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Abstract. Since the air pollution is becoming more and more serious, as a new type of
pollution-free energy, wind energy has become more and more important. Today, almost
of all countries in the world believe that wind energy is one of the future energy develop-
ment trends. As the key equipment of wind power conversion, the state of wind turbine
is directly related to the efficiency of wind power conversion. Therefore, the effective
fault diagnosis of wind turbine drive system is the reliable guarantee of wind power gen-
eration. Based on the vibration characteristics of the wind turbine drive system, a new
fault diagnosis method is established. Moreover, the fault feature extraction and classifi-
cation are realized by wavelet packet decomposition and BP neural network respectively.
The experimental results show that the diagnosis rate of this method is over 90%, which
proves the effectiveness of this method.
Keywords: Troubleshooting, Wind turbine, Vibration characteristic, Back propagation
neural network

1. Introduction. As a pollution-free renewable energy source, wind energy has become
one of the areas that countries around the world are competing for development. However,
wind turbines are often installed in remote areas, such as mountains, wilderness, beaches
and islands, and from tens of meters or even hundreds of meters from the ground. They
usually work in harsh environment, such as wind speed instability, variable load, large
temperature difference and low pressure for a long time. Thus, the service life of the unit is
greatly shortened and affected. Especially the transmission components, such as the main
shaft and gear box, are prone to failure under the action of alternating load [1-3], leading to
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long-term shutdown and overhaul. Furthermore, complex operating conditions and high
maintenance costs seriously damage of the economic benefits of wind power generation.
On this basis, the state monitoring and fault diagnosis of wind turbines has gradually
attracted the attention of the industry. Through monitoring manually, it is sometimes
difficult to catch the signals of the turbine transmission system failure. It will cause
maintenance personnel to misjudge the failure cause, resulting in excessive-maintenance
of the undamaged parts or insufficient maintenance of faulty parts. Therefore, it is of
great significance to carry out monitoring and diagnosis research on wind turbine drive
system to prevent wind turbine faults and improve economic benefits.

The representative classification is divided into three categories: mathematical model
based methods [4-7], data analyses based methods [8-10] and knowledge-based methods
[11-14]. The benchmark model of three blade horizontal axis wind turbine was estab-
lished [4]. Five different fault monitoring and isolation schemes were used to evaluate
seven different test series and obtain satisfactory results. However, the simplification
of the benchmark model cannot reflect the complex functions of wind turbine. In the
research of fault diagnosis methods for wind turbines based on signal processing, [15] pro-
posed a wind turbine fault diagnosis method. Use Continuous Wavelet Transform (CWT)
to filter out unnecessary noise in the original vibration signal, and use Automatic Term
Window (ATW) functions to suppress cross terms in Wigner-Ville Distribution (WVD),
which may be caused by moisture absorption, fatigue, gusts or lightning strikes on the
wind turbine. Meanwhile, damaged faults are also analyzed and diagnosed. Liu et al. [16]
proposed a new wind turbine fault diagnosis method based on Local Mean Decomposition
(LMD) technology. LMD is a new method of iterative demodulation of amplitude and
frequency modulation signals, which is suitable for obtaining instantaneous frequencies
in the condition monitoring and fault diagnosis of low-speed wind turbines. Through the
experimental analysis of the vibration signal of the wind turbine, the validity and effec-
tiveness of the method are verified. After decades of development, neural network theory
has achieved extensive success in many research fields, such as pattern recognition, auto-
matic control, signal processing, assistant decision-making [13] and artificial intelligence.
The following introduces the application status of neural network in fault diagnosis. The
neural network was applied to wind turbine fault detection and identification [11,12], and
the results show that this method has the advantages of high efficiency, strong robust-
ness and strong anti-noise interference ability. In order to suppress the local minimum
problem, Wang [17] combined Wavelet Packet Analysis with Radial Basis Function neu-
ral network and applied it to the fault diagnosis of wind turbine transmission system. In
terms of convergence, approximation ability and classification ability, this method has no
comparable advantages.

This paper analyzes the wavelet packet decomposition of the vibration signal of the
wind turbine drive system and its frequency characteristics. It is found that the frequency
energy distribution of different parts is the same, the middle and low frequency energy is
the majority and the extracted features are back propagation (BP) nerve. The network
classification results show that the detection accuracy of rolling element fault, inner ring
fault and outer ring fault is 97%, 92% and 99% respectively.

2. Method.

2.1. System Framework. First, vibration signals of collected key components are pre-
processed, and the singular value decomposition and noise reduction method are applied
to improve the signal-to-noise ratio of the vibration signal. Then, time-frequency analysis
of the denoised signal is performed based on the wavelet packet energy entropy to extract
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the characteristic parameters and the extracted parameters. The characteristic parameter
is set as the input of BP network to realize the automatic diagnosis of the failure. The
detailed method is shown in Fig. 1:

Figure 1. The framework of analysis process

The vibration signal acquisition system hardware includes sensors, data acquisition
instruments, notebook computers and connecting cables. The vibration data acquisition
instrument adopts BENTLY 8-channel vibration signal acquisition instrument, vibration
signal acquisition system.

2.2. Singular Value Decomposition. Due to the large number of vibration sources
and noise interference, the key information contained in the collected signal is easily con-
cealed. Therefore, the signal should be denoised before taking the signal characteristics.
Signal noise reduction is a key step in signal processing and troubleshooting. In engi-
neering practice, there are many different noise reduction techniques that can be applied.
Wavelet noise reduction, time domain averaging, frequency domain feature extraction and
adaptive filtering are commonly used. However, these methods have their own limitations.
When the wind turbine drive system fails, shock signals appear in the vibration signal.
These shock signals are coupled with noise and other vibration signals. Thus, it is difficult
to extract the noise by general noise reduction method. Aiming at this problem, this paper
proposes a vibration signal denoising method by singular value decomposition to filter the
collected noisy signals. Assuming the collected noisy vibration signal is, the phase space
reconstruction theory is used to embed the elements of X = [x(1), x(2), . . . , x(n)] into the
m*n dimensional space to obtain a Hankel matrix. According to singular value decompo-
sition principle, given any m*n-dimensional matrix A, singular value decomposition can
be expressed as Eq.1:

A = UΣV t = U

[ ∑
r 0

0 0

]
V T (1)

In Eq.1, U and V are orthogonal matrices of m*n and n*m respectively,∑
r = diag (λ1, λ2, . . . , λr) and λ1 > λ2 > . . . > λr, r = rank(A).
The energy information of the signal and the noise intensity information are all included

in singular spectrum. Furthermore, the use of singular spectrum can realize the separation
of useful signals and interference signals. The set signal X is composed of two parts: noise-
free and noise. The noise-free signal should be smooth, and the noise signal is Gaussian.
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Therefore, the singular value of signal X is also composed of two parts: noise-free singular
values and singular values of noise. Then the singular value of the entire noise will be
evenly offset from the original size .

At this point, the trajectory matrix of signal X can be expressed as Eq.2:

A = [U1U2]

[
1 0
0
∑
r

] [
V T
1

V T
2

]
(2)

In Eq.2, it can be seen that by decomposing singular value of trajectory matrix, A
can be divided into two parts. As long as the noise interference part is removed, the
effective signal part can be obtained. The basic steps of noise reduction for singular value
decomposition are as follows:

Firstly, phase space reconstruction is performed on the original signal. The recon-
structed matrix line number is half or one tenth of the original signal length. Then, the
Hankel matrix obtained is subjected to singular value decomposition, and the singularity
corresponding to each step of the singular spectrum is obtained. The entropy increment
determines the order in which the singular entropy increment begins to decrease and
tends to be stable as the signal denoising order. The matrix is reconstructed by using the
previously obtained noise reduction order as the effective order of the singular spectrum.
The first row element of the reconstructed matrix is the noise reduction signal.

2.3. Wavelet Packet Energy Entropy Characteristics. As a signal processing method,
wavelet packet analysis is extended of wavelet analysis, which can reconstruct and process
the signal in more detail. The advantage of wavelet packet analysis is that the approximate
signal is further decomposed and reconstructed in the wavelet transform, and then the
high-frequency part of the signal is analyzed. Because the orthogonal wavelet transform
can only further analyze the low-frequency part of the signal and cannot continue to de-
compose the high-frequency part, the wavelet transform can represent the low-frequency
information well, but the effect is not very good. Ground decomposition and representa-
tion of high frequency signals contain a large amount of detail information.

The vibration signal of wind turbine drive system is a typical non-stationary signal with
a lot of detailed information. It can be processed in a more detailed way by using wavelet
packet transform. This decomposition has no redundancy or even omissions, which is
a better time-frequency localization analysis method. More specifically, wavelet packet
analysis can not only obtain the distribution information of the original signal in different
frequency bands, but also capture the time point of the signal mutation by decomposing
and reconstructing the signal at different scales.

The wavelet packet decomposition is essentially the multi-layer bisection of the high-
frequency sub-segment and the low-frequency sub-segment divided by the original signal.
In this paper, noise-reduced signal is decomposed by wavelet packet. In view of the de-
composition relationship, the wavelet packet divides the signal into eight frequency bands,
and the decomposition of high-frequency part is more detailed. Thus the noise-reduced
signal can be fully utilized. Wavelet packet analysis decomposes non-stationary signal
into a series of basic functions that are stretched by wavelet function. The information is
complete, which is very suitable for the decomposition of vibration signals.

After 3-layer decomposition of the signal, the wavelet energy of the sub-channel signal
can be expressed as Eq.3:

E3j =

∫
|S3j(t)|2 dt =

n∑
k=1

|xjk|2 (3)

In Eq.3, represents the discrete point amplitude of the reconstructed signal .
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The magnitude of the energy entropy represents how much energy is ordered in the
observed signal. When the number of wavelet packet decomposition layers is defined as,
the energy sum of the signals is , and it can be expressed as Eq.4:

Ei =
N∑
j=0

Eij (4)

Depending on the law of energy conservation, the total energy of signal is equal to the
sum of signal energies of sub-bands, which can be expressed as Eq.5:

Es = Ei =
N∑
j=1

Eij (5)

The great uncertainty of the variable means high entropy, and the great amount of
information needs to be explained. For spectrum analysis, different frequency bands
reflect different characteristic information. Therefore, specific information entropy based
on the characteristics of frequency distribution is applied to reflect fault. The entropy is
identified as Eq.6:

H(x) = E

[
log2

1

P (xi)

]
= −

∑
P (xi) log2 P (xi) (6)

Where, is output probability function and represents the random variable. It is defined
as a symbol set and is the set of all possible outputs.

In frequency domain, vibration signals of segments present the component of mechanical
structure. Frequency segments of wind turbine can be divided into low-frequency 10-
1000Hz, mid-frequency 1000-2000Hz and high-frequency 2000-10000 respectively. In this
paper, frequency domain is subdivided into eight segments. After decomposition, the
mutation phenomenon is reduced.

2.4. BP Neural Network. BP algorithm has the characteristics of simple structure and
easy implementation. More importantly, its excellent pattern recognition ability has also
been widely used in mechanical diagnosis. The learning process of BP neural network
consists of two parts: the forward propagation of signal and the back of error.

From the input layer, the error is generated by the result of the forward propagation and
the expected value, which is allocated to the nodes of each layer through back propagation
for weight modification until the error is lower than a recognized level or a predetermined
learning time. Distinctive faults produce specific vibration signals. The neural network-
based fault classification extracts the characteristics of the fault signal by training weights.

3. Data Sources.

3.1. Vibration Signal. The vibration signal acquisition system hardware includes sen-
sors, data acquisition instruments, notebook computers and connecting cables. The vi-
bration data acquisition instrument adopts NEGO 8-channel vibration signal acquisition
instrument, and the vibration signal acquisition system is shown in Fig. 2.

The signal is the carrier of fault information, and the measuring point is the window
to obtain the fault information. The pros and cons of the arrangement of measuring
points will determine whether the collected signal is typical and representative. The
rationality of the measuring point selection is the basis for subsequent signal analysis and
processing. When collecting wind turbine signals, the selection of measuring points must
be in accordance with the international standard VDI3834, and the following principles
shall be met:



478 W. Yang, Y. Chai, J. Zheng and J. Liu

Figure 2. The framework of analysis process

1) The measuring point should try to select the most abundant part of the vibration
information;

2) Select as many working conditions as possible with few points and maintain sensi-
tivity to the measured parameters;

3) The position of the measuring point should be close to the tested part to prevent
attenuation, distortion and transmission obstruction;

4) The selection of measuring point position should consider the convenience of assembly
and disassembly of the sensor. The choice of measuring point position should consider
the convenience of disassembly and assembly of the sensor.

Take Hansen EH80421-BN gearbox of 2MW wind turbine, the main structure includes
the main shaft, planetary-stage gear and two parallel gears. The geometric shapes of the
parallel gears used in the planetary gear system and gearbox are shown in Table 1.

Table 1. Geometrics of the planet gears (High Shaft Speed is 26.67Hz)

Parametre
Sun
Gear

Planet
Gear

Ring
Gear

Carrier
LS Big
Gear

IM Small
Gear

IM Big
Gear

HS Small
Gear

Number
of teeth

18 34 87 - 70 16 84 19

RPM 82.72 50.47 - 14.18 82.72 361.91 361.91 1600
Hz 1.38 0.84 - 0.24 1.38 6.03 6.03 26.67
Meshing
frequency

20.562 20.562 20.562 20.562 96.508 96.508 506.668 506.668

The vibration sensor is 8071LF-01-010 MEAS, whose parameter description is intro-
duced in Tab. 2. The data acquisition process is as follows: acceleration of vibration
signal collected by sensors is converted into electrical signal. Then the data are transmit-
ted to server by digital signals. Fig. 3 shows the positions of nine vibration sensors and
diagram of gearbox structure. Actual field installation is displayed in Fig. 4.
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Figure 3. The framework of analysis process

Finally, a small amount of vibration data is shown as Tab. 3, which is collected from the
horizontal direction of high-speed shaft of the Hansen.

Figure 4. The framework of analysis process

3.2. Noise Reduction. In order to improve the signal-to-noise ratio, denoising is neces-
sary. In this paper, singular value decomposition (SVD) is used to decompose the signal
into effective signal with large singular value and noise with small singular value. The
noise is eliminated by setting zero to the latter. When the noise is tiny, the singular value
displays obvious step distribution. Singular value decomposition order and the separa-
tion order are significant to the denoising results. Figure 5 shows the original state and
denoising effect of gearbox vibration signal.

3.3. BP Neural Network Layers of Neurons. For both the rotor and bearing fault
identification, 8 Shannon entropy and 6 time domain indicators are selected as input
vectors, so the input node of BP neural network should be 14. For the output layer,
three working conditions of the rotor and the four working conditions of the bearing
are identified respectively. Therefore, output nodes of the network are set to 3 and 4



480 W. Yang, Y. Chai, J. Zheng and J. Liu

Table 2. Vibration data

NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8 NO.9
0.0957 -0.006 -1.7048 -1.2262 4.4563 -1.0468 70.972 -14.326 -11.395
0.0239 0.0179 1.1066 -0.2094 -0.5683 1.3459 -49.8569 -10.3781 -5.2937
-0.1316 0.0179 3.4993 0.2094 -0.8075 2.3029 77.1929 -11.2156 -18.8122
-0.0718 0.0179 5.3536 0.6281 -0.9272 5.1741 -80.0043 13.4288 28.2034
-0.1794 0.0419 6.9686 -0.2094 -2.1235 6.7891 43.5762 -10.6772 -5.6526
-0.0957 0.1137 6.5499 -0.2094 -2.4226 -1.8842 -46.9259 -2.3029 33.5868
-0.1316 0.1974 3.7983 -1.3459 -0.6281 4.3965 36.8169 -14.326 40.047
-0.1196 0.2811 0.8075 -2.5422 -3.0207 -0.6281 -55.6591 -16.3598 10.7968
-0.1555 0.317 -1.1066 -2.9011 0.7477 -3.0805 -23.2386 -0.4486 24.1359
-0.1436 0.3051 -2.4226 -2.602 1.2262 -6.3106 -39.0899 7.3873 -3.4394

Figure 5. The framework of analysis process

respectively. The determination of hidden layer neurons is determined according to Eq.7,
Eq.8 and Eq.9:

m <
√
n+ l + α (7)

m = log2 n (8)

m = log2 nm < n− 1 (9)

In Eq.7, Eq.8 and Eq.9, m and n represent the node number of hidden layer and input
layer respectively, and l is used to represent the number of output layer nodes. Normally,
is a constant between 1 and 10. The eigenvector training samples are input into BP neural
network for training. Furthermore, the global error is 0.01 and the maximum number of
training set is 1000.
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Shannon entropy represents the information of eight frequency segments. In other
words, the low-frequency entropy represents the state of the main shaft and planetary
gears. Similarly, the characteristics of parallel gears are also reflected in the middle
section.

There are six indicators in time domain. First, effective value represents the whole
vibration energy. In addition, the margin indicator increases obviously with the increase
of vibration. In order to describe the impact, kurtosis and pulse index are calculated. On
the other hand, peak value indicates surface roughness of the bearing. In particular, the
waveform indicator is the root mean square value divided by the absolute average.

4. Results.

4.1. Gearbox Bearing Vibration Signal. The gearbox bearing data set contains all
aspects of bearing mechanical state information, including different bearing fault loca-
tions, fault levels, fault bearing positions and different workload. Therefore, the data
set can be used from multiple perspectives and different classifications. Experiments are
tested to verify effectiveness of the proposed method.

The three-layer decomposition of the wavelet divides the frequency of signal into 8 parts
according to the average from low to high. Fig. 6 shows the energy distribution of 8 signals
after different wavelet decomposition. After the wavelet packet decomposition, the normal
non-fault is presented in the figure. If the fault occurs, the frequency distribution is not
uniform. In these three kinds of wind turbine drive system, rolling element fault, inner and
outer ring fault are common fault types. The fault energy distribution has great similarity
and is basically concentrated in the low frequency range. The distribution evaluation rate
of low frequency 2, 3 and 4 frequency segments is the highest, and the rolling fault is the
lowest compared with the other two faults. The frequency segment energy distribution is
lower than the other two faults.

Figure 6. The framework of analysis process

In a healthy state, vibration frequency domain of the bearing reflects the mechanical
structure in wind turbine gearbox. For smooth running turbine, the information in each
segment is homogeneous. Otherwise, the entropy of high frequency comes from the higher
harmonic of vibration.
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Bearing failure accompanied by 1X or other bearing failure frequency sidebands. The
failure of the inner and outer ring precedes the rolling body and the cage. The retainer
fracture causes in the appearance of Rolling Element Defect Frequency (BSF) and Cage
Defect Frequency (FTF) of retainer fault frequency. When the rolling body fails, several
times of BSF will be generated. Furthermore, the inner and outer ring faults produce
their own fault characteristic frequencies.

In normal condition, the expectation is 4.514 and the variance is 0.0002705. Obviously,
Shannon entropy distribution of the bearing vibration signal is relatively uniform. Tab.
3 illustrates the variances and expectations of four entropy distributions.

Table 3. Vibration signal entropy analysis

Case Expectation Variance
Normal 4.514 0.0002705

Outer ring fault 2.819 0.0138
Inner ring fault 3.192 0.0069

Rolling element failure 3.510 0.0088

When fault occurs, a lot of fault characteristic information appears in the low frequency
band, which results in the decrease of higher-frequency proportion. It can be noticed that
the variance of the outer ring reaches 0.0138, and the proportion is highly attenuated in
region 6. Correspondingly, the Shannon entropy of the inner ring fault is dominant in
band 2 and band 3. However, the expectation caused by rolling body fault is 3.510.

4.2. Fault Identification Results. In order to verify the proposed method, fifty Hanse
gearboxes of wind turbines with different degrees of bearing wear are tested. The tests
are operated with MATLAB code on a PC with fourth-generation i7 CPU and 16GB of
RAM.

Figure 7. The framework of analysis process

The generators driven by wind turbines run at about 1600 rpm with 2 MW. To obtain
detailed condition of bearing wear, signals are sampled constantly. The accelerometer is
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(a) Rolling element wear (b) Inner ring failure

(c) Outer ring failure

Figure 8. Main name

stuck on the bearing seat, and the vibration signal is collected at a sampling frequency
of 16384hz. The collected gearbox vibration signals are stored on server by the on-line
condition monitoring systems. Particularly, the output shaft frequency is 26.67 Hz.

Fig. 7 shows the accuracies of fault detection for three parts, which are 97%, 92% and
99% respectively. In order to verify the correctness of the fault detection, the gearbox
bearing is disassembled as shown in Fig. 8. The results show that the method can well
identify the bearing faults of wind turbine.

5. Conclusions. The vibration signal generated by the wind turbine drive system during
operation contains important equipment status information. This paper selects vibration
signal of wind turbine drive system as the research object, and extracts the fault char-
acteristics to realize fault diagnosis of the wind turbine drive system. Based on the
characteristics of vibration signal, this paper uses wavelet packet decomposition method
to solve the frequency distribution of different faults, and then carries out feature extrac-
tion. Then the fault types are realized by BP neural network. The experimental results
prove that the method is more accurate than single-variable diagnosis. It provides a new
idea and method for the fault diagnosis of the unit drive system.
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