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Abstract. Green cognitive radio is designed for alleviating the spectrum scarcity prob-
lem by sensing and allocating the idle spectrum bands. However, the existing design of CR
systems needs to be optimized to increase the Spectrum Efficiency (SE) as well as Energy
Efficiency (EE), which may not be obtained concurrently while using minimum trans-
mit power. To implement this, this study proposes a joint design concerning spectrum
sensing time as well as power allocation optimization issues suited to hybridize spectrum
sharing based on SE-EE trade-off. It also considers the parameters like Quality of Ser-
vice (QoS) requirement, PU’s average interference power constraint, and SU’s average
transmit power constraint. To begin with, this problem has been formulated as a problem
related to fractional programming that can be addressed based on the Dinkelbach method
and Lagrangian duality theory. Subsequently, an iterative algorithm has been proposed
for deriving optimal sensing time and relevant power allocation strategy that enable SU
to achieve maximum EE and SE while ensuring QoS of PU. Finally, numerical simula-
tions are presented for verifying the proposed power allocation strategy’s performance in
practice.
Keywords: Green cognitive radio, sensing time, power allocation, spectrum efficiency,
energy efficiency

1. Introduction. The demand for high data rates and user scale has been boosted by
the rapid increase in wireless services. Owing to this, the limited radio spectrum has
become more and more crowded, and the energy consumption of the wireless system [1, 2]
is growing substantially. Despite this situation, the Federal Communications Commission
(FCC) has stated that many allocated spectrums experience low utilization in the day-
time [3]. According to other research works [4, 5], 2% to 10% global energy consumptions
and 2% of greenhouse gases originate from information and communication technology.
Hence, by using ’spectrum holes’, the inefficiency of radio spectrum and energy creates
possibilities for the novel communication system known as Cognitive Radio (CR) [6, 7].
In CR, the Secondary Users (SUs) can use the unused spectrum of the Primary User (PU)
without causing degradation to PU’s QoS. Hence, CR is considered as a prominent radio
technique to improve spectrum efficiency.

On the one hand, the issue of power allocation has received considerable critical at-
tention as it seems to be a high-efficient solution used for improving the performance of
the CR system, offering a fairly high rate of transmission to the SUs under power limits,
along with maintaining the PU’s QoS [8]. On the other hand, recent developments in the
field of green communication have led to an increased interest in improving the spectrum
and energy efficiency in green CR systems. Therefore, the primary challenge for the green
CR system is how to appropriately formulate the optimal power allocation strategy while
taking both SE and EE into consideration.

1.1. Literature Review.
SE maximization: SE has been used as a key performance indicator in the design and
analysis of the CR system. Several researchers have reported that the SE maximization
(throughput maximization) by optimizing the cooperative spectrum sensing as well as
transmission parameters [9-13]. Researchers have presented a power control scheme to
optimize both sensing time as well as fusion rule in Fusion Center (FC) and achieved
the optimization of SU’s throughput [9] . The novel CR system has been investigated to
improve the SUs’ throughput, where the data transmission time of SU is the whole sensing
frame [10]. CR’s transmit power control scheme is fully investigated under PR receiver’s
average interference power constraint [11]. A power allocation optimization problem has
been proposed for underlying spectrum sharing under the transmit power constraint of
SU [12]. This work was extended further [13], where the authors studied the issue of
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determining the optimal sensing time and power allocation scheme to maximize SU’s
throughput under PU’s average interference power constraint as well as SU’s transmit
power constraint. However, these studies primarily focus on maximizing or improving
SE, devoid of any general agreement about EE maximization.
EE maximization: Focusing solely on maximizing the SE will lead to the higher energy
consumption of the green CR system. EE, which is generally required to extend the life-
time networks, has been widely recognized as a key measure for designing the CR system.
A large and growing body of literature has investigated EE maximization schemes. The
optimization of sensing time to maximize EE has also been studied [12], while the fusion
rule has been optimized to design the maximal EE for cooperative spectrum sensing sys-
tems [15]. Power allocation schemes have been observed for maximizing EE with various
spectrum sharing mechanisms (i.e., overlay, underlay, and hybrid mechanism) [16-18]. A
resource allocation scheme to maximize EE for SUs with underlay access was addressed
previously [16], along with the investigation of EE maximization in CR system under SUs’
transmit power in the overlay spectrum access scenarios [17]. To augment SUs’ transmis-
sion chances, a hybrid spectrum mechanism had been developed [18] , which allows the
SUs to transmit optimal power according to the spectrum sensing result. Moreover, there
is research works [19] that provide ways to find the optimal power allocation scheme capa-
ble of maximizing EE for hybrid spectrum transmission subject to two power constraints
(the average transmit power and the interference power).
SE-EE trade-off: There are only few researchers have paid attention to the problem of
balancing SE and EE in the CR system. An optimal sensing time has been designed,
and the final decision threshold is determined based on the SE-EE trade-off under the
constraint of detection probability [20]. Also, research [21] is done to optimize both
sensing time and final decision threshold for energy harvesting of CR networks.

From what has been discussed above, different optimization parameters, including sens-
ing time, transmission time, fusion rules, sensing strategies and power allocation, are
considered for overlay, underlay and hybrid spectrum sharing mechanism based on SE
maximization and EE maximization . In addition, some works have been done to opti-
mize the sensing time, decision threshold and constraint of detection probability based on
SE-EE trade-off. However, the power allocation strategy considering the SE-EE trade-off
has not been sufficiently addressed in the green CR system. Therefore, we will address
the power allocation strategy based on SE-EE trade-off in the green CR system in this
paper.

1.2. Main Contributions and Organization. Motivated by the discussions in Section
1.1, SE-EE power allocation scheme for hybrid spectrum sharing is put forward during
this research. Specifically, our major concern is to optimize spectrum sensing time and
power allocation for maximizing SE and EE under the constraint on SU’s average transmit
power and interference power of PU. During the optimization process, target detection
probability has also been taken into consideration. The main contributions made by the
research can be summarized as below:

(i) Consider the SE and EE maximization problem which comes under SU’s average
transmit power constraint and PU’s average interference power constraint based on
the hybrid spectrum sharing paradigm. In addition, we explicitly give the definition
of SE and EE under the hybrid spectrum sharing in the formulations. The SE is
defined as the average data rate per unit bandwidth, while EE is defined as the
achievable CR transmitted data volume per consumed energy unit.

(ii) The joint SE and EE maximization problem is not a nonlinear concave fractional
problem under transmit and an interference power constraint, which is converted
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into an equivalent concave form. Lagrangian method, Dinkelbach theory, and sub-
gradient scheme are applied to search the optimal transmit power as well as sensing
time.

(iii) In this paper, the impact of imperfect sensing decisions, the SU’s transmit power
constrain, and the PU’s interference power constraint on SE and EE are discussed.

This work is structured as below. The system model and the definition of SE and EE
based on hybrid spectrum sharing are presented in Section II. In Section III, joint max-
imization of EE and SE is formulated under SUs’ transmit power and PU’s interference
power. Section IV analyzes the optimization problem. Subsequently, numerical results
are listed for discussion in Section VI. Eventually, Section VII concludes the entire study.

2. System Model. A network comprising the PU system and SU system (Fig. 1) has
been proposed, where two secondary transceivers access the spectrum band licensed to
relative primary transceivers with the hybrid spectrum sharing model. gpp, gss, gsp, gps
are the instantaneous channel power gains from Primary Transmitter (PT) to Primary
Receiver (PR), Secondary Transmitter (ST) to Secondary Receiver (SR), ST to PR, and
PT to SR, separately. Besides, it is assumed that these channels are flat fading and
channel power gains seem ergodic and stable at SU [9, 10, 13].

PT PR

ST SR

pp
g

ss
g

ps
g

sp
g

Figure 1. System model of CR network

Fig. 2 illustrates the frame structure of PU and SU system. Specifically, each cognitive
frame consists of two phases, i.e., the spectrum sensing phase with the duration τ and
the data transmission phase with the duration T − τ . In hybrid spectrum sharing model,
SUs can adjust the transmission power according to the corresponding sensing outcomes.
When the target frequency band of PU is recognized as idle by spectrum sensing, SU can
have a greater power P (0) in the data transmission phase. Similarly, when the PU channel
has been recognized to be busy, SU transmits at a relatively lower power P (1) in the data
transmission phase.

Primary frame 1 Primary frame 2 Primary frame n

Cognitive frame 1 Cognitive frame 2 Cognitive frame n

Sensing Transmission

T T T

T T T

T

Primary system

Cognitive system

Figure 2. Frame structure of CR network
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2.1. Spectrum-Sensing Model. In the spectrum sensing phase, every SU performs the
spectrum sensing independently. According to PU’s state, the received signal at SU is
indicated by:

r (n) = w (n) , (underH0)
r (n) = s (n) + w (n) , (underH1) ,

(1)

where r (n) and w (n) represent the receive signal at the SU and the additive white
Gaussian noise at the SR. It is assumed that noise w (n) belongs to an Independent and
Identically Distributed (i.i.d) circularly symmetric complex Gaussian, which has a zero
mean and variance σ2

n. This belongs to a known prerequisite. Meantime, s (n) represents
the PU signal with all the samples following the i.i.d random process with zero mean
and variance σ2

s . Hypothesis H0 and H1 highlight absent PU and active PU, respectively.
According to the energy detection scheme, relevant test statistics of energy detector should
be contrasted with the detection threshold ε for deciding if the PU is absent or active. γ
denotes the average Signal to Noise Ratio (SNR) of PU’s received signal measured by the
secondary detector under H1. Under the Additive White Gaussian Noise (AWGN) fading
channel hypothesis, SU’s detection probabilities and false alarm can be calculated as [9]

Pd = Q

((
ε

σ2
n

− γ − 1

)√
τfs

2γ + 1

)
(2)

Pfa =
(√

2γ + 1Q−1 (Pd) +
√
τfsγ

)
, (3)

where τ indicates the sensing time, fs suggests the sampling frequency and Q (·) refers to
the complementary distribution function of standard Gaussian.

2.2. SE of CR System. Under the hybrid spectrum sharing model, SU adapts its trans-
mit power in accordance with spectrum sensing decisions. This means that if SU detects
the status of the frequency band to be active, it transmits data at a lower power P (1).
Similarly, if SU is recognized as idle, it transmits data at a higher power P (0). Generally,
P (0) > P (1). Besides, Pp has been denoted as the received variance from the PU. Accord-
ing to PU’s real status (active/idle), which is affected by the imperfect spectrum sensing,
four scenarios of transmission rate exist. Final sensing results from SU concerning PU’s
presence or absence are as follows:

r00 = log2

(
1 +

gssP
(0)

N0

)
, (4)

r01 = log2

(
1 +

gssP
(1)

N0

)
, (5)

r10 = log2

(
1 +

gssP
(0)

gpsPp +N0

)
, (6)

r11 = log2

(
1 +

gssP
(1)

gpsPp +N0

)
, (7)

where the first index number illustrates PU’s real status (’0’ means the idle status and
’1’ suggests the active status) and the second index number denotes SU’s decisions (’0’
means absence and ’1’ means presence). Table 1 enlists four kinds of possibilities of the
transmission model under the real-time environment depending on PU’s real status and
SU’s decisions.
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Table 1. Possible transmit power and rate for SE

PU’s actual sta-
tus

Sensing results Related proba-
bility

Transmit power Transmit
rate

1 1 P (H1)Pd P (1) r11
1 0 P (H1) (1− Pd) P (0) r10
0 1 P (H0)Pf P (1) r01
0 0 P (H0) (1− Pf ) P (0) r00

This infers that when the PU’s channel is occupied but the sensing result made by
the SU is vacant, which is called the undetected case, the SU continually transmits data
at a higher power P (0), for it has no idea about the presence of PU. Moreover, if PU’s
spectrum band is vacant and corresponding sensing results show occupied, which can be
called a false alarm case, the SU continually transmits data at a lower power P (1) despite
the availability of the entire channel to the SU. Therefore, the average transmit bits of
SU are indicated by:

Ravg = (T − τ)E [(a0r00 + a1r01 + b0r10 + b1r11)] , (8)

where a0 = P (H0) (1− Pf ), b0 = P (H1) (1− Pd), a1 = P (H0)Pf , b1 = P (H1)Pd.
P (H0) and P (H1) denote the idle and busy probability for the PU channel, respectively.

In wireless communication, SE (measured in bits/s/Hz) considered the average data rate
per unit bandwidth, quantifies the utilization rate of the available spectrum. Therefore,
the average SE of the CR system can be represented as:

ηSE =
T − τ
T

E {[a0r00 + a1r01 + b0r10 + b1r11]} . (9)

2.3. EE of CR System. In the hybrid spectrum sharing mechanism, SU’s energy con-
sumption comprises three sections, i.e., circuit consumption power Pc, spectrum sensing
power Ps and data transmit power P (0) and P (1). In the imperfect spectrum sensing case,
there are four kinds of scenarios depending on PU’s real status as well as SU’s decisions,
which can be inferred from Table 2.

Table 2. Possible transmit energy for EE

PU’s ac-
tual status

Sensing re-
sults

Related proba-
bility

Energy consumption

1 1 P (H1)Pd τ (Ps + Pc) + (T − τ)
(
P (1) + Pc

)
1 0 P (H1) (1− Pd) τ (Ps + Pc) + (T − τ)

(
P (0) + Pc

)
0 1 P (H0)Pf τ (Ps + Pc) + (T − τ)

(
P (1) + Pc

)
0 0 P (H0) (1− Pf ) τ (Ps + Pc) + (T − τ)

(
P (0) + Pc

)
It can be concluded from Table 2 that if the PU channel is recognized to be absent, the

SU will transmit data at a higher transmission power P (0). This can be computed from
the equation of energy consumption- τ (Ps + Pc) + (T − τ)

(
P (0) + Pc

)
. On the contrary,

when the channel of PU is considered present, the SU will transmit data at a lower
transmission power P (1), and its energy consumption can be calculated as τ (Ps + Pc) +
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(T − τ)
(
P (1) + Pc

)
. Therefore, the average energy consumption is given by:

Eavg = E
{

(a1 + b1)×
[
τ (Ps + Pc) + (T − τ)

(
P (0) + Pc

)]
+ (a0 + b0)×

[
τ (Ps + Pc) + (T − τ)

(
P (1) + Pc

)]}
= E

{
τ (Ps + Pc) + (a0 + b0) (T − τ)

(
P (0) + Pc

)
+ (a1 + b1) (T − τ)

(
P (1) + Pc

)}
.

(10)

In wireless communication, the EE (measured in bits/Joule/Hz), which is the success-
fully transmitted information bits per unit energy from the transmitter to the receiver,
can quantify energy utilization efficiency. EE of the CR system can be expressed as:

ηEE =
Ravg

Eavg
=
ηSE · T
Eavg

. (11)

3. Problem Formulation. In the hybrid spectrum sharing mechanism, interference on
the PU channel is divided into two cases, namely, missed detection and correct detection.
In the case that PU is wrongly recognized as absent (missed detection), the SU transmits
with P (0). On the contrary, when the PU is recognized as present (correct detection),
the lower transmit power P (1) will be adopted. Thus, PU’s average interference power
constraint is given as below:

C1 :
T − τ
T

E
[
b0gspP

(0) + b1gspP
(1)
]
≤ Γ, (12)

where Γ suggests the maximum average interference power that is tolerable to PU of the
frequency channel.

In the power allocation scheme, for controlling the SU’s transmission power, it is manda-
tory to confine the SU’s transmit power to a given threshold. SU’s average transmission
power is indicated as below:

C2 :
T − τ
T

E
[
a0P

(0) + a1P
(1) + b0P

(0) + b1P
(1)
]
≤ Pav, (13)

where Pav indicates SU’s maximum average transmit power.
Eventually, since the priority of the CR system is protecting the PU’s QoS, a high

detection probability will be necessary. In this research, target detection probability is
set as P th

d . Thus, the detection constrain can be formatted as follows:

C3 : Pd ≥ P th
d , (14)

where P th
d is the target detection probability of PU.

This research aims at designing a power allocation strategy that can maximize SE-
EE under the average transmission and interference power constraints. Therefore, the
optimization issue for SE-EE can be given by the following formula:

GP maximize
{τ,P (0) ,P (1)}

ρηSE + (1− ρ) ηEE

= ρηSE + (1− ρ) TηSE

Eavg

subject to C1, C2 , C3, P
(0) ≥ 0, P (1) ≥ 0,

(15)

where ρ represents the balancing factor, with 0 ≤ ρ ≤ 1. In the case of ρ = 1, the problem
mentioned above is about SE maximization. In the case of ρ = 0, it can be considered as
the EE problem.
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4. Solutions of the Formulation Problem. When 0 < ρ < 1, the optimization prob-
lem (15) belongs to a non-convex problem concerning P (0)andP (1), but in no relation to
the sensing time τ . Whereas, given that the sensing time falls into the range [0, T ], a
one-dimension exhaustive search method is adopted for determining the optimal sensing
time, which is indicated by:

τopt = arg max
τ

ρηSE + (1− ρ)
TηSE
Eavg

. (16)

Then the optimized power allocation P
(0)
opt and P

(1)
opt can be obtained by:[

P
(0)
opt , P

(1)
opt

]
=
[
P (0), P (1)

]
τ=τopt

. (17)

Table 3. Design of the optimal sensing time

Design of the optimal sensing time
For τ = 0 : T ;
Calculate P (0) and P (1) using the method in table. 4;
End
The optimal sensing time τopt = arg max

τ
ρηSE + (1− ρ) TηSE

Eavg
.

Table 3 highlights the design of the optimal sensing time where the one-dimension
exhaustive search method is applied. Consequently, a method will be explored to seek the
optimal power allocation strategy to maximize the SE-EE. In conclusion, the optimization
problem GP may be transformed to the corresponding convex optimization problem,
concerning the transmit power P (0), P (1) under the given sensing time τ . Hence, for the
given sensing time, the design of the optimal sensing time τ and the optimization problem
GP are transformed into the convex problem GP1 as below:

GP1 (Given τ)
maximize
{P (0) ,P (1)}

ηtotal=ρηSE + (1− ρ) ηEE

= ρηSE + (1− ρ) TηSE

Eavg

subject to C1, C2C3, P
(0) ≥ 0, P (1) ≥ 0.

(18)

Problem GP1 belongs to a nonlinear fractional programming problem that seeks solu-
tions from P (0), P (1). Following the fractional program-related theory and Dinkelbach’s
algorithm [22], GP1 can be transformed into the linear parametric problem GP2 through
the introduction of another parameter. Problem GP2 can be expressed as:

GP2 (Given sensing time τ)
maximize
{P (0) ,P (0), ξ}

f (ξ) = ρηSE + (1− ρ)TηSE − ξEavg

= [T + (1− T ) ρ] ηSE − ξEavg
subject to C1, C2C3, P

(0) ≥ 0, P (1) ≥ 0

(19)

where ξ indicates a non-negative parameter which may be explained as the pricing factor
representing the energy consumption of SU. In terms of the optimal values for GP1 and
GP2, results are obtained as follows:

Theorem 4.1. The optimal SE-EE value for GP1 can be obtained as long as there is
one optimal parameter ξopt in GP2 when f (ξopt) = 0 holds. Besides, the optimal SE-EE
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should equal to ξopt

ξopt =
[T+(1−T )ρ]ηSE

(
P

(0)
opt ,P

(1)
opt

)
Eavg

(
P

(0)
opt ,P

(1)
opt

) = maximize

{
[T+(1−T )ρ]ηSE(P (0),P (1))

Eavg(P (0),P (1))

}
(20)

and

f (ξopt) = f
(
ξopt, P

(0)
opt , P

(1)
opt

)
= maximize {[T + (1− T ) ρ] ηSE

(
P (0), P (1)

)
−ξoptEavg

(
P (0), P (1)

)}
= 0

(21)

For a given ξ, problem GP2 with respective transmit power P (0), P (1) are considered
as a convex problem. Therefore, the Lagrange duality approach can be used to solve
the problem of GP2 [20] with the duality gap is zero. Concerning the transmit powers
P (0), P (1), the Lagrangian can be expressed as:

L
(
P (0), P (1), λ, µ

)
= [T + (1− T ) ρ] ηSE − ξEavg
−λ
{
T−τ
T
E
[
a0P

(0) + a1P
(1) + b0P

(0) + b1P
(1)
]
− Pav

}
− µ

{
T−τ
T
E
[
b0P

(0) + b1P
(1)
]
− Γ

}
,

(22)

where λ and µ denote non-negative Lagrangian multipliers related to SUs’ transmit power
constraint and PU’s interference constraint. The Lagrange dual optimization problem
GP2 is expressed as below:

g (λ, µ) = max L
(
P (0), P (1), λ, µ

)
(23)

Thus, the Lagrange dual optimization problem is now given by

GP3 minimize g (λ, µ)
subject to λ > 0, µ > 0

(24)

For the given P (0), P (1), the supremum of the Lagrangian associated with transmit
powers P (0) and P (1) need to be found for calculating the dual function g (λ, µ). The
joint optimization problem GP3 in relation to these two transmit powers is composed of
two optimization subproblems, with one about P (0) and the other about P (1). This can
be represented as below:

subproblem 1 (SP1) : maximize
P (0)≥0

Lop1 = [T+(1−T )ρ](T−τ)
T

E [a0r00 + b0r10]− ξE
[
(a0 + b0) (T − τ)P (0)

]
− λT−τ

T
E
[
a0P

(0) + b0P
(0)
]
− µT−τ

T
E
[
b0P

(0)
] (25)

subproblem 2 (SP2) : maximize
P (1)≥0

Lop2 = [T+(1−T )ρ](T−τ)
T

E [a1r01 + b1r11]− ξE
[
(a1 + b1) (T − τ)P (1)

]
− λT−τ

T
E
[
a1P

(1) + b1P
(1)
]
− µT−τ

T
E
[
b1P

(1)
] (26)

The aforementioned subproblems (SP1 and SP2) belong to the convex optimization
problems. Karush-KuhnTucker (KKT) conditions can be employed for seeking the opti-
mal solution. The first-order partial derivative for variables Lop1 and Lop2 concerning
variables P (0) and P (1) can be given by:

∂Lop1
∂P (0) = [T+(1−T )ρ](T−τ)

T
a0

1
N0+gssP (0)

1
ln 2

+ [T+(1−T )ρ](T−τ)
T

b0
1

N0+gpsPp+gssP (0)
1

ln 2

− ξ (a0 + b0) (T − τ)− λT−τ
T

(a0 + b0)− µT−τT b0
(27)

∂Lop2
∂P (1) = [T+(1−T )ρ](T−τ)

T
a1

1
N0+gssP (1)

1
ln 2

+ [T+(1−T )ρ](T−τ)
T

b1
1

N0+gpsPp+gssP (1)
1

ln 2

− ξ (a1 + b1) (T − τ)− λT−τ
T

(a1 + b1)− µT−τT b1
(28)
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Let ∂Lop1
∂P (0) = 0 and ∂Lop2

∂P (1) = 0, quadratic equations can be gained as below:(
P (0)

)2 − A0P
(0) +B0 = 0, (29)(

P (1)
)2 − A1P

(1) +B1 = 0, (30)

where

A0 =
loge2 [T + (1− T ) ρ] (a0 + b0)

(λ+ ξT ) (a0 + b0) + µb0
− 2N0 + gpsPp

gss
, (31)

B0 = N0(N0+gpsPp)

g2ss
− loge2[T+(1−T )ρ][a0(N0+gpsPp)+b0N0]

gss[(λ+ξT )(a0+b0)+µb0]
(32)

A1 =
loge2 [T + (1− T ) ρ] (a1 + b1)

(λ+ ξT ) (a1 + b1) + µb1
− 2N0 + gpsPp

gss
, (33)

B1 = N0(N0+gpsPp)

g2ss
− loge2[T+(1−T )ρ][a1(N0+gpsPp)+b1N0]

gss[(λ+ξT )(a1+b1)+µb1]
. (34)

In case that there are multiple solutions for quadratic equations (29) and (30), real
solutions for the equations can be considered as optimal allocations. Further, the presence
of roots in equations (29) and (30) need to be proved. The function for the quadratic
equations (29) and (30) that correspond to the discriminant root can be given by:

∆0 = A2
0 − 4B0

=
(

loge2[T+(1−T )ρ](a0+b0)
[(λ+ξT )(a0+b0)+µb0]

− gpsPp

g2ss

)2
+ loge2[T+(1−T )ρ]a0gpsPp

[(λ+ξT )(a0+b0)+µb0]g2ss

(35)

∆1 = A2
1 − 4B1

=
(

loge2[T+(1−T )ρ](a1+b1)
[(λ+ξT )(a1+b1)+µb1]

− gpsPp

g2ss

)2
+ loge2[T+(1−T )ρ]a1gpsPp

[(λ+ξT )(a1+b1)+µb1]g2ss

(36)

It can be analyzed from (35) and (36) ∆0 > 0, ∆1 > 0, so equations (29) and (30)
correspond to two unequal real roots. Moreover, the solution can be achieved through
the standard quadratic-root formula. With the predetermined sensing time, the optimal
power allocation can be indicated by:

P
(0)
opt =

[
A0 +

√
∆0

2

]+
, P

(1)
opt =

[
A1 +

√
∆1

2

]+
(37)

where [x]+ = max (0, x). For determining the optimal power allocation strategy P
(0)
opt , P

(1)
opt ,

optimal values of λ and µ, which can maximize the dual function g (λ, µ), should be
correctly identified. Here, the gradient projection approach is applied for finding the
optimal solution, and it demands to calculate the sub-gradients of λ and µ. These sub-
gradients of λ and µ can be expressed as ∆λ = Pav −

[
(a0 + b0)P

(0) + (a1 + b1)P
(1)
]

and

∆µ = Γ −
(
b0P

(0) + b1P
(1)
)
, respectively. λ and µ can be obtained from the following

equations.

λ(k+1) =
[
λk − s∆λ

]+
, (38)

µ(k+1) =
[
µk − s∆µ

]+
, (39)

where s represents the step size, k denotes the number of iterations. As inferred from some
previous studies, when the step size s is small enough, dual variables will be converted to

the optimal value λopt, µopt in a small area [22]. As a consequence, P
(0)
opt and P

(1)
opt can be

achieved by substituting (31)-(36) into (37).
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For solving the problem GP, the value ξ should be found. The Dinkelbach algorithm
is suitable for solving the fractional programs, which can be converted into the optimal
value at a superlinear rate [22]. Dinkelbach method based on iterative power allocation
algorithm in SE-EE maximization has been listed in Table 4.

Table 4. Proposed iterative power allocation algorithm.

Algorithm 1 power allocation that maximizes SE-EE of CR system
1. Given: the maximum iteration number Lmax and the error tolerance
δ1, δ2, δ3;
2. Initialize:Calculate ξ(0) = ξ0, dual variables λ(0) = λ0 and µ(0) = µ0, the
iteration index n = 0 and k = 0;
3. While (

∣∣f (ξ(n))∣∣ ≤ δ3 and n ≤ Lmax) do
4. Calculate P (0) and P (1) using (31)-(37);
5. Update λ and µ via the subgradient method as follows:
6. Repeat
7. Calculate subgradients ∆λ and ∆µ using (38) and (39) and update
λ(k+1), µ(k+1) as follows:

8. λ(k+1) =
[
λk − s∆λ

]+
,

9. µ(k+1) =
[
µk − s∆µ

]+
,

10. k = k + 1,
11. where k is iteration number, s is the step size;
12. until (

(∣∣λ(k) (∆λ)
∣∣ ≤ δ1 and

∣∣µ(k) (∆µ)
∣∣ ≤ δ2

)
),

13. Set n = n+ 1 and ξ(n) =
[T+(1−T )ρ]ηSE

(
P

(0)
k ,P

(1)
k

)
Eavg

(
P

(0)
k ,P

(1)
k

) ;

14. End While

15. Return
[
P

(0)
opt , P

(1)
opt 1

]
=
[
P

(0)
k , P

(1)
k

]
τ=τopt

and ξopt = ξ(n), respectively.

In this algorithm, there are two nested loops. For the outer loop, the Dinkelbach
method can iteratively solve SE-EE problem by addressing an array of parameterized
concave problems. It is shown that the Dinkelbach method possesses a superlinear con-
vergence rate, and the sequence can be converted into an optimal solution through limited
iterations. For the inner loop, Lagrange multipliers are updated with the sub-gradient
approach, including sub-gradient calculations and other easy projection operations. This
sub-gradient approach has been extensively adopted for seeking Lagrange multipliers ow-
ing to its simplicity, convenient implementation, direction computing speed, and global
convergence property. Therefore, the presented algorithm has impressive computation
efficiency.

5. Simulation Results. Simulations have been illustrated in this section for evaluating
the performance of presented iterative power allocation strategies. Here, the measured SE
and EE values need to be normalized relative to the maximum SE and EE values. These
are identified as the normalized SE ηnormSE = ηSE

max(ηSE)
and the normalized EE ηnormEE =

ηEE

max(ηEE)
. The results can be averaged with 1000 Monte Carlo simulations. Relevant

parameter settings are enlisted in Table 5.
Fig. 3 illustrates the effects of the sensing time and P (H0) on the ηnormSE (when ρ = 1)

and ηnormEE (when ρ = 0). The threshold corresponding to average interference power
tolerated to PU has been set as Γ = −10 dB and the total transmit power of SU is set as
Pav = 15 dB. For any P (H0), there is an optimal value τ optSE that maximizes ηnormSE and
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Table 5. List of simulation parameters.

Parameter name Value
Sensing time T 100 ms
Sampling frequency fs 6MHz
Probability that PU is idle P (H0) {0.6 , 0.7 , 0.8 , 0.9}
Detection probability Pd 0.9
Maximum average transmit power Pav {5 ∼ 20} dB
Maximum average interference power Γ {−20 ∼ −5} dB
Sensing power Ps 40 mW
Transmit power Pp 180 mW
Circuit power Pc 80 mW
Step size for updating λ and µ 0.1
Error tolerance δ1, δ2, δ3 10−5
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Figure 3. The normalized SE and EE versus sensing time for different
values of P (H0).

one optimal value τ optEE that maximizes ηnormEE . These maximum values of τ optEE and ηnormEE

cannot be achieved simultaneously. The maximum ηnormSE can be obtained when τ = 8 ms,
whereas the maximum ηnormEE can be obtained when τ = 16 ms. It is evident from Fig.
3 that the normalized SE and EE increase as P (H0) increases. The phenomenon should
be considered rational, for a higher P (H0) corresponds to a higher probability when
PU’s spectrum band is available, and more chances will be provided for SU to have data
transmission at a higher transmit power.

Fig. 4 shows the variations in ηnormSE and ηnormEE with ρ, when the optimal sensing time
τ and power allocation P (0), P (1) are determined to maximize ρηSE + (1− ρ) ηEE. It is
observed that the curves of ηnormSE and ηnormEE are not smooth because different pairs of τ
and P (0), P (1) are chosen for different values of ρ. Moreover, at ρ = 0.2, ηnormSE and ηnormEE

values are about 0.72 and 0.73, respectively, while at ρ = 0.4, ηnormSE and ηnormEE values are
about 0.93 and 0.37, respectively. As a result, the exact value of ρ can be determined
only based on the requirements proposed by the CR system.

Fig. 5 reveals variations in ηnormSE and ηnormEE versus the maximum average transmit power
Pav with different P (H0) values with identical maximum average interference power Γ
and ρ for hybrid and underlay spectrum sharing. It can be concluded that the normalized
SE and EE increase as P (H0) value. This outcome is rational because a higher P (H0)
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Figure 4. The normalized SE and EE versus ρ when P (0), P (1) and τ are
jointly optimized to maximize ρηSE + (1− ρ) ηEE.
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Figure 5. The normalized SE and EE versus the maximal average trans-
mit power Pav for different values of P (H0).

increases the probability of the availability of spectrum band of PU, and more chances are
provided for SUs’ transmission of data qat a higher transmit power. It is also shown that
the values of ηnormSE and ηnormEE increase with the increase of average transmit power.This
phenomenon should be ascribed to the fact that a higher Pav allows the SU to allocate
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transmit power more flexibly, and thus, a higher EE and SE can be achieved. This shows
that SE and EE for the hybrid spectrum sharing are higher than those for the underlay
spectrum sharing, and this may be ascribed to the point that SU can adapt transmit
power according to the sensing result.
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Figure 6. The normalized SE and EE versus the maximal average trans-
mit power Pav for different values of ρ.

Fig. 6 highlights the normalized SE and EE versus the maximum total transmit power
Pav with different values of ρ under identical maximum average interference power Γ. The
maximum average interference power of PU has been determined as Γ = −10 dB. And
the values of ρ are set as ρ = 0.1, ρ = 0.3 and ρ = 0.5. As shown in Fig. 6, both ηnormSE

and ηnormEE values increase as maximum average transmit power increase. Moreover, under
the same condition of average transmit power of SU, the ηnormSE decreases with the increase
of ρ, whereas the ηnormEE increase with the increase of ρ. Eventually, it can be concluded
form 6 that the gap of ηnormSE between ρ = 0.1 and ρ = 0.3 is smaller than that between
ρ = 0.3 and ρ = 0.5 and the gap of ηnormEE between ρ = 0.1 and ρ = 0.3 is almost the same
as that between ρ = 0.3 and ρ = 0.5. This thing has also been highlighted in Fig. 4.

Fig. 7 shows the normalized SE and EE versus the maximum total transmit power
Pav for different values of Γ under the same P (H0), respectively. P (H0) value is set
as 0.8 and the balance factor is set as ρ = 0.2. A similar results that both ηnormSE and
ηnormEE values increase with the increase in average transmit power constraint as well as
the interference power constraint can be obtained from Fig. 7. This similar phenomenon
can be similarly explained by the fact that the transmit power of SU can increase due
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Figure 7. The normalized SE and EE versus the maximal average trans-
mit power Pav for different values of Γ.

to the increasingly loose constraints. When Γ becomes sufficiently large, the transmit
power constraint is the main factor affecting the ηnormSE and ηnormEE . For example, when
Γ = −5 dB, the ηnormSE and ηnormEE of the SU depend on the transmit power constraint
since the transmit power constraint is the dominant constraint. On the contrary, when
Γ = −20 dB, the interference power constraint is the main constraint.

6. Conclusion. The joint optimal sensing time and power allocation policies based on
the hybrid spectrum sharing, which can maximize the SE and EE for the CR system,
have been addressed in this paper. Meanwhile, SU’s average transmit power constraint,
PU’s average interference power constraint, and the protection of PU constraint have
been considered in the SE-EE optimization problem. The outcome of simulations has
proved the performance of the presented iterative power allocation scheme. In the future,
the power allocation scheme capable of maximizing SE and EE in the energy harvesting
cooperative CR system can be extended.
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