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Abstract. The localization of wireless sensor network (WSN) is an increasingly promi-
nent problem. The goal of this problem is to use the anchor nodes in WSN to esti-
mate the geographical location of the unknown nodes. This paper proposes a novel al-
gorithm, named dynamic parallel Harris Hawks optimization (DPHHO). It contains the
dynamic control strategy of the escaping energy and the parallel communication mecha-
nism. DPHHO algorithm significantly improves the global search ability of the original
Harris Hawks optimization (HHO) algorithm. Also, a novel localization algorithm based
on hop distance correction and DPHHO is proposed. The proposed DPHHO algorithm
was tested on the 23 classical test functions and the DPHHO-DV-Hop algorithm is ap-
plied to the localization of WSN. The experimental results show that, compared with
HHO and other optimization algorithms, the proposed DPHHO algorithm is more effec-
tive and efficient. Compared with DV-Hop and other localization algorithms, the proposed
DPHHO-DV-Hop is an effective algorithm for the localization of WSN.
Keywords: WSN, DV-Hop, parallel, Harris Hawkes optimization

1. Introduction. Wireless Sensor Network (WSN) is a self-organizing network formed
by multiple nodes with data collection, processing, transmission capabilities [1−4]. It
involves several highly interdisciplinary. WSN can be widely used in many harsh environ-
ments. In practical applications, sensor nodes transmit the collected physical information
to the control center [5−7]. For the most part, the data obtained is meaningful only
when combined with location information [8]. Therefore, localization of WSN nodes has
attracted more and more attention. Approaches for the localization of WSN nodes can
be divided into: range-based algorithms and range-free algorithms. The angle or dis-
tance information between nodes should be necessary in the range-based approaches [9].
Angle-of-Arrival (AOA) [10], Received Signal Strength Indicator (RSSI) [11,12], Time
Difference of Arrival (TDOA) [13], and Time of Arrival (TOA) [14] are several popular
range-based location approaches. The range-free location technology has relatively low
requirements for node hardware. Therefore, the range-free location technology is more
feasible for the energy-limited WSN. The classical range-free location methods include
distance vector hop (DV-Hop) [15,16], Approximate Point in Triangle Test (APIT) [17],
multidimensional scaling-map (MDS-MAP) [18]. Among them, the DV-Hop algorithm is
simple with low requirement of anchor node density and low communication. DV-Hop has
become one of the most widely used localization algorithms [19]. The main process of the
DV-Hop is composed of three steps roughly. In the first and second steps, the distances
between the anchor node and each unknown node are calculated using the connectivity
relationship between nodes. The third step is using the least square method to estimate
the position of the unknown nodes. At present, most researchers have two main ways of
improving this algorithm. One way is to improve the estimation of hop-count and aver-
age hop distance in the first and second steps. Another way is to invest more effective
location algorithms in the third step. Namin et al. [20] selected particle swarm intelli-
gence algorithm to replace the least square method. This method has the same variation
characteristics as traditional DV-Hop. It can build up the location accuracy. Rajakumar
et al. proposed the grey wolf optimization algorithm to solve the problem of multimodal
localization [21]. This algorithm performs well in unknown node location recognition and
positioning accuracy. The Parallel Whale Optimization Algorithm (PWOA) was proposed
by Chai et al. [22] It includes two strategies for information exchange between popula-
tions. The strategy of information exchange between populations significantly enhances
the population diversity and global search capability of the Proto-Whale Optimization
Algorithm (WOA) [23]. The PWOA algorithm is used to optimize the location of the
wireless sensor network. This work proposed a novel localization algorithm based on the
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analysis of DV-Hop. The hop-count threshold is introduced to determine the number of
anchor nodes participating in the calculation of average hop distance in the second steps
of the DV-Hop, and the average hop distance is corrected by weight. Finally, the dy-
namic parallel Harris Hawks optimization (DPHHO) algorithm is introduced to optimize
the coordinates of the nodes to be measured.

The structure of this paper is as follows. In the second section, the Harris Hawks op-
timization (HHO) algorithm and the DV-Hop method for WSN location are introduced.
The third section describes in detail the communication strategy of DPHHO and the pro-
posed the DPHHO-DV-Hop algorithm. In Section 4, some experiments are implemented
to evaluate the performance of DPHHO and the DPHHO-DV-Hop method. A conclusion
is given in Section 5.

2. Related work.

2.1. Harris hawks optimization (HHO). Algorithms of Swarm Intelligence have been
shown to be useful for optimization problem [24−26]. Heidari et al. proposes the HHO
algorithm based on the prey behavior of Harris hawks [27]. The main structure of HHO
algorithm is composed of the following three parts.

2.1.1. Exploration phase. During the hunting process, Harris hawks perches in a random
place and uses two strategies to find prey.

X(t+ 1) =

{
Xrand(t)− r1 |Xrand(t)− 2r2X(t)| q ≥ 0.5

(Xrabbit(t)−Xm(t))− r3(LB + r4(UB − LB)) q < 0.5
(1)

where q ∈ [0, 1] as a random number that converts the two strategies, t is the number of
iterations, X (t) and X (t+ 1) denote where individual will appear in the current iteration
and the next iteration respectively, Xrand(t) represents the position of individual randomly
selected from the current population, Xrabbit(t) denotes the prey location, that is, the
individual location with the optimal fitness, r1, r2, r3 and r4 are updated in each iteration,
which are random numbers belong to [0,1], LB and UB are the range of the hawk’s initial
random position, Xm is the current population’s average position.

Xm (t) = 1
N

∑N
i=1Xi (t) (2)

where N is the size of the population and Xi (t) represents where the i-th hawk appear
in the t-th iteration.

2.1.2. Transition factor. The transition factor E simulates the prey’s escaping energy.
The change of E control the transition of the HHO algorithm in the exploration to the
exploitation phase. During the escape, the prey’s energy is greatly reduced. The prey’s
energy is positioned as:

E = 2E0

(
1− t

T

)
(3)

where E0 represents the initial state of E, and T denotes the maximum number of itera-
tions.

2.1.3. Exploitation phase. Defines r ∈ [0, 1] as a random number, which is used to select
different exploitation strategies. Considering r ≥ 0.5 and |E| ≥ 0.5, adopt soft besiege
strategy to update individual location:

X (t+ 1) = 4X (t)− E |JXrabbit (t)−X (t)| (4)

4X (t) = Xrabbit (t)−X (t) (5)
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where 4X (t) represents distance between the current position of hawk and the rabbit in
the t-th iteration, J = 2 (1− r5) denotes the random moving step of the prey, r5 ∈ [0, 1]
is a random number. Considering r ≥ 0.5 and |E| < 0.5 , adopt hard besiege strategy to
update individual location:

X (t+ 1) = Xrabbit (t)− E |4X (t)| (6)

Considering r < 0.5 and |E| ≥ 0.5, adopt soft besiege with progressive rapid dives strategy
to update individual location:

X (t+ 1) =

{
Y if fit (Y ) < fit (Xt)

Z if fit (Z) < fit (Xt)
(7)

Y = Xrabbit (t)− E |JXrabbit(t)−X (t)| (8)

Z = Y + S × LF (D) (9)

where D denotes the dimension of solving the problem, fit is the fitness function, LF
denotes the Levy distribution function, S represents a random vector by size 1 × D.
Considering r < 0.5 and |E| < 0.5, adopt hard besiege with progressive rapid dives
strategy to update individual location:

X (t+ 1) =

{
Y if fit (Y ) < fit (Xt)

Z if fit (Z) < fit (Xt)
(10)

Y = Xrabbit (t)− E |JXrabbit(t)−Xm (t)| (11)

Z = Y + S × LF (D) (12)

2.2. DV-Hop algorithm. Niculescu et al. proposes the DV-Hop algorithm [28]. The
main localization steps are as follows.

Through flooding technology, the anchor nodes in the monitoring area broadcast a
packet to the network. The structure of the packet is {id, xi, yi, hopi}, including its iden-
tifier id, location coordinate (xi, yi), and a zero initialized hop-count value hopi. For all
the received packets that each node creates its own hop-count table. The table record the
ids, localization coordinates, and hop-counts of all anchor nodes. id is used to determine
if the packet has been received in the table before, and if not, the anchor node will be
recorded in the node’s table. If the packet has been received and the value of record in
the table is greater than the value of hop-count in the packet, the table is updated. After
that, the value of minimum hop-count is retained, and the hop value will be increased by
1 to form a new data packet. The new packet forwarded to the network again. Otherwise,
then the packet is discarded. All nodes in the entire network will obtain the corresponding
the value of minimum hop-count from each anchor node by this means.

According to the messages of hop-count recorded, calculate the average hop distance
of itself by using Eq. (13)

Hopsizei =

∑n−1
j 6=i
√

(xi−xj)2+(yi−yj)2∑n=1
j 6=i hij

(13)

where n represents the number of anchor nodes, the coordinates of anchor nodes i and
j are (xi, yi) and (xj, yj) respectively, hij represents the value of minimum hop-count
between anchor node i and j, Hopsizei is the average hop distance of anchor node i , and
anchor node i will broadcast its own average hop distance information to the network.
After the broadcast, each unknown node takes the average hop distance information from



692 X. He, L. Yan, S.C. Chu, S.J. Liu and J.S. Pan

the nearest anchor node, and then estimates the distance between the unknown node u
and each anchor node based on the hop number information obtained previously. The
estimates method is given as Eq. (14):

dui = Hopsizeu × hui (14)

where dui represents the distance from the unknown node u to anchor node i, Hopsizeu
denotes the average hop distance selected by the unknown node, and hui represents the
number of hops between the unknown node and anchor node.

After the distance between the unknown node and each anchor node is calculated, the
least square method is used to solve the estimated coordinates of the unknown node.

3. Dynamic parallel Harris Hawks optimization algorithm and its application
in WSN node location.

3.1. Dynamic parallel Harris Hawk optimization algorithm (DPHHO).

3.1.1. Dynamic control strategy of the escaping energy. In the HHO algorithm, the rab-
bit’s escape energy determines the transition from the exploration phase to the exploita-
tion phase. The escape energy in the original algorithm is described by parameter E. In
the iterative procedure, |E| decreases from 2 to 0 with the increase of iterations. When
|E| is greater than 1, the original algorithm performs the exploration phase; On the con-
trary, the algorithm uses exploitation strategy to perform the local search. Although this
transition design achieves the balance between the exploration phase and the exploitation
phase, |E| in the second half of the iteration cannot be greater than 1 during the whole
iteration process of the algorithm, leading to premature convergence and local optimal
value [29]. In this paper, the escaped energy E is modified and a disturbance term is
added to Equation (3). The formula is as follows:

ρ = randn ∗
(
sinβ

(
π
2
∗ t
Tmax

)
+ cos

(
π
2
∗ t
Tmax

)
− 1
)

(15)

Enew = 2E0 ∗
(

1− t
Tmax

+ ρ
)

(16)

where sin and cos denote the sine and cosine functions respectively, t and Tmax represent
the current iteration and the maximum number of iterations respectively, randn is a
random number that obeys Gaussian distribution, β determines where the disturbance
peak appears and it is a constant. According to the experimental statistics of different
values of β, when β=2.5, the perturbation peak of the strategy which we proposed usually
appears during the ideal target region.

3.1.2. Parallel communication strategy. The HHO algorithm needs to adjust fewer pa-
rameters. Improving the convergence speed and accuracy is always the driving force and
goal of the optimization algorithm. The parallel communication strategy can build up
the optimization precision and convergence speed of the algorithm. This strategy helps
the algorithm avoid placing local states and converge to a better solution. Algorithms for
parallel communication strategies generally divide populations into groups and then run
the original HHO algorithm respectively. After reaching a certain number of iterations,
communication is carried out, and the poor solution in each group is replaced by the
better solution of other groups.

In this paper, three parallel strategies are used to communicate between groups [30]
including the random solution exchange, the optimal solution exchange, and the per-
turbation strategy. During the update process, the algorithm randomly selects the first
and second strategies. The details of the parallel communication strategy are shown in
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Figure 1. Before communication, suppose that bi is the best solution of the i-th group
(i=1,. . . ,N). Let B= [b1,b2,. . . ,bN ]. The random solution exchange strategy: Choose a
best solution bj randomly from B for i-th group (i=1,. . . ,N). If bi < bj, bi in the i-th
group will be replaced by bj. Otherwise bi is perturbed according to the perturbation
strategy. If the solution of perturbed is better than bi, then assign the solution of dis-
turbed to bi. The optimal solution exchange strategy: Suppose bg is the global optimal
solution. Perturb bg according to the third strategy to search a better solution than bg.
If the solution of perturbed is better than bg, then assign the solution of disturbed to bg.
The perturbation strategy is mainly realized by adding a perturbation term. Its purpose
is to allow the algorithm to fully explore the local area, and the perturbation term is
generated randomly by the standard normal distribution function. The following is the
step flow of the DPHHO algorithm:

1 Initialize N harris hawk’s position, the range of the harris hawk search space, ran-
domly divide evenly them into G groups, and the communication step size between
groups is R.

2 Each subgroup calculates the fitness function based on the position of harris hawks
and chooses the position of harris hawk with the best fitness as the position of prey
in the meantime.

3 Each subgroup is iterated R times according to the improved HHO algorithm and
then implement the parallel communication strategy.

4 Determine whether the termination conditions are met. If not, repeat steps 2-4,
otherwise terminate.

Algorithm 1 shows the pseudo-code of DPHHO.

3.2. Hop distance correction. When solving the distance between the node to be lo-
cated and the anchor node in the traditional DV-Hop algorithm, the average hop distance
of the anchor node nearest to the unknown node is used as its average hop distance. This
method neglects the difference of network distribution around the anchor nodes, which
will certainly bring large-ranging errors. In the DPHHO-DV-Hop, the local information
of network topology is used to calculate the average hop distance [31]. For an unknown
node, an anchor will be used to calculate the average hop distance if and only if the
number of hops between the unknown node and the anchor node is not greater than a
given threshold T. The threshold setting method is as follows:

1
R

√
S×lh

an×lp×π < T < Hmax (17)

where S represents the area of the network, lh is the number of all anchor nodes in the
network, an represents the total number of nodes in the network, and lp is the proportion
of anchor nodes in the total number of nodes. R represents the radius of the transmitted
power of the node. Formula (17) is the value range of T formulated under ideal circum-
stances, but it is difficult to achieve very uniform distribution in actual node distribution,
so the value of T should be properly enhanced to meet the overall coverage of the network.
For each unknown node Ui (i = 1, 2, . . . , n), there are Aj(j = 1, 2, . . . ,m), where Aj is the
anchor node within T hops. Hj is the number of hops between the unknown node and
anchor node j. Suppose that the unknown node receives information from the anchor
node, the weighted value of the average hop-count of each anchor node is expressed as γj,
calculated based on Equation (18). The weighted value of Aj is the value of the reciprocal
of the unknown node to Aj divided by the sum of the reciprocal hop-count of the unknown



694 X. He, L. Yan, S.C. Chu, S.J. Liu and J.S. Pan

node to each anchor node.

γj =
1/Hj∑m
j=1

1
Hj

(18)

Let Dj be the average hop distance of Aj. The weighted average hop distance of the
unknown node is calculated as Formula (19).

D =
∑m

j=1γjDj (19)

Therefore, the weighted method can make the average distance of each hop in the
network closer to the true value and achieve the effect of reducing the positioning error.

3.3. Using DPHHO algorithm to locate the unknown nodes. For an unknown
node, after obtaining the estimated distances based on this paper’s proposed method,
we use the DPHHO algorithm to estimate its location. First, the objective function of
DPHHO needs to be determined. The square error of distance estimation is defined as
shown below,
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Figure 1. Parallel communication strategy

Figure 2. Procedure of DPHHO-DV-Hop

ε =
∑Mk

i=1

(√
(xk − xi)2 + (yk − yi)2 − dki

)2

(20)

where Mk is the number of connected anchor nodes, (xi, yi) is the location of anchor node
i, (xk, yk) is the actual location of unknown node k, and dki represents the estimated
distances. Minimizing this error is the goal of the WSN localization problem. However,
the estimated distance error is growth with the value of hop-count increases. The equation
(21) can be weighted based on the reciprocal of the hop-count [32]. The fitness function
of the DPHHO is defined as shown below by this means:

f (xk, yk) =
∑Mk

i=1

(
1

hopki

)2(√
(xk − xi)2 + (yk − yi)2 − dki

)2

(21)
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Table 1. Parameters of each algorithm

Algorithm Parameter settings

PSO pop = 40, iteration = 500, c = 2, w = [0.4,0.9]

GWO pop = 40, iteration = 500, α = [0,2]

PMVO pop = 40, R = 20, iteration = 500, G = 4, Wmin = 0.2, Wmax = 1

HHO pop = 40, iteration = 500, E = 2

DPHHO pop = 40, R = 20, iteration = 500, G = 4, E = 2, β = 2.5

Each unknown node uses an independent DPHHO optimizati on procedure to estimate
its location. The individual encoding of DPHHO for location estimation is two-dimension
variables (xi, yi) representing the coordinate of unknown nodes.

Table 2. Comparison of optimization performance of HHO, PMVO,
DPHHO on 23 classical test functions

30D
HHO PMVO DPHHO

BEST MEAN STD BEST MEAN STD BEST MEAN STD

F1 8.44E-115 8.92E-99 2.98E-98 5.04E-01 1.13E+00 3.28E-01 2.50E-162 5.66E-136 2.53E-135

F2 7.65E-61 4.06E-52 1.37E-51 4.60E-01 7.48E+00 2.59E+01 6.63E-87 1.67E-69 6.00E-69

F3 2.35E-103 8.24E-73 3.69E-72 8.21E+01 2.08E+02 1.11E+02 1.37E-148 5.29E-115 1.57E-114

F4 3.01E-57 1.14E-49 3.58E-49 8.11E-01 1.46E+00 9.17E-01 7.15E-85 2.97E-64 1.33E-63

F5 1.59E-05 6.91E-03 9.84E-03 3.76E+01 4.49E+02 8.27E+02 5.98E-07 6.07E-03 5.50E-03

F6 6.02E-08 6.90E-05 1.52E-04 6.19E-01 1.17E+00 3.66E-01 2.12E-09 5.87E-05 7.03E-05

F7 1.35E-05 1.32E-04 1.17E-04 9.14E-03 2.84E-02 1.45E-02 5.98E-06 1.26E-04 1.38E-04

F8 -1.26E+04 -1.26E+04 6.87E-01 -9.11E+03 -7.60E+03 6.33E+02 -1.26E+04 -1.26E+04 8.09E-01

F9 0.00E+00 0.00E+00 0.00E+00 6.94E+01 1.06E+02 2.25E+01 0.00E+00 0.00E+00 0.00E+00

F10 8.88E-16 8.88E-16 0.00E+00 6.39E-01 1.34E+00 4.62E-01 8.88E-16 8.88E-16 0.00E+00

F11 0.00E+00 0.00E+00 0.00E+00 6.78E-01 8.26E-01 7.12E-02 0.00E+00 0.00E+00 0.00E+00

F12 5.58E-08 3.69E-06 5.44E-06 2.02E-02 9.36E-01 1.01E+00 4.87E-09 3.55E-06 5.16E-06

F13 1.75E-07 7.53E-05 1.21E-04 3.91E-02 1.23E-01 5.19E-02 9.89E-08 5.18E-05 8.17E-05

F14 9.98E-01 1.24E+00 1.10E+00 9.98E-01 1.34E+00 9.23E-01 9.98E-01 1.20E+00 4.08E-01

F15 3.08E-04 4.32E-04 2.09E-05 4.85E-04 3.32E-04 2.09E-05 3.08E-04 3.32E-04 2.88E-04

F16 -1.03E+00 -1.03E+00 1.60E-10 -1.03E+00 -1.03E+00 2.44E-07 -1.03E+00 -1.03E+00 3.37E-11

F17 3.98E-01 3.98E-01 4.38E-06 3.98E-01 3.98E-01 8.58E-08 3.98E-01 3.98E-01 2.58E-06

F18 3.00E+00 3.00E+00 2.16E-07 3.00E+00 3.00E+00 1.22E-06 3.00E+00 3.00E+00 3.33E-08

F19 -3.86E+00 -3.86E+00 2.61E-03 -3.86E+00 -3.86E+00 5.49E-07 -3.86E+00 -3.86E+00 1.28E-03

F20 -3.28E+00 -3.14E+00 7.95E-02 -3.32E+00 -3.25E+00 6.11E-02 -3.32E+00 -3.23E+00 1.02E-01

F21 -9.46E+00 -5.27E+00 9.85E-01 -1.02E+01 -5.31E+00 3.11E+00 -1.01E+01 -7.51E+00 1.14E+00

F22 -5.09E+00 -5.09E+00 1.43E-03 -1.04E+01 -5.35E+00 3.83E+00 -1.02E+01 -6.70E+00 1.19E+00

F23 -5.13E+00 -5.13E+00 2.82E-03 -1.05E+01 -8.72E+00 3.26E+00 -1.05E+01 -6.95E+00 3.74E+00

Win 13 15 13 14 16 18 — — —

Draw 10 8 3 7 5 0 — — —

Lose 0 0 7 2 2 5 — — —
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4. Experimental analysis. The experimental results of the DPHHO algorithm in math-
ematical test function and its application in the WSN node location are given in this
section.

4.1. Experimental results on mathematic test function. In this subsection, for
purpose of verifying the performance of DPHHO, 23 classical mathematical test functions
[33] are used in this experiments. PMVO (PMVO in reference [34]), PSO [35], HHO and
GWO [36] were used for comparison. To ensure the fairness and accuracy of the exper-
iment, each test function is independent run for 30 times. Table 1 shows the parameter
settings for these comparison algorithms.

Table 3. Comparison of optimization performance of PSO, GWO,
DPHHO on 23 classical test functions

30D
PSO GWO DPHHO

BEST MEAN STD BEST MEAN STD BEST MEAN STD

F1 1.13E-05 6.72E-04 9.76E-04 1.27E-32 4.77E-31 7.41E-31 2.50E-162 5.66E-136 2.53E-135

F2 1.04E-01 1.93E+01 4.44E+01 1.46E-19 1.43E-18 9.81E-19 6.63E-87 1.67E-69 6.00E-69

F3 1.99E+01 1.00E+02 1.04E+02 1.16E-09 4.25E-06 1.57E-05 1.37E-148 5.29E-115 1.57E-114

F4 4.61E-01 1.46E+00 6.12E-01 2.60E-08 1.26E-07 9.42E-08 7.15E-85 2.97E-64 1.33E-63

F5 1.73E+01 8.89E+01 6.24E+01 2.60E+01 2.69E+01 6.92E-01 5.98E-07 6.07E-03 5.50E-03

F6 2.43E-05 8.45E-04 1.45E-03 6.19E-05 5.40E-01 2.96E-01 2.12E-09 5.87E-05 7.03E-05

F7 5.86E-02 1.04E-01 3.58E-02 2.83E-04 1.41E-03 8.70E-04 5.98E-06 1.26E-04 1.38E-04

F8 -8.58E+03 -6.57E+03 5.78E+02 -7.53E+03 -6.40E+03 6.66E+02 -1.26E+04 -1.26E+04 8.09E-01

F9 3.69E+01 6.46E+01 1.83E+01 0.00E+00 2.02E+00 3.16E+00 0.00E+00 0.00E+00 0.00E+00

F10 2.44E-03 1.18E+00 7.82E-01 4.35E-14 5.70E-14 1.04E-14 8.88E-16 8.88E-16 0.00E+00

F11 3.41E-06 1.20E-02 1.10E-02 0.00E+00 4.33E-03 8.16E-03 0.00E+00 0.00E+00 0.00E+00

F12 1.30E-06 6.47E-02 1.15E-01 6.72E-03 4.10E-02 1.81E-02 4.87E-09 3.55E-06 5.16E-06

F13 9.87E-06 2.07E-02 4.33E-02 1.00E-01 5.11E-01 2.32E-01 9.89E-08 5.18E-05 8.17E-05

F14 9.98E-01 3.17E+00 2.52E+00 9.98E-01 5.31E+00 4.16E+00 9.98E-01 1.20E+00 4.08E-01

F15 3.07E-04 8.90E-04 2.33E-04 3.07E-04 5.43E-03 8.85E-03 3.08E-04 3.32E-04 2.88E-04

F16 -1.03E+00 -1.03E+00 2.22E-16 -1.03E+00 -1.03E+00 1.33E-08 -1.03E+00 -1.03E+00 3.37E-11

F17 3.98E-01 3.98E-01 0.00E+00 3.98E-01 3.98E-01 9.75E-07 3.98E-01 3.98E-01 2.58E-06

F18 3.00E+00 3.00E+00 1.36E-15 3.00E+00 3.00E+00 1.86E-05 3.00E+00 3.00E+00 3.33E-08

F19 -3.86E+00 -3.86E+00 2.26E-15 -3.86E+00 -3.86E+00 2.48E-03 -3.86E+00 -3.86E+00 1.28E-03

F20 -3.32E+00 -3.27E+00 5.98E-02 -3.32E+00 -3.28E+00 6.18E-02 -3.32E+00 -3.23E+00 1.02E-01

F21 -1.02E+01 -4.52E+00 2.67E+00 -1.02E+01 -9.39E+00 1.86E+00 -1.01E+01 -7.51E+00 1.14E+00

F22 -1.04E+01 -7.48E+00 3.40E+00 -1.04E+01 -1.01E+01 1.18E+00 -1.02E+01 -6.70E+00 1.19E+00

F23 -1.05E+01 -5.40E+00 1.21E+00 -1.05E+01 -1.05E+01 8.33E-04 -1.05E+01 -6.95E+00 3.74E+00

Win 14 17 16 12 15 19 — — —

Draw 2 2 7 2 4 4 — — —

Lose 7 4 0 9 4 0 — — —

In this article, the best value, average value, and standard deviation are used to evaluate
the performances of different algorithms. Table 2 tabulates the best values (BEST),
mean values (MEAN), and standard deviations (STD) of each algorithm on 23 classical
mathematical test functions. For each test function, the smaller the value in the table
is, the better the corresponding algorithm is. At the end of the table 2 and table 3,
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’Win’, ’Draw’, or ’Lose’ give the numbers of better, same, and worse performance of the
proposed DPHHO, respectively. If the performance of proposed DPHHO at corresponding
item is better than that of the corresponding algorithm, the ’Win’ will add one; if it’s
worse, the ’Lose’ will add one; otherwise, the ’Draw’ will add one. According to Table
2, the DPHHO algorithm has 13 better, 10 similar, 0 worse performances than the HHO
algorithm from the ”best” perspective, respectively. It carries 15 better, 8 similar, 0 worse
performances from the ”mean” perspective, respectively. It carries 13 better, 3 similar, 7
worse performances from the ”standard deviation” perspective, respectively. Compared
with PMVO algorithm, DPHHO algorithm has won 60.9% in the 23 classical test functions
from the ”best” perspective. In contrast, the DPHHO algorithm only has lost 8.7%
of the PMVO algorithm in 23 test functions. From the ”mean” perspective, DPHHO
algorithm has won 69.7% in the 23 classical test functions. The DPHHO algorithm has
lost 8.7% of the PMVO algorithm in 23 test functions. From the ”standard deviation”
perspective, DPHHO algorithm has won 78.3% in the 23 classical test functions. The
DPHHO algorithm has lost 21.7% of the PMVO algorithm in 23 test functions. According
to Table 3, the winning number of DPHHO algorithm is much higher than the winning
number of PSO algorithm and GWO algorithm in 23 test functions.

Figure 3 give the convergence curves of the several algorithms of the proposed DPHHO,
HHO, PMVO, PSO, and GWO for several selected test functions. Compared with HHO,
PMVO, PSO, and GWO. Our proposed DPHHO algorithm performs better convergence
rates. Overall, under 23 classical mathematical test functions, the performance of the
DPHHO algorithm is better than that of the compared HHO, PMVO, PMVO, and GWO
algorithms.

4.2. Experiment results of DPHHO-DV-Hop algorithm. In order to verify the
DPHHO-DV-Hop algorithm in this work, the experiment was carried out on the MATLAB
2015b platform. The hyperbolic DV-hop algorithm in [37] that used two-dimensional
hyperbolic takes the place of the least square method in the traditional DV-Hop. The
traditional DV-Hop , DV-Hop based on PSO, hyperbolic DV-Hop, and DPHHO-DV-Hop
algorithm are used for experiment analysis, the fitness function adopts formula(21). The
parameters of PSO are c1 = c2 = 2.05, Wmax=0.9, and Wmin=0.4 and the maximum
number of iterations is 100 and the initial population size is 20. For purpose of reducing
the impact of random errors, the average value of 20 experiments was used to value the
effectiveness of the algorithm. In this experiments, nodes were casually arranged in a
100 m∗100 m network. Assuming that the communication radius of each node is R, the
localization performance of the algorithm is evaluated based on the normalized relative
error formula (22):

TALE =

∑Nk

i=1

√
(xi − xik)2 + (yi − yik)2

Nk×R
(22)

where the criterion for evaluating localization effect is relative localization error TALE,
Nk is the number of unknown nodes, (xi, yi) denotes the estimated coordinates of the
positioning calculation, and (xik, yik) denotes the real coordinates of unknown nodes.

4.2.1. The influence of anchor node ratio on localization performance. When the total
number of nodes is 100 and R is set to 30 m, the ratio of anchor nodes is changed for
experimental. The Figure 4 makes clear the experimental results. The average localization
error of DPHHO-DV-Hop algorithm is about 4.9%, 20.1% and 33.3% lower than errors of
the PSO-DV-Hop, Hyperbolic-DV-Hop and traditional DV-Hop algorithm, respectively.
Where the average localization error is the average error under different anchor node
ratios. As the ratio of anchor enhances, the localization error of the algorithm in the figure
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(a) F3 (b) F7

(c) F9 (d) F11

(e) F15 (f) F22

Figure 3. Convergence curves of different algorithms on F3(a), F7(b),
F9(c), F11(d), F15(e), F22(f) with 30D

reduces to varying degrees. Because the ratio of anchor node increases. It can improve
the accuracy of hop distance estimation and provide more reliable distance information
for the third stage.

4.2.2. The influence of communication radius on localization performance. When the to-
tal number of nodes is 100 and the ratio of anchor nodes remains at 30%. The experimental
results are shown in the Figure 5. The average localization error of our proposed algorithm
is about 3.3%, 19.5% and 55.0% lower than errors of the PSO-DV-Hop, Hyperbolic-DV-
Hop and traditional DV-Hop algorithm, respectively. Where the average localization error
is the average error under different communication radius. When R is less than 40 m,
the localization error decreases obviously with the increase of the communication radius.
However, when R is greater than 40 m, the decrease in localization error tends to be flat,
and there is a slight upward trend. Because excessive communication radius will increase
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Figure 4. Relation diagram anchor node and localization error

Figure 5. Relation diagram communication radius and localization error

the error of each hop distance of the anchor node, resulting in a decrease in localization
accuracy.

4.2.3. The impact of the total number of nodes on localization performance. In this ex-
perimental that the ratio of anchor nodes remains at 30% and R is 30 m. The Figure 6
makes clear the experimental results. The average localization error of DPHHO-DV-Hop
algorithm is about 2.4%, 31.5% and 45.6% lower than the PSO-DV-Hop, Hyperbolic-
DV-Hop and traditional DV-Hop algorithm, respectively. Where the average localization
error is the average error under different the total number of nodes. The total number
of nodes increases continuously that will reduce the distance between nodes, making the
estimation of average hop distance and hop number more accurate.
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Figure 6. Relation diagram communication radius and localization error

5. Conclusions. In this work, a Dynamic Parallel Harris Hawk Optimization (DPHHO)
algorithm is proposed to solve the WSN localization problem. The dynamic control strat-
egy of the escaping energy and the parallel communication mechanism used in DPHHO
are helpful to avoid placing local optimal states. The searching capability of DPHHO
algorithm is improved effectively. The 23 classical test functions were used to verify the
performance of the DPHHO algorithm. The experimental results of different algorithms
demonstrate that the DPHHO algorithm has better performance on both converging rates
and finding the better solution. A novel localization algorithm is proposed in this work.
The DPHHO-DV-Hop algorithms uses the local information of the network topology when
calculating the average hop distance. Several scenarios of experiments were carried out,
for instance, the different ratios of anchor nodes, the diverse communication range, and
the different number of the sensor node. Experimental results confirmed the performance
of the propose DPHHO-DV-Hop algorithm.
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