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Abstract. The measurement of power line crossing on top of a power tower has al-
ways been a hindrance for the construction and maintenance of power tower, since the
extreme lighting conditions in working environment has serious influence to the measure-
ment instruments. The combination of Tilt Photography with Unmanned Aerial Vehicle
(TP-UAV) and 3D laser scanning system offers an effective means of measuring the
power line crossing. However, some of the measurement data cannot be recorded due to
extreme lighting conditions, leading to inaccurate measurement. The missing data can be
estimated using the recorded data based on an optimized high-dimensional error function.
This paper introduces an improved artificial bee colony algorithm for the optimization of
this error function, and the experimental results show that the missing data can be par-
tially recovered to significantly improve the measurement accuracy of the two systems.
Keywords: Tilted Photography, 3D laser scanning, UAV, deformation of tower

1. Introduction. Tilt Photography with Unmanned Aerial Vehicle (TP-UAV) technol-
ogy is a system to carry out tilt photography on a UAV unit. This is mainly used in
the geographic survey industry when the terrain of measurement is too complex to install
measurement equipments [1–4]. The TP-UAV is a convenient way of measuring three-
dimensional (3D) objects with the accuracy up to 20mm, and it can accurately measure
the shape of a power tower or power line crossing. The best advantage of the TP-UAV
is that it can record the object image in real time while measuring its 3D coordinates.
3D laser scanning system is a point cloud based measurement system installed on ground
to provide millimeter level accuracy of 3D measurement for geographical survey industry.
The advantage of the 3D laser scanning technique is the precision. The TP-UAV and
the 3D laser scanning are two different technologies which show different performance in
applications of geographic survey industry.

Although the accuracy of 3D laser scanning is higher than that of the TP-UAV, in
real world industry applications, the terrains environment around the power lines are
too complex to install a 3D scanning system on the ground. Also, the cost of the 3D
laser scanning system is much higher than the TP-UAV and the efficiency is relatively
lower. These shortcomings have limited the application of 3D laser scanning technology,
and therefore in practical applications, 3D laser scanning systems are generally used with
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the assistance of TP-UAV. In some typical applications for example, 3D laser scanning
system is used as a calibration tool for the TP-UAV, offering an efficient way of measuring
the deformation of high-voltage transmission facilities. In the combination of the two
technologies, the measurement data based on the 3D laser scanning system is used to
calibrate the measurement data of the TP-UAV through the least square solution, so as
to correct the system error of the parameters and improve the measurement accuracy.

The combination of 3D laser scanning and TP-UAV can solve the problem of rapid and
accurate measurement of obvious objects such as power tower. However, the measurement
of line crossing is still limited, because the recording of power lines is more easily affected
by lighting conditions, and therefore the data from some key measurement points will be
missing. For example, in the case of strong light condition, some key measurement points
will be overexposed, and therefore a series of maximum constants are recorded by the
TP-UAV system. While under low illumination conditions, some key measurement points
will be underexposed, and a series of zero constants will be recorded. Both cases would
lead to failure measurement or decrease in accuracy. If some of the missing data cannot
be measured directly, it is possible to approximate them by using computational models.

This paper introduces an approach to estimate the missing data due to extreme illu-
mination conditions by using an optimization algorithm, so as to improve the accuracy
of measurement. Since the missing parts of data are unpredictable in space, it is diffi-
cult to estimate their values accurately and the confidence intervals or variances are not
possible to obtain. In order to overcome these problems, this research considers a measure-
ment data estimation scheme using optimization methods such as the Parallel Compact
Artificial Bee Colony (PCABC) to find the positions of points missed by the TP-UAV
measurement system. Optimization algorithms are usually used to solve various nonlinear
and non-differentiable mathematical problems. However, the missing measurement data
caused by extreme illumination conditions generates a non-differentiable data space, and
therefore it cannot be resumed by using recursive methods. Instead, the missing data can
be approximated by the known parameters recorded by other means, and the parameters
can be optimized to approach the true measurement data with a confidence interval.

The rest of the paper is organized as follows. The second part introduces the re-
lated work of optimization theory. The third section demonstrates the principle of power
line crossing measurement based on the combination of 3D laser scanning and TP-UAV
systems, and the experiment of using optimization algorithm to recover the missing mea-
surement data are also presented. Finally in section 4, a conclusion is drawn.

2. Related Work. The ABC algorithm simulates the foraging behavior of bee colony,
and uses swarm intelligence model to effectively solve complex optimization problems [5–
8]. The ABC algorithm includes four basic elements: food source, employed bee, onlooker
and scout. Food source is the solution of the optimization problem whose value represents
the fitness of optimization. In the optimization process, the number of employed bees is
equal to the number of food sources. When the bees find the food source information,
they will share it with each other. The shared value is calculated with a probability
function representing the degree of optimization and all other bees will decide which food
source to choose. Onlookers choose food sources according to the food amount of all the
employed bees in the hive area, while the scouts search for new food source near the hive.
In the process of looking for new food sources, the bees will choose the strategy according
to the information provided by the employed bees. If the amount food of a source has not
been increased after a certain number of iterations, this source will be disregarded and
the employed bees with the food source will become a scout and start to search for the
next new food source.
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The ABC method has been widely used in multi-objective optimization problems [9–12],
but in many industrial applications, this algorithm often requires a high-performance
computer to process and store a large amount of data. However, in field measurement
of power lines crossing, high performance computing environment is hardly available,
and therefore a Compact Evolutionary Algorithm (CEA) scheme was introduced for this
purpose [13–15]. There is only one initial variable in the CEA algorithm and a number
of iterations take place before reaching an optimal solution. Since there is only one
variable involved, the CEA algorithm takes less memory to compute an optimization
task and the computational load can be greatly reduced [16,17]. Another Compact ABC
(CABC) algorithm can not only reduce the memory occupancy, but also improve the
convergence speed [18]. However, the CABC scheme can only produce one solution during
each iteration with very low optimization efficiency, and the stability of the solution cannot
be guaranteed. Therefore, when measuring the power line crossing, an improved multi-
colony parallel CABC scheme can be introduced for the optimal estimation of missing data
when encountering extreme lighting conditions. In this scheme, the optimization process
is divided into several groups, each of which communicates with each other through certain
strategies and protocols. After a certain number of iterations all the solutions will merge
to the same solution, which is the final solution for the optimization process.

The optimal estimation of missing data in power line crossing measurement is a high-
dimensional, multi-constraints and nonlinear problem, and only a few related literatures
can be found. The difficulty of this optimization problem is to find the optimal solution
quickly and accurately under multiple constraints. Among other optimization algorithms,
the IB-RBCO algorithm can be used to solve UC and economic load distribution prob-
lems [19]. In the process of optimization, the ABC algorithm can also be applied with
new mutation strategies to look for a larger food area, preventing individual repeated
failed evolution and improving efficiency and convergence speed [20]. However, because
the ABC strategy rarely considers the data storage as well as computational load at the
same time, these optimization algorithms are not suitable for the recovery of TP-UAV
measurement data. Therefore in field environment, a multi-core processor implemented
with a parallel strategy is a suitable way to improve the optimization task. An exam-
ple of two parallel solutions communicating with each other during optimization achieves
better performance than just one [21, 22]. Another parallel strategy was proposed with
a shared memory and multiprocessor scheme to improve the optimization efficiency [23].
Therefore, this study applies a Parallel and Compact ABC (PCABC) method to improve
the efficiency, stability and reliability of the data estimation.

3. Theory and methodology.

3.1. The measurement with TP-UAV calibrated with 3D laser scanning. In or-
der to take the advantages of the accuracy of 3D laser scanning system and the convenience
of the TP-UAV, these two technologies can be combined to achieve better performance.
Practically, a one-off calibration process is required to find the projection coefficients of
the measurement data from the two systems. In this application, a power line crossing
is firstly measured with the 3D laser scanning system, and then the TP-UAV carries out
several measurements to the line crossing. A set of least square coefficients is then calcu-
lated to represent the measurement data of the 3D scanning with the data sets from the
TP-UAV. These least square coefficients become the calibration solution for the future
measurement of the TP-UAV.

Since the data format of the 3D scanning system does not match that of the TP-UAV, a
data conversion process is needed in order to unify the measurement coordinate and data
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representation. In this study, the Bursa model is applied to convert the measurement
data from the 3D laser scanning system to the coordinate of the TP-UAV system, such
that, XY

Z

 =

x0

y0

z0

+ (1 + µ)

αX′βY ′
γZ′

 (1)

Where, (X ′ Y ′ Z ′)T is the 3D coordinate recorded by the 3D scanning system, and

(X Y Z)T is the corresponding coordinate in the TP-UAV system. The Bursa model
has seven parameters such as (x0 y0 z0 µ α β χ), where (x0 y0 z0) are the coordi-
nate translation coefficients, µ is the scale factor, and (α β χ) are the angle coefficients
respectively. These coefficients are determined by manually measuring seven different cal-
ibration points on the power line crossing with both systems and solving the equations.

If there are L measurement points on the power line crossing and their positions from
left to right and front to back are represented by (Xj Yj Zj)

T , where (j = 1, 2, . . . , L),
for convenience of calculation, the three components of all the positions are expanded to
form a vector such that,

ui = (Xx
1 Y x

1 Zx
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x
2 Y x

2 Zx
2 · · ·Xx
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x
L Zx

L)T (2)

where ui denotes the ith time’s measurement of the whole power line crossing by the
TP-UAV system, and it is assumed that n times’ measurement have been recorded such
that u1, u2, . . . , un. In the same way, the measurement data with the 3D laser scanning
system can be written as,

v′ =
(
Xy′

1 Y y′
1 Zy′

1 Xy′
2 Y y′

2 Zy′
2 · · ·X

y′
L Y y′

L Zy′
L

)T
(3)

and this measurement is usually carried out only once for calibration purpose. By con-
verting v′ into v, which is the coordinate of the TP-UAV with the Bursa model, it can be
used for the calibration of the measurement data, such that,

v = (Xy
1 Y

y
1 Zy

1 X
y
2 Y

y
2 Zy

2 · · ·X
y
L Y

y
L Zy

L)T (4)

The calibration of the TP-UAV data based on the 3D laser scanning system is through a
least square solution of a linear representation [24]. The n times’ measurement data from
the TP-UAV such as u1, u2, . . . , un, are formed a dataset to represent v obtained from the
3D laser scanning system such that,

v = a1u1 + a2u2 + . . .+ anun (5)

where ai(i = 1, 2, . . . , n) is the coefficient for each measurement ui, and the vector opera-
tion form of Equation 5 can be written as,

U = V A (6)

where A = [a1. . . an]T , U = [u1. . . un]T .u1. . . un and v are all column vectors. In case V is
a nonsingular square matrix, the solution of Eq.(6) is given as,

A = U−1.v (7)

And if X is singular, A can be obtained by,

A = (UTU + µI)−1.UTv (8)

where µ is a positive constant with small enough value and I is the identity matrix. In
this way, when this calibrated TP-UAV system is applied to other power line crossing,
it is generally required to carry out n times’ measurement and the recorded data set is
corrected to generate a measurement output by using Equation (6). It is assumed that if
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the n times of measurement are performed properly by the TP-UAV system, all ui should
be similar to each other, resulting in all the coefficients in A are close to identical.

In case of extreme lighting conditions, some parts of the measurement data in U will
reach the maximum value in overexposure situation and minimum value in low light
condition. If some groups of element in ui all present constant extreme values, they will
be identified as missing recordings. If the jth element of ui is missing, it can be denoted
as uij(j ∈ Φ) where Φ is the set of labels corresponding to each of the missing elements
and j = 1, 2, . . . , 3L. An error function can be designed as

erf(Φ) =
∑
i

∑
j∈Φ

aiuij −
∑
j /∈Φ

aiuij

 (9)

which represents the difference of the sum of the missing coordinates and the correspond-
ing recorded coordinates in other measurements multiplied by the respective coefficient.
The variables of the error function in Equation 9 are the missing coordinates, and the
minimization solution of Equation 9 will give rise to an approximation of the missing data
that fit the least square solution in Equation 7 or 8.

3.2. Optimization with the parallel and compact strategy. In this study, the op-
timization of the error function in Equation 9 is performed using a PCABC scheme. The
recorded coordinate data by the TP-UAV system is generally regarded as following a nor-
mal distribution, which can be used for the modeling of the solution. In the parallel and
compact scheme, several initial solutions are setup as the starting points, each of which
is represented by an employed bee. The distribution of each employed bee is modeled by
a truncated Probability Distribution Function (PDF) following the Gaussian distribution
with a mean value of µ and a standard deviation of δ [25]. The solution of this scheme
is modeled by a Probability Vector (PV) [26]. In this measurement data approximation
task, it is assumed that there are m elements in the set of Φ, therefore there are 2 ×m
elements in the matrix vector of PV such that,

PV t =
[
µt, δt

]
(10)

where t is the iteration step and the value of the PDF is normalized so that the total
probability is limited to one. The solution of U can be represented by PV (µi, δi), where
i = 1, 2, . . . ,m and the corresponding PDF is given as [27],

PDFµi,σi(Φ) =
e
− (Φ−µi)

2

2δ2
i

√
2
π

δi

(
erf

(
ui+1√

2δi

)
− erf

(
ui−1√

2δi

)) (11)

The resulting Cumulative Distribution Function (CDF) is given by the Chebyshev poly-
nomials such that [28]

CDF =

1∫
0

e
− (−µi)

2

2δ2
i

δi(erf(µi+1√
2δi

)− erf(µi−1√
2δi

))
dΦ (12)

The optimized solution of Φ can be obtained by calculating the inverse function of the
CDF. The initial values of µ and δ are set to 0 and 10 respectively. In the process of
optimization, the value of Φ is updated to another position where the error function is
evaluated, and the solution with a relatively smaller value is called a winner position,



Measurement Optimization Based on TP-UAV under Extreme Conditions 709

otherwise is a loser position. The values of µi and δi are also updated accordingly such
that,

µt+1
i = µti +

1

Np

( winner i − loser i) (13)

δt+1
i =

√
(δti)

2 + (µti)
2 − (µt+1

i )
2

+
( winner 2

i − loser2
i )

Np
(14)

It is noted that the values of the element in the variable set Φ are bounded by the
minimum and maximum recorded values of the TP-UAV system, therefore a constraint
must be applied to the optimization process such that,

Umin ≤ uij ≤ Umax (15)

where Umin and Umax are the lower limit and upper limit of the recording value of the
TP-UAV system respectively.
The optimization steps with the PCABC algorithm to find a minimum solution for Equa-
tion 9 are given as:
1. Supposed that the number of processors is R, there will be R groups of PV solution
being initialized;
2. Each group selects an elite based on the ABC algorithm;
3. In the next iteration, the value of the error function produced by each of the group is
compared with that of the previous elite, and keep the better one to update the PV;
4. After a certain number of iterations, each of the groups communicates with each other
and find the best solution to replace the elites of all groups, and the corresponding PVs
are also replaced;
5. Repeat 1 ∼ 4 steps until the termination conditions are satisfied.

3.3. Experiment with industry applications. In order to demonstrate the perfor-
mance of the proposed method, a power tower of about 70m high carrying multi-loop
high voltage of 220 kV transmission lines is measured with both the TP-UAV and 3D
laser scanning systems. The power tower was built in a rural area with subtropical forests
growing on different geological structures like mountains, and therefore the lighting con-
ditions of the environment are complicated and unpredictable. The sunlight condition
around the power tower can also be influenced by the existing power line networks and
other projects under construction, making it more difficult for a measurement task. Fig-
ure 1 and Figure 2 show two typical point cloud images of the data measured by a 3D
laser scanning system and a TP-UAV system above the air respectively.

3.4. Watermark embedding phase.
For demonstration purpose, this power tower and the line crossing are measured with

both the 3D laser scanning system and the TP-UAV system under both overexposure
and underexposure conditions. Table 1 shows the coordinates of 13 measurement points
recorded by the both systems under a perfect lighting condition, and the measurement
data recorded by the 3D laser scanning system has been converted to the coordinate of
the TP-UAV system through Equation 1. The origin of the XY coordinates is based
on the power tower where the power lines start about 60km away, and the origin of the
height (Z coordinate) is based on the ground of the power tower. The measurement data
recorded by the TP-UAV system has been calibrated by the 3D laser scanning system.
It can be seen that the maximum systematic error of the TP-UAV system from the 3D
laser scanning system is about 22mm with the average of about 12mm. The measurement
accuracy of the TP-UAV system can well satisfy the requirement of the power line and
tower measurement, which must be less than 50mm.
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Figure 1. The point cloud image of one of the towers measured by the
TP-UAV system above the air..

Figure 2. The point cloud image of one of the towers measured by the 3D
scanning system..

In the experiment the performance of the TP-UAV system is also tested under ex-
treme lighting conditions such as overexposure and underexposure. The TP-UAV system
recorded a set of data during daytime when the sunlight is the strongest, leading to over-
exposure of the recording camera. Figure 3(a) shows the point cloud image of a power
tower with 25000 measurement points recorded by the TP-UAV system under strong light
condition, and it can be seen that only 3658 points can be used as valid measurement data
for 3D reconstruction, accounting for only 14.63% of the total measurement points. This
valid recording rate under strong light environment is not acceptable for the 3D measure-
ment of the power tower, which requires at least 50% valid recording of the coordinates.
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Table 1. The comparison of measurement data from both the 3D laser
scanning system and the TP-UAV system.

NO. 3D laser scanning system (m) TP-UAV system (m) Error (m)
X Y Z x y z Dx Dy Dz

1 32659.71 62922.242 66.616 32659.708 62922.247 66.605 -0.002 0.005 -0.011
2 42807.804 64663.308 72.891 42807.799 64663.306 72.869 -0.005 -0.003 -0.022
3 44881.183 85990.467 57.705 44881.19 85990.45 57.724 0.007 -0.017 0.019
4 49879.346 54628.685 52.897 49879.326 54628.679 52.895 -0.019 -0.006 -0.002
5 51569.381 68903.335 55.265 51569.365 68903.343 55.263 -0.016 0.008 -0.002
6 52650.06 72017.472 53.668 52650.048 72017.471 53.656 -0.012 0 -0.012
7 54060.021 57224.324 72.443 54060.008 57224.31 72.452 -0.013 -0.014 0.009
8 56349.928 60731.982 53.899 56349.923 60731.964 53.913 -0.005 -0.018 0.013
9 58106.627 48881.954 53.686 58106.63 48881.963 53.685 0.003 0.009 -0.001
10 59318.775 56961.722 53.58 59318.767 56961.735 53.588 -0.008 0.013 0.008
11 59630.219 72155.827 68.715 59630.219 72155.833 68.704 0 0.006 -0.011
12 60958.116 66376.951 56.609 60958.1 66376.945 56.623 -0.017 -0.006 0.014
13 63093.648 63034.477 54.266 63093.663 63034.488 54.255 0.016 0.011 -0.011

Figure 3(b) shows the point cloud image of this power tower using the proposed data ap-
proximation method, and it can be seen that up to 14562 valid points are available for 3D
measurement. Through the proposed optimization scheme with the PCABC algorithm,
the successful recording rate of the TP-UAV system under strong light condition can be
increased up to 58.24%, which can be used for the 3D measurement of the power tower.

(a) The original recording with only 3658 valid
points.

(b) The approximation recovery point cloud
with 14562 valid points.

Figure 3. Point cloud images of a power tower with 25000 measurement
points recorded by the TP-UAV system under strong light condition

During the night time when there is no sufficient light for the TP-UAV system to
record measurement points, the proposed method can also be used for the recovery of
missing data. Figure 4 (a) shows an point cloud image of another power tower with 20000
measurement points recorded by the TP-UAV system under dim light condition, however,
there are only 3997 valid points available, and the valid rate is only 19.98%. Figure 4 (b)
shows the point cloud image with the recovery data points and it can be seen that there
are 16616 valid points obtained and the valid rate can go up to 83.08%, which is suitable
for the 3D measurement of the power tower.
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(a) The original recording with only 3997 valid points.

(b) The approximation recovery point cloud with 16616 valid
points.

Figure 4. Point cloud images of a power tower with 20000 measurement
points recorded by the TP-UAV system under dim light condition at night.

4. Conclusion. This paper presents a measurement data estimation scheme for the TP-
UAV system to cope with the field recording under extreme lighting conditions. This
measurement data estimation approach is based on an optimization scheme called the
Parallel Compact ABC (PCABC) algorithm. The recorded coordinates of the TP-UAV
system are firstly calibrated by a 3D laser scanning system, which is generally regarded
as a measurement system with ground truth accuracy. Then the TP-UAV system carries
on measurement on power lines and power towers. However, during the daytime when
sunlight is strong, the camera on the TP-UAV system is overexposed and a considerable
part of the points on the power lines or towers cannot be recorded. The same happens
to the recording during the night or extreme weather condition when the target is too
dim to record. It was shown in the experiment that under both extreme conditions, the
missing measurement data can be partially estimated and recovered with the proposed
method, improving about 30% of the measurement blind spots.
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