high-performance computing is also required. However, high
power computing environment is not always available in real world applications especially
in portable applications. Compact Evolutionary Algorithm (CEA) takes up less memory
and only one initial variable is required, so the computation demand can be significantly
reduced. Compact Genetic Algorithm (CGA) [14] only optimizes one target variable
and the optimization accuracy is similar to the original genetic algorithm. It was shown
that two strategies can be combined for the particle swarm to achieve better performance
[15]. A compact version of the ABC scheme has also been proposed to reduce the memory
consumption and increase the convergence speed [16]. However, the compact ABC scheme
only generates one solution in each of the iterations and therefore the stability of solution
cannot be guaranteed. This paper proposes an improved Compact ABC scheme with multi
group parallel compact artificial bee colony. In this scheme, the optimization process is
divided into several groups each of which communicates through a certain strategy, and
after a number of iterations, their solution is fused to a single one. Experimental results
will be shown in the sections below.

The optimization of power generation efficiency and total output for a cascade hy-
dropower plant is a high-dimensional, multi constrained and nonlinear problem, and there
has seen much literature on this topic. The difficulty of the optimization lies in how to find
the optimal solution quickly and accurately under multiple constraints. For example, the
IB-RBCO algorithm can be applied to solve the UC and economic load distribution prob-
lems to obtain the maximum power generation [17]. We can also use the new mutation
strategy to obtain a wider search range and accelerate the convergence by using Prevent-
ing Individual Repeated Failure Evolution (PIRFE) strategy to improve the efficiency
[18]. The application of ant colony algorithm and slime mold algorithm in the optimiza-
tion of cascade hydropower plants has also shown good performance [19, 20]. However,
previous proposed ABC strategies rarely considered both data storage and computational
load problems at the same time, and therefore in this study a parallel and compact ABC
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approach is proposed to improve the efficiency and stability as well as reliability. Since
most of the computers used in power stations are outdated with very limited memory
size, efficient computation cannot be guaranteed, and therefore a parallel scheme can be
introduced to distribute the computation task to several computers. The optimization of
power generation requires high efficiency using poor computational environment, and the
performance of a parallel and compact ABC scheme is suitable for this application.

The rest of the paper is organized as followed. The second section reviews the related
strategies, the third section demonstrates the theory of the proposed algorithm, the fourth
section tests the performance of the theory, the fifth section gives an application example
of cascade hydropower plant, and finally a conclusion is drawn in section six.

2. Related work.

2.1. Artificial Bee Colony Algorithm.

The Bee Colony self-organization model was firstly proposed by Seeley in 1995 [21],
and later improved by Tereshko [22, 23]. Based on these schemes, Karaboga proposed
the ABC algorithm in 2005 [24, 25]. The main steps of the ABC algorithm are as follows
25].
1.Initialization

The initialization of the bee colony is to determine the numbers of employed bees and
onlookers respectively, and they are usually equal number of SN.The number of food
source is equal to that of employed bees T, (m = 1;--- ;SN) and every food source
T,, is a solution vector. Therefore, there are n variables in #,, (2@ =1,--- ,n).The
initialization is then realized using x; = [; + rand(0, 1) x (u; — [;),where u; and [; are the
upper and lower limit respectively.
2.Employed bee search

The employed bees will search the location near the food source, and if a new food
source is found, the fitness value will be compared with the food sources recorded in
memory. Then the formula z;, = ;4 + ¢ia (i — xra) is applied to determine the food
source in the neighborhood area, where x;; is a randomly selected food source, i is a
randomly selected location index and ¢;4 is a random number between [-1, 1]. When a
new food source is found, its fitness value will be calculated and a better solution between
the two is determined by the greedy algorithm, which is transformed into a minimization
problem such that:

F (&) = { L abs (B (72)) i fon(50) < 0 M

where f,, (Z,) is the objective function.
3.0mnlookers search

The employed bees will pass the food source information to the waiting onlookers who
will randomly choose a food source based on the rm(ﬂet)te rule, such that the probability

fitm (T
S fitm (@)
then updated by ), = %4 + ¢ia (Tia — Tra), and the fitness value is calculated for the
greedy algorithm to make a choice.
4.Scouts search

If an employed bee does not find a more adaptable food source within a given number
of attempts, it will be turned into a scout bee on the spot and starts search for a new
solution randomly, and the current solution will be abandoned.

for fp, (:1:_>m) being selected is given by p,, = The food source location is
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2.2. Compact ABC.

Population-based artificial intelligence algorithms usually start from initializing m vec-
tors with n-dimensional elements, and therefore m x n memory units are required to store
these vectors. The compact algorithm uses the probability model to represent the distri-
bution of all vectors based on a Probability Vector (PV') as the probability model of all
solutions [26]. The data in each dimension can be represented by a normal distribution
function, so that the memory units required are reduced to 2 x n. In the compact ABC
scheme, the distribution of each bee is described by a Probability Distribution Function
(PDF), and usually we assume that it follows the Gaussian distribution with a mean value
of 1 and a standard deviation of o [27]. However, this is not a standard Gaussian distri-
bution but has been truncated, so the optimization problem of ABC is transformed to the
normalization of two truncated Gaussian curves. PV is a matrix vector of 2 x n-element,
which is defined as PV = [u', §'], where ¢ is the time step and the amplitude of the PDF
is normalized so as to maintain the total probability to one. The solution x; is determined
by PV (u;, o), and the corresponding PDF is given as:

_(emm)?
e 267 \/E
PDF,, , (z) = —— (2)
i (erf (%) —ertf <\/§5>>

where erf() is an error function [28]. The Cumulative Distribution Function (CDF) is
defined with Chebyshev polynomials such that [29]

_(emmy)?

1 T
cor= [ (c (522) et (5) )

The value of x; is then obtained through the inverse function of the CDF by generating
an evenly distributed random number between 0 and 1.

The initial values of ;1 and o are 0 and 10 respectively. In the process of evolution, the
position of z; is updated to reach a new solution x;,1, and then their fitness values are
compared to give rise to a winner. The values of ¢ and o in the PV are updated such
that,

1
Hf“ =t + N ( winner; — loser ;) (4)
p
2 (winner; — loser
= \/ () + () — (i) (T = Lo )
[winner, loser] = complete(Tpest, ) (6)

3. The optimal operation of cascade hydropower plants.

In recent years there have seen more and more attentions focused on the optimization
of renewable energy such as solar, wind and hydropower et al. In traditional multi-level
hydropower plants only single objective optimization has been considered to focus on the
optimization of in one aspect taking account of other conditions as constraints. The corre-
sponding optimization schemes include linear programming [30], nonlinear programming
[31], dynamic programming [32] and et al. However, for the optimal operation of cascade
hydropower plants, many different aspects are required to be taken into account such as



444 pcABC for Cascade Hydropower Plants

the power generation efficiency, capacity and income. In the annual non-flooding season,
the objective function for maximizing the power generation capacity can be written as,

N T
E1 = max {Zznl X Qi,t X Hi,t} x At (7)

i=1 t=1

The objective function for maximizing the peak load regulation capacity is given as,

T
maxEy = max {min Z N (i, t)} (8)
t=1
where E1 is the maximum generating capacity of a cascade hydropower plant, E2 is the
maximum guaranteed target output of each level, N is the number of cascade hydropower
plants,n; is the output coefficient of each level, i is the level number (i = 1,2,...,n), @
is the power generation flow, T is the total number of dispatching periods, ¢ labels each
dispatching period (¢t = 1,2,...,N), At is the length of dispatching period, and N(i,t)
represents the average output of the ith level of the hydropower plant in the 7' period.
Other constraints will include:
(1) Water balance constraint, given as

Vitrr = Vie + [Lir — Qi — Sis) X At 9)

where V(i 1), 1(i,1), Qi t), S¢i,t) represent the water storage, inflow, loss and abandoned
respectively for the ith level hydropower plant at time t.
(2) Flow balance constraint, which is

L1y = Qi + qiy (10)
(3) Water level constraint, given as,
Z@t S Zz’,t S Zz‘,t (11)

where Z,, and Z;+ are the lower limit and upper limit of the ith level hydropower plant
at time t respectively, and it is defined that Z,, < ZM.
(4) Flow constraint:

QS Qir < Qis (12)
Q (i, t) and Q(i, t) represent the lower limit and upper limit of the abandoned flow of the

ith level hydropower plant at time t respectively, and it is defined that @ (i, t) < Qi)
(5) Power output constraint of each level:

Ny <Ny < Ny (13)

where N, ;, and N(i, t) are the lower limit and upper limit of the power output of the ith
level hydropower plant at time t respectively, and it is defined that N, t) < N(z', t)

4. The compact and parallel strategy.

In the literature there have seen some parallel strategies suitable for the implementation
of multi-core processor to improve the convergence speed and accuracy. For example, a
parallel differential optimization scheme was proposed with two communication strate-
gies [26]. A coevolutionary mutation strategy with elite population and three mutations
was proposed to optimize the differential evolution algorithm [34]. Shared memory and
multiprocessor are also used to improve the execution efficiency through parallel commu-
nication strategy [35]. It has been proved that the effect of parallel communication is
much better than that of single search strategies. The Parallel Compact ABC algorithm
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(PCABC) demonstrated in this research is based on elite parallel communication strategy
and the steps are given as:

1. The optimization problem is solved from G independent groups in parallel, and the
PV in each of the groups is initialized;

2. According to the ABC algorithm, each group generates an elite;

3. The offspring fitness value produced by each of the groups is compared with the elite
to obtain new elite, which is used to update the PV value.

4. After « iterations, the groups communicate with each other and elect the optimal
elite to replace other elites. All the PVs will also be replaced by the optimal elite PV.

5. Repeat the above steps until the termination condition is met. The pseudo code is
listed as follows:
Algorithm 1 pcABC algorithm Pseudocode

t=0;
1: g =05;
2: trial = 0; limit = 10; sol = Xpesr = up_bound,
3: //Groups Initialization;
4: Employed Bee Phase
5: fori=1:¢9 do
6: InitializeGroupl[i]. PV,
7 GenerateGroupli].elitebyGroupl[i|. PV;
8: end for
9: while budget condition do
10 //Mutation;
11: Paraller for every group do;
12: Generate i individuals Group[m/.z;
13: Generate Groupli] : 2* from PV;Caculate f(Groupli].z")
14: if (f(Groupli].a'))<f(sol) then
15: sol = groupli].z*
16: f(sol) = f(groupli].z*)
17: else trial = trial + 1
18: end if
19: for:=1:ndo
20: if f(Groupli].elite) < f(Groupli].z' then
21: Groupli].elite = Groupli].z*
22: end if
23: end for
24: //Sellection;
25: [winner, loser] = copmete(Group[m].at, Group|m].elite)
26: if Group[m|.z* == winner then
27 Group[m].elite = Group|m].x*
28: end if
29: // PV Update;
30: forv=1:ndo
31: Equation(12) and (13);
32: end for
33: Find the group wyth the most adaptable solution and record the group number
as k
34: if mod(t,0) == 0 then
35: forv=1:ndo

36: Groupli]. PV = Group[k].PV;
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37: Groupli].elite = Group|k].elite;
38: end for
39: end if

40: t=t+1

41: end while

42: Onlook Bee Phase;

43: ' = sol; Prob = equation(1);
44: if thenrand < Prob

45: for:=1:ndo

46: 2'(i) = 2'(i) + rand x (x*(i) — z(k) with random k =1, ..., n;
47: end for
48: end if

49: Calculate(x?)
50: //Update local;
51: if thenf(x')lef(sol)

52: sol = xt

53 f(sol) = f(z');
54: else

55: trial = trial + 1,
56: end if

57: Update Global
58: if thenf(sol)lg f(best)

59: Tpest = SOL;
60: frest = f(sol);
61: end if

62: Scout Bee Phase;
63: :

64: if trail == limit then
65: initial(sol)
66: end if

5. Experiments.

In this section, in order to demonstrate the performance of the proposed algorithm,
the CEC2013 test functions are used and compared with other previous versions of the
ABC algorithm [36]. The CEC2013 contains 28 functions, among which f1 f5 are uni-
modal functions for testing the calculation accuracy and efficiency of the algorithm. The
functions of 6 f20 in the CEC2013 are multi-peak functions for testing the global search
performance, and the functions of {21 {25 are synthetic functions for testing the combined
performance of the algorithm [37]. All the tested algorithms are set with the same initial
parameters.

In this experiment, there are two tasks being tested, one is to compare the performance
of the PCABC with other general optimization algorithms such as the CDE [38,39], PCDE
[26], CBA and PSO [40], and the other one is to test the PCABC and compare with sev-
eral improved versions of the ABC algorithms [24], such as the ABC, MABC [7], PABC
[41], EABC [42] and CABC [16]. The test platform is MATLAB, and each of the tasks is
run for 30 times and the average value is calculated. The dimension of all test functions is
set to 50, and the number of iterations is 3000. There are 5 parallel groups in each of the
tests, and the value of NP is set to 2 x n. The parameters of other comparing algorithms
are set according to the references. Table 1 shows the results of the first test, and the
data obtained are the average value 4+ the corresponding standard deviation. Based on
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the method in [43] the confidence level is set to 0.95. In the table, (>) indicates that this
algorithm is better than the proposed PCABC, and (<) means the opposite while (=)
represents that this algorithm shows the same performance with the PCABC.

TABLE 1. Result of the first test.

CDE PCDE PSO PCABC

f1 ] 1.948e+04+2.08e+04 | < | 5.755e+00£4.88e-01 | < | 4.215e+02+3.58¢+01 | < | 1.709e-12+1.64e-13

f2 | 8.581e4+07£10.6e+06 | < | 4.689e+07+5.78e+06 | < | 2.787e4+08£10.7e4+07 | < | 6.917e+0644.58e+05
£3 | 1.764e+10+1.07e+10 | < | 3.322e4+09+1.11e+08 | > | 8.721e+10+1.82e+09 | < | 6.084e+08+3.91e+07
f4 | 8.574e4+041+9.41e+03 | < | 4.664e+041+9.6e+03 | = | 8.803e+04+3.1e+03 | < | 4.305e+04+3.41e+03
5 | 3.013e-01+£5.96e-02 < | 2.742e+0043.65e+00 | > | 5.892e+0245.19e+01 | < | 7.108e-0442.88e-05

f6 | 7.743e+02+9.14e+01 | < | 2.116e+02+6.05e+01 | > | 3.615e+02+1.25e+00 | < | 4.564e+014+9.57e-01

f7 | 3.055e4+0248.65e+01 | < | 2.366e+0249.59e+01 | > | 4.647e+0246.37e+01 | < | 2.598e4-0247.06e+01
8 | 2.95e4+01£4.32e+00 < | 2.938¢+014+4.01e+00 | < | 2.836e+014+5.22e+00 | > | 2.927e+0143.04e+00
f9 | 5.852e4+01+1.69e+00 | > | 6.855e+014+8.8e+01 | > | 4.646e+0148.57e+00 | > | 7.439e4+0142.07e+01
10 | 1.418e4+02£10.13e4+02 | < | 2.566e+014+4.1e+00 | < | 6.74e+03£2.89e+02 | < | 9.756e-024+4.98¢-03

f11 | 4.022e4-024+6.13e+02 | > | 5.681e4+00+6.38e-01 | < | 5.12e4+024+7.28e+01 | < | 4.064e+0249.13e+00
12 | 5.455e+02+8.85e+02 | > | 5.332e+02+4.03e+01 | > | 1.487e+034+9.39e+02 | < | 8.718e402+8.46e+01
f13 | 6.969e+024+4.45e+02 | > | 6.538e+02+4.6e+01 | > | 5.841e4+034+9.97e+01 | < | 7.505e+0249.43e+01
f14 | 3.484e+03+8.53e+02 | > | 4.946e+02+2.81e+01 | > | 6.477e+03+4.09e+01 | < | 4.792e403+1.12e+02
15| 1.767e4+04£9.64e+03 | < | 8.947e+03%8.31e+03 | < | 9.588e4+03£3.41e4+02 | < | 7.256e+0349.37e+02
f16 | 2.073e4+00+4.61e+00 | < | 2.172e4+0046.58e+00 | < | 1.974e-01+3.26e-02 < | 1.427e+00+£6.66¢-01

f17 | 3.347e+024+2.22e+01 | > | 5.842e+01+1.75e+01 | < | 7.82e4+0242.21e+01 | < | 5.718e4+02+3.71e+01
f18 | 9.403e+024+4.49e+02 | < | 5.679¢+024+4.22e+01 | > | 9.653e+024+9.97e+01 | < | 1.888e+0344.56e+02
19 | 6.538e+014+9.74e+01 | < | 2.999e+00+2.95e+01 | > | 3.254e+03+5.42e+02 | < | 2.133e+0145.85e+00
£20 | 2.276e4+014+9.59e+00 | < | 2.176e+014+4.85e+00 | < | 2.274e+0147.69e+00 | < | 1.822e+0147.14e+00
21 | 3.326e+03+2.89e+04 | < | 8.812e+03+5.31e+02 | < | 5.097e+03+11.4e+02 | < | 1.564e+03+5.32e+02
22 6.035e403£2.99e+02 | < | 7.741e+0348.54e+00 | < | 9.326e4+03£9.71e+02 | < | 3.463e+0349.43e+02
23 | 1.669e+04+4.86e+03 | < | 1.109e+04+7.76e+03 | < | 1.637e+04+4.32e+03 | < | 9.084e+03+3.58e+02
24 | 4.216e4+024+3.91e+02 | < | 4.038e+02+1.24e+01 | < | 7.173e+0247.09e+01 | < | 3.837e4+0241.24e+01
25 | 4.581e4+02+2.49e+03 | < | 4.252e+02+5.06e+01 | < | 5.932e4+02+7.19e+01 | < | 3.535e4+0249.53e+01
26 | 5.863e+02+4.87e+01 | < | 1.997e+0247.88e+01 | > | 2.261e4+0248.87e+01 | < | 2.034e4+0242.67e+01
27 | 2.376e+03+1.97e+02 | > | 2.631e+03+7.27e+02 | < | 2.819e+03+3.63e+03 | < | 2.383e+03+9.19e+01
28 | 8.338¢+03+6.83e+03 | < | 5.345e+024+9.39e+01 | > | 4.597e+034+8.51e+02 | < | 3.237e+0349.15e+02

In order to test the convergence performance, the optimization of the functions f6, 10,
f24 and f2 are specifically tested and the function values progressed with iterations are
shown in (a)-(d). From (a)-(d) we can see that the PCABC performs better than other
schemes in convergence speed and accuracy.
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Table 2 shows the results from the second test, and the results show that the PCABC
scheme outperforms other algorithms.

TABLE 2. Result of the second test.

ABC EABC PABC MABC CABC PCABC

fl | 2.966e-12+7.73e-13 < | 7.506e-12+7.11e-12 < | 2.049e-12+1.38e-13 > | 2.291e-1249.07e-13 | < | 1.579e-01+£6.23¢e-01 < | 2.276e-12+1.73e-13

2 ] 7.476e40946.02e+08 | < | 5.338e+07£5.32e4+06 | < | 2.041e+07£9.86e+06 | < | 2.822e4+0746.18¢+06 | < | 5.232e+0843.95e4-07 | < | 6.574e+06+3.25e+05
f3 | 2.082e+1045.65e409 | < | 2.512e+09+4.36e+09 | < | 1.409e4-0947.92e+08 | < | 1.018e4+09+1.81e+09 | < | 2.659e+1149.11e+10 | < | 6.247e+084+4.02e4+-07
f4 | 4.521e+0641.33e406 | < | 1.101e4+05%1.86e+04 | < | 1.071e4+0544.45e+04 | < | 1.206e+05+2.07e+04 | < | 7.796e+04+9.64e+03 | < | 3.026e+04+2.38e4+03
f5 | 1.723e405+5.29¢+04 | < | 6.146e-0249.45¢-03 < | 2.001e-1249.73e-13 > | 2.228e-1249.65¢-12 > | 1.143e+03+3.85e+02 | < | 6.814e-0443.72e-05

f6 | 4.378e+0246.32e400 | < | 5.195e+0245.96e+01 | < | 4.686e4+02£4.69e+01 | < | 4.952e4+01£7.71e+00 | < | 3.288e+03£7.50e+02 | > | 4.246e+0129.09e-01

7 | 2.568e+03+5.52e4+02 | < | 1.842e+02+5.91e+01 | < | 2.644e40246.20e+01 | < | 1.506e+02+4.83e+01 | > | 2.087e4+02+9.37e+02 | < | 1.864e+02+5.86e+01
8 | 3.309e+014+4.43e400 | < | 2.148e+01+2.97e400 | < | 2.136e4+0149.27e+00 | < | 2.142e4+01+3.89e+00 | < | 2.831e4+01+6.39e+00 | < | 2.125e+014+4.57e+00
9 ]9.363e4+01+1.83e+00 | < | 7.466e+01£2.26e+00 | > | 8.412e+01£1.16e+00 | < | 6.555e4+0144.97e+00 | > | 8.529e+0143.58e401 | < | 7.540e+01+1.54e+01
10 | 2.257e+034+4.64e402 | < | 5.097e4+00+7.36e-01 | < | 2.586e400+9.01e-02 | < | 2.961e4+00+5.65e-01 | < | 2.258e+124+4.13e+02 | < | 9.953e-024+5.19¢-03

f11 | 3.753e+0244.79e4+01 | = | 9.847e-01£4.77e+00 | > | 3.171le-13+1.86e-14 > | 5.603e-13£8.34e-14 | > | 9.153e+02£5.38e+01 | < | 3.753e+02£9.51e+00
12 | 2.830e+03+3.91e+02 | < | 4.571e+02+5.42e4+02 | < | 5.078e402+9.67e+01 | < | 8.494e+02+1.90e+02 | < | 8.215e+024+6.93e+01 | < | 4.564e+02+7.51e401
f13 | 8.413e+0247.95e401 | < | 4.138e+0245.12e4+02 | < | 6.443e4+0243.87e+01 | < | 6.620e4+02£3.83e+01 | < | 8.936e+02£6.99e+01 | < | 4.113e+02+7.66e+01
f14 | 4.925e40349.13e+02 | < | 2.573e+02£9.76e+02 | > | 4.234e+01£5.10e+00 | < | 3.478e4+0044.84e-01 | > | 2.069e+0442.12e404 | < | 3.802e+03+2.00e+02
f15 | 8.379e+03+3.43e4+02 | < | 9.409e+03+2.95e402 | < | 9.823e4+03+7.18e+02 | < | 7.446e+03+3.73e+02 | = | 2.873e4+04+7.77e+03 | > | 7.447e+03+9.34e+02
f16 | 7.903e40043.58¢-01 | < | 4.215e+00£2.34e4+00 | < | 3.323e+00£6.41e+00 | < | 2.883e4+0048.94e-01 | < | 4.208e+0045.53e400 | < | 2.557e+00£7.04e-01

17 | 4.252e+024+1.86e4-01 | > | 6.986e+02+6.82e400 | < | 6.108e4+0142.92e+00 | > | 6.062e4+01+4.28¢+01 | > | 1.888e+03+1.72e+03 | < | 6.946e+02+5.29¢+01
18 | 5.825e+0249.42e4+01 | < | 2.701e4+02+4.86e+02 | < | 5.133e4+0244.59e+01 | < | 7.416e+02+2.97e+01 | < | 1.394e+03+9.01e+02 | < | 1.902e+02+4.93e+02
19 | 2.991e404+6.83¢+03 | < | 6.236e-0144.22¢-02 < | 3.673e4+00£2.93e-01 | > | 9.703e+0144.94e+02 | < | 4.669¢+0543.62e401 | < | 3.905e+0146.39e+4-00
20 | 4.23e+01£1.91e4+00 | < | 6.681e+01£9.75e4+00 | < | 9.003e+01£9.18¢+00 | < | 3.795e4+0142.88¢+00 | < | 3.141e+0144.54e400 | > | 3.389e+01£7.61e+00
21 | 2.814e+03+£7.91e4+02 | < | 2.924e+02+2.68e+01 | > | 2.889e+02+4.73e+01 | > | 2.904e+03+9.74e+02 | < | 4.949e+03+4.19e+03 | < | 2.009e+03+5.14e+02
22 | 3.817e+03£1.61e402 | > | 2.829e+01£3.42e4+00 | > | 6.501e4+01£1.93e+00 | > | 3.219e4+03£6.44e+02 | < | 1.819e+04+£8.15e+03 | > | 3.067e+0329.06e+02
23 | 2.147e40449.27e+03 | < | 2.313e+04£6.04e4+03 | < | 2.209¢+04+£5.02e+03 | < | 9.652e4+0447.23e+03 | < | 1.897e+0445.23e403 | < | 9.777e+03+£2.98e+02
24 | 4.046e+02+7.06e401 | < | 3.475e+02+4.73e402 | > | 3.198e402+1.76e+01 | > | 3.612e4+02+3.02e+01 | < | 5.011e402+5.56e+01 | < | 3.534e+02+2.06e+01
25 | 6.628e+02+4.09e4+01 | < | 4.142e4+02+2.84e+01 | < | 3.634e4+02+8.78e+01 | > | 4.124e+02+1.85e+01 | < | 4.939e+02+2.05e+02 | < | 3.733e+02+9.14e4+00
26 | 8.116e+0246.87e401 | < | 2.542e+02+4.48e+01 | > | 2.818e40244.28¢+01 | < | 2.525e4+02+4.28¢+01 | = | 5.706e+02+3.91e+01 | < | 2.579e+0242.69e+01
27 | 4.844e+034+4.17e403 | < | 3.527e4+03£1.26e+02 | < | 3.337e4+03£6.56e+02 | < | 3.598e+03£1.43e+03 | < | 3.504e+03£2.02e+02 | < | 3.283e+03+£8.48e4+01
28 | 2.329e+03+1.67e+02 | > | 4.502e+02+1.98e+01 | > | 4.191e4+02+4.22e+01 | < | 4.518e+03+3.45e+02 | < | 8.246e+03+4.09e+03 | < | 2.525e+03+8.43e+02
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6. Application of the proposed algorithm on operation optimization of cascade
hydropower plants.

In this section, the proposed PCABC algorithm is applied to the optimization of cascade
hydropower plant and compare with other commonly used optimization schemes. The
water conservancy characteristic parameters of the plant reservoirs are shown in Table 3.
Hydropower plant A is an upstream reservoir of hydropower plant B, and the operation
period is from November to the next May. The setting of other parameters is based on
[44-46]. Table 4 shows the optimization results obtained from the test.

TABLE 3. The water conservancy characteristic parameters of the plant reservoirs

Plant | Lowest pool level (m) | Normal pool level (m) | Installed capacity (MW) | Firm capacity (MW) | Max turbine flow (m3.s-1) | Combined efficiency coefficient
A 145 175 2250 499 2900 8.5
B 62 66.5 321 104 2360 8.5

TABLE 4. Optimization results obtained from the test

Algorithm | Output of Plant A | Output of Plant B | Total output
ABC 404.3521 86.4927 490.8448
GABC 404.4217 86.3215 490.7432
PABC 405.2103 86.7324 491.9427
MABC 404.8219 86.6813 491.5032
CABC 404.5794 86.5021 491.0815
PCABC 405.3231 86.5973 491.9204

It can be seen from Table 4 that the proposed PCABC algorithm has helped to achieve
the maximum total power generation, which is 11.772x107kw-h and 10.756kw-h more
than the GABC and ABC algorithms respectively. It can be seen from Table 5 that the
ABC algorithm is better than the GABC in this application, which explains that different
problems require a suitable scheme for optimization.

TABLE 5. Optimization data of various ABC algorithms for hydropower generation

Algorithm | Output of plan A | Output of plan B | Total output
ABC 404.3521 86.4927 490.8448
GABC 404.4217 86.3215 490.7432
PABC 405.2103 86.7324 491.9427
MABC 404.8219 86.6813 491.5032
CABC 404.5794 86.5021 491.0815
PCABC 405.4231 86.6973 492.1204

FIGURE 1.shows the convergence speed of each of the algorithms. It can be seen that
the PCABC algorithm achieves the optimal value at 5x 104 iterations, while others need
at least 16x 104 iterations. Therefore, the convergence performance of the PCABC is also
better than other algorithms.

7. Conclusion.

In this paper a Parallel Compact ABC (PCABC) method was proposed and applied to
the optimization of hydropower plant. For the previous compact ABC method, only one
solution is initialized and optimized, leading to uncertain result. Based on the compact
ABC, the PCABC scheme adopts the parallel communication strategy to produce several
solutions to improve the efficiency and accuracy. The Probability Distribution Function
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Ficure 1. Hydropower plant output at different iterations.

(PDF) is used to estimate the virtual population in the CABC algorithm. In this way,
the stability and the convergence speed of the algorithm can be greatly improved. The
proposed algorithm was tested in several test functions, and the performance is shown to
be better than the previous algorithms. The proposed PCABC scheme is also applied to
the reservoir operation optimization of a cascade hydropower plant. Comparing with other
algorithms, the proposed scheme produces more effective solution with less calculation.
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