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Abstract. The composition of natural seismic electromagnet signals recorded by seis-
mic instruments is complex, which cannot be directly used to analyze ground motion
events information with common text data analysis methods. The fractal dimension of
seismic trace time series are used to study the similarity of seismic waves in the charac-
teristics of complex geological structures and breakpoint locations. The basis of extract-
ing seismic electromagnet waveform image texture feature is to realize image recognition.
Two-dimensional waveform texture features can be used to identify two-dimensional time-
amplitude seismic waveform signals. This paper proposes the application of STFT al-
gorithm to curve fitting of seismic electromagnetic waveform signal, which can be used
to generate the filled and binarized seismic waveform image. An improved VGG neural
network is used to realize the identification of related images, which transform electro-
magnetic signal recognition into an object detection problem. 1437 real-time earthquake
cases collected from 165 stations in Sichuan-Yunnan region are applied to verify the per-
formance of VGG model. The result shows that the training and detection accuracy rate
of the data set can reach 90%. The seismic electromagnetic signals processed by the
STFT algorithm are more conducive to seismic identification, and suitable image fea-
tures can be extracted, which has certain reference value for the identification of small
sets of natural seismic events.
Keywords: seismic electromagnetic, short time Fourier transform, deep learning, target
detection, convolutional neural network
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1. Introduction. The natural seismic wave signal components recorded by seismic obser-
vation instruments are complicated. A single analysis method and its parameters cannot
reflect the essential characteristics of the seismic event. A large number of observations
and studies have shown that electromagnetic anomalies will be generated before moder-
ate and strong earthquakes. This electromagnetic anomaly is not only observed on the
ground, but also on satellites [1]. Therefore, seismic electromagnetic signals can be used
as an important reference basis for seismic events. The existence of abnormal ionospheric
disturbances before large earthquakes in space, such as TEC (total electron content of
electric ions), has been statistically verified. However, the observation of electromagnetic
anomalies on the ground is often interfered by a variety of factors, and there is an ur-
gent need for new observation instruments and observation methods to find correlation.
Acoustic and electromagnetic testing all in one system (AETA) [2], a system of observing
electromagnetic anomalies on the surface, has high-sensitivity probes and high-precision
data acquisition systems, and can be used as an improved observation of electromagnetic
anomalies on the surface through large-scale deployment.

In the field of seismic waveform identification, different from the previous time and
frequency domain analysis methods [3, 4], image recognition has become a more popular
method for studying the characteristics of seismic events [5]. Using the form of early
visualization, the obscure and irregular seismic waveform data can be turned into an
intuitive and clear graphical form. This work proposes an improved short-time Fourier
transform (STFT) preprocessing, i.e., FFT (fast Fourier transform) is performed on a
series of windowed electromagnetic data, and each of the frame frequency-domain signal by
Fourier transform is stacked in time domain to obtain spectrogram. An improved VGG16
architecture neural network is used to identify the seismic electromagnetic STFT-based
image signals. The distinguishing experimental consisting of 1437 real-time earthquake
cases collected from 215 stations shows that the training and detection accuracy rate of
the image data set can reach 90%, which can meet the requirements of identifying seismic
electromagnet signal images.

This paper is an enhance version of our previous seismic electromagnet signal work
published in proceedings of the CIS 2020 conference. The remainder of this paper is orga-
nized as follows. In Section 2, we describe the related works for identifying weak signals,
seismic machine learning methods, and application of analyzing seismic electromagnetic
signals. The design principle and research method for identifying seismic electromagnet
signals and improved VGG16 model are presented in Section 3. Section 4 implement of
the model for identifying seismic electromaget signals . Section 5 presents the results
and discussions of using STFT in data collection phase for improved VGG model. The
conclusions and future research directions for STFT-based seismic electromagnet signal
identification are outlined in Section 6.

2. Related work. As a method of data mining for identifying weak signals, principal
component analysis (PCA) is utilized to analyze seismic electromagnetic signals and sep-
arate signals from noise [6, 7]. For example, the solar radiation period 27 day was used
as sliding time window to detect quartile difference threshold [8]. Local correlation track-
ing method is more suitable for non-stationary signal processing compared with classical
cross-correlation method. This method is based on the good spatial correlation between
the magnetic field components of different ELF stations to pick up the correlation coef-
ficient to achieve the purpose of weak anomalies signals identification. As a case study
of the M4.6 Jinggu earthquake in Yunnan, China, the LCT method to the magnetic-filed
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data processing as well, and the results of both north-south and east-west magnetic field
components showed that local correlation coefficient saw anomalies about a week before
the earthquake [9]. The wavelet transform method is used to process the earth resistivity
observation data of seismic electromagnetic signals of the Chengdu and Jiangyou station
before and after the 2008 Wenchuan Ms8.0 earthquake, the Wenchuan earthquake, and
the DEMETER satellite records before and after the 2010 Haiti Mw7.0 earthquake. The
ionospheric magnetic field observation data are used to analyze the wavelet energy spec-
trum of earth resistivity and ionospheric magnetic field and their relative changes [10].
Numerical simulation algorithms have been applied to the time-domain and frequency-
domain characteristics of the seismic waves and the accompanying electromagnetic signals
generated under the action of dual-couple point sources and finite fault plane sources in
different structural models. The result shows that the type of seismic source time func-
tions affect the seismic wave field value simulation results [11].

Various machine learning methods have been applied to sismology. For example, Lin et
al. introduces convolutional neural network deep learning methods for intelligent extrac-
tion, classification and identification of seismic oil and gas features [12]. On the basis of
the automatic recognition of the arrival time of P wave by the Ren AIC algorithm, Ren et
al applid the Bagging machine learning algorithm to distinguish the nature of the seismic
event [13]. Han et.al employ machine learning as an abnormal data mining model for re-
ducing error of mean square. The vector value and the seismic monitoring data extracted
from raw data were calculated in a library for data feature [14]. Li and Cai used adversar-
ial networks in machine learning to distinguish the first P wave arrival time and applied
the result in earthquake early warning [15, 16]. Chen employed unsupervised learning
to identify microseismic events, which introduced fuzzy clustering algorithm to improve
the method [17]. To the best of our knowledge, the above works are correlated with dis-
crimination of seismic wave arrival time and seismic phase identification. However, there
is lack of research on distinguishing seismic electromagnetics using convolutional neural
network [18, 19].

3. Design Principles of electromagnetic image recogenization.

3.1. Data collected from AETA. The devices of AETA system are composed of elec-
tromagnetic high precision sensing probes, data acquisition unit, and data analysis unit
for each device [20]. As shown in Figure 1., the seismic electromagnetic observation sta-
tion is represented by blue dots, and the recorded seismic data is represented by red
dots. Seismic electromagnetic observation stations are mainly distributed in the Sichuan-
Yunnan region of China where earthquakes occur frequently. The distribution of stations
is convenient for recording real seismic data.

A device of AETA system consists of various sensors, e.g., a pressure sensor, an earth
sound probe, and seismic electromagnetic detecting probe. In this work, we use seismic
electromagnetic probe to obtain the amplitude of the seismic electromagnetic signal with
additional latitude and longitude information. The selection criteria of magnitude is
earthquake above Mw3.6 and the epicenter distance needs to be less than 75KM, e.g.,
earthquake in Yushu (96.7E, 33.10N) recorded by station Yushu (97.01E, 32.08N). In
the end, we selected 1,437 paired earthquake events as the data set for the subsequent
machine learning process. The earthquake data set collected by the same instrument 14
days before the earthquake and 14 days after the earthquake are used as comparative
samples. Unrecorded and full range data are dropped out using manual screening. To
avoid interference, the two types of data sets are randomly arranged out of order.
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Figure 1. Seismic electromagnetic observation station and selected earth-
quake distribution

3.2. Improved DTFT for seismic electromagnetic. Short-time Fourier transform
(STFT) is widely used simple and intuitive method for studying non-stationary signals [21]
. Given a signal x(t) ∈L2(R), its STFT is defined as (1) and (2)

STFTx(t,Ω) =

∫
x(τ)gt,Ω(τ)dτ =

∫
x(τ)g∗(τ − t)ejΩτdτ (1)

1

2π

∫ ∞
−∞

X(v)G∗(v −G)ej(v−Ω)tdΩ = e−jΩt
1

2π

∫ ∞
−∞

X(v)G∗(v −G)ejvtdΩ (2)

where ‖g(τ)‖ =1, ‖ gt,Ω(τ) ‖=1 and the window function g(τ) should be a symmetric
function . Its basic idea is to use the window function g(τ) to cut x(τ) in the time domain,
i.e., change the time variables of x(t), g(t) to τ , and perform the Fourier transform of the
truncated local signal. The Fourier transform of the signal at a certain moment can be
obtained. When the center position of the window function g(τ) keeps changing position,
the Fourier transforms at different moments are available for analyzing. The set of these
Fourier transforms is STFTx(t,Ω) [22].

In the classic STFT, the non-oscillating low-pass window function is used, which is
based on the premise that the signal is stable in a short time interval, but this premise
does not exist when the time-varying characteristics of the signal are more significant.
Therefore, a high-resolution representation cannot be obtained. In this case, it is more
reasonable to approximate the signal within the time interval as a chirp signal. Therefore,
the traditional window function is improved, and the following chirp window function is
used to substitute the low-pass window function:

γ(t) = g(t)ej
ct
2
t2 (3)

g(t) is a low-pass window function, and ct is the chirp index, which is a time function.
From the point of view of the instantaneous frequency of the signal, the traditional STFT
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depend on a low-pass non-oscillating window function which uses a straight line parallel
to the time axis (frequency constant) to approximate the instantaneous frequency curve of
the signal, which can be regarded as the instantaneous frequency of the signal. Zero-order
approximation, while the STFT using a chirp window function with a variable frequency
modulation index uses a diagonal line, i.e., linear change in frequency, to approximate
the instantaneous frequency curve of the signal, which can be regarded as a first-order
approximation to the signal. In the case of selecting the frequency modulation coefficient
appropriately, the STFT using the improved chirp window function can obtain a more
accumulated signal time-frequency representation than the traditional STFT. Using im-
prove STFT, the precision of acoustic spectrum for the seismic electromagnetic signal can
be improved. A window frame is used to create a specific section, in which can be used to
calculate the discrete Fourier transform (DFT) of it. The window moves parallel R point
to frame the next section and calculate its DFT. By calculating section to section, which
is equivalent to record time nodes manually, the obtained data contains both time and
frequency information.

4. Method for identifying seismic electromagnet signals.

4.1. Image recognition using Keras. As a framework for deep learning architecture,
Keras has the advantages of understandability and scalability. The backend of Keras
supports multiple network architectures, e.g., Tensorflow, theano, mxnet, and cntk, which
can be adopted with custom layer easily. Tensor library of Keras has a highly optimized
back-end engine, which can provide advanced building blocks and optimized operations.
Keras itself is an intermediate layer. Using Keras to call Tensorflow or theano will be
slower than using Tensorflow or theano alone, but it is actually acceptable in small sample
target detection, e.g., seismic electromagnetic data set in this work.

4.2. Converted electromagnetic signal images using libraso. Librosa module in
Python is used to process low-frequency electromagnetic signals, which can be developed
for time-frequency processing, feature extraction and converting various signals into im-
ages. When selecting window function ω1 and frame shift R, it needs to satisfy Constant
Overlap-Add (COLA):

∞∑
−∞

ω1(n−mR) = 1 (4)

By setting a suitable value of Constant Overlap Add (COLA), the original signal can
be restored by the IDFT result of each frame of the superimposed spectrum, and a wave-
form graph and its time-frequency diagram can be generated. The COLA requirement is
important for avoiding artifacts. The signal is divided into blocks by setting a rectangu-
lar window without overlap in librosa. When the rectangular windows overlap by 50%,
the shape changes, but the sum of the overlapping parts in the middle is still equal to a
constant. The commonly used overlap rate (L-frame shift)/L Hamming window in STFT
conforms to COLA, e.g., 1/2, 3/4. For the spectrum analysis used for measuring, the
Bartlett window processed for the endpoints and windows in the generalized Hamming
family handled correctly are all equal to COLA(M/2) (50% overlap).. The equal weight of
COLA ensures that the input data were weighted for each point, which can be completely
reconstructed and avoid aliasing. The recording frequency of seismic electromagnetic data
is once for a minute. By using librosa module and setting a reasonable COLA value to
handle low-frequency signals, which combined by 1440 points a day, the waveform graph
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Figure 2. A raw electromagnetic signal and its converted STSF form

and its time-frequency diagram can be figured out. Figure 2 shows a sample electromag-
netic signal and its STSF form generated from libraso. Note that, Superposition should
be distinguished between splicing in librosa. The result of IDFT cannot reveal the seismic
electromagnetic signal of each frame directly, i.e., combining these results cannot get a
complete seismic electromagnetic signal for a day. The reasons are elaborated as follow:
1. the result of IDFT is not the seismic electromagnetic signal of each frame, but the
signal using rectangular window. The result of windowing and framing is predefined be-
fore the type of signals is identified and restored, which also leads to overlapping parts
between adjacent frames; 2. Due to overlap, Overlap-Add perform superposition rather
than splicing [23]. Superimposition can ensure that key seismic information for seismic
signal is not lost.

4.3. Algorithm. Figure 3. is the schematic diagram of entire algorithm for identifying
seismic electromagnetic. The algorithm includes two phases as follows: data conversion
and machine learning. The data conversion phase is performed in sequence according to
the following steps:1, Preprocessing raw data from AETA, i.e., magnitude and epicentral
distance are parsed from raw csv data using regular expressions; 2, normalized, i.e., the
range of electromagnetic values is unified to (0,1), which can increase the speed of gradient
descent and improve the convergence of the model; 3, Introduce an improved STFT to
convert a two-dimensional linear image into a spectrogram image; 4, Vectorization, i.e.,
converting spectrogram images obtained in step3 into tensors, shuffling the images order
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Figure 3. Flow chart of distingulishing seismic electromagnetic data

to enhance data, Since seismic electromagnetic signals have a strict time sequence, the
traditional flipping and random rotation methods are not suitable for data enhancement
in the data preprocessing stage The machine learning phases for seismic electromagnetic
will be elaborated in next section. The entire data is divided into two data sets, 14 days
before and after the earthquake separately.

4.4. Improved VGG model. The images used in this work are spectral waterfall di-
agrams synthesized after DFT of seismic electromagnetic signals instead of pictures in
nature. Based on the VGG16 model, an improved VGG model for seismic electromag-
netic signal identification is constructed by modifying several parameters. The architec-
ture of improved model mainly refers to the Inceptionv1 network [24]. Only 3Ö3 and
1Ö1 convolution kernels are used to compress the model parameters, and the number of
feature channels is doubled after pooling operation, in order to maintain the integrity
of the features as much as possible [25, 26]. At the same time, drawing on the idea of
Inceptionv2, batch normalization is used for the output of each convolutional layer, which
increases the robustness and training speed of the model, and can replace dropout to
prevent overfitting. Learn from jump connection idea of ResNet [27], after shaping the
output of the previous conv, it is directly combined with the next conv and output to
the next layer together, so that the output layer can retain higher-resolution features and
reduce the probability of gradient disappearance. Nonlinear activation function ReLU
is used to reduce the probability of neuron death during training. The original VGG16
structure and processing process are described as follows.

Input layer: In the seismic time picking problem, the input layer is a 512Ö512Ö1 three-
dimensional matrix, 1000 represents the number of sampling points in the time domain, 3
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represents the three components of N, E, and Z, and 1 represents the depth of the input
layer.

Convolutional layer: It builds a receptive field by combining specific convolutional
neurons. Each input node in the convolutional layer only selects a small part of the
previous layer of neural network, i.e., the convolution kernel, thereby reducing the number
of parameters in the final fully connected layer. This paper uses the commonly used
convolution kernel size 3Ö3 in the field of electromagnetic image recognition.

Pooling layer: It can reduce the size of parameter matrix of neural network effectively.
The pooling operation reduces the image resolution to facilitate subsequent operations.
When convolutional neural networks are applied to classification problems (such as image
classification), the pooling layer plays a role in extracting low-frequency summary features.
This paper uses a 2Ö2 pooling layer.

Fully connected layer: After several rounds of convolutional layer processing of elec-
tromagnetic images, the image information has been summarized into various features
containing higher information.. The convolutional layer can be regarded as a process of
automatic image feature extraction. After the feature extraction step is completed, the
fully connected layer is utilized to classify the electromagnetic images. Note that, only
one fully connected layer is used in this work.

The Rectified linear unit (ReLU) function is applied in activation function layer to
calculate the probability that the current sample belongs to different types.

In order to make the model learn fewer errors from the training data, the regulariztion
method is used to reduce the overfitting, dropout method is utilized in this model, i.e.,
randomly discard the modified output features during the training process. Precision is
used to measure the loss function. To enhance learning efficiency in model training, the
number of layers is modified via distinct architectures. Number of units per layer, L1/L2
regularization, the learning rate, and iterate feature engineering are added to improve
efficiency of learning.

Due to the balance of positive and negative ratios in the data set samples, for binary
classification tasks, the built-in evaluation index binary accuracy of keras can be directly
used for evaluation. As shown in Figure 4 below, the accuracy rate reaches 90% in the
initial stage without the introduction of dropout, which proves that it has been over-
fitting. In order to eliminate this situation and achieve better model characteristics, the
conv base layer needs to be extended. This effect can be partially eliminated through the
improved VGG16 model, which will be elaborated in the next paragraph.

A fine-tuned VGG16 model for different convolutional layers is used to identify the seis-
mic electromagnetic image dataset. The weight parameter of VGG-16 reaches level of 100
million, including 3 fully connected layers to ensure parameter concentration. However,
considering that the parameters of VGG16 are designed for 1000 classification categories,
this study only needs to use 2 of them which account for a small proportion. The original
number of fully connected layers in VGG16 model can be reduced to 2. After several
comparative experiments, to improve the recognition accuracy and model efficiency, the
first fully connected layer should be 4096, and the second one should be 2. The improved
VGG16 model for electromagnetic images still uses a 3Ö3 convolution kernel, and every
two convolutional layers, a maximum pooling layer is used to form the first three groups of
convolutional pooling structures. The number of convolution kernels increases according
to powers of two, e.g., 32, 64, 128. In order to reduce the computational complexity, the
fully connected layer simplifies the complex first three layers of the original VGG16. As
shown in Figure 5, the composition details of improved VGG16 are described as follows:
When the image input layer is 32Ö32Ö3, the first three convolutional networks are all
composed of 2 convolutional layers with a convolution kernel size of 3Ö3 and a maximum
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Figure 4. The accuracy and loss curves of the training and accuracy sets
of 30 epochs using original VGG16 model without dropout

pooling layer. However, in order to keep the number of cores equal, the number of con-
volution cores is evolved from 32Ö32Ö64 to 4Ö4Ö256, while the step size is maintained
at 1Ö1.The structure of the following two convolutional networks is similar to the first
one. Add the flatten layer to realize the conversion of multi-dimensional input into one-
dimensional input, which also can complete the transition from the convolutional layer to
the fully connected layer. To reduce over-fitting, the dropout layer is introduced at the
end of the improved VGG16 model structure for electromagnetic signals.

5. Result and discussion.

5.1. Result. By tracking the loss and accuracy rate during the network training process
by customizing a callback function, accuracy is used as the target to measure the loss
function. As described in former section, The improved VGG16 model enhance learning
accuracy by reducing the number of convolution layers using dropout layer, and adding
L1/L2 regularization. For example, to expand the original VGG16 architeture, data-
enhanced feature extraction can be used to reduce training loss. Note that, the number
of sample in dataset is not large enough to completely eliminate the overfitting. When
added to a modified filtering layer, gradient descent for input image can be realized to get
largest possible filter response, and obtain an image with the maximum filter response.
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Figure 5. An improved VGG model

From Figure 2 , some features of the signal on the spectrogram can be manually identi-
fied, which is also the basic premise for using machine learning image classification in this
research. Experiments show that the STFT spectrogram generated by the seismic electro-
magnetic signal can be correctly identified by the improved VGG16 algorithm. Accuracy
is the ratio of correctly identified electromagnetic samples to the total number of samples.
Accuracy in test dataset can be used to evaluate the performance of the improved VGG16
model. As shown in Figure 6, the accuracy in test set has increased to 90% using refined
convolutional networks architecture described in section 4. By observing the decreasing
trend of the loss value of the training set and the test set separately, we can get follow-
ing result: the highest precision setting is using batch size 64. Increasing the batch size
will reduce the training time for each training epoch, which will also cause a decrease
in accuracy and overfitting. As shown in TABLE I, the different comparison results of
various parameters of the improved VGG16 model reflect the improvement of the model
performance.

Table 1. Comparison results of various batch size of improved VGG16 model

Batch Size 64 128 256 512

Spending Time 90min 60min 56min 54min
Accuracy of the 10th epoch 89.20% 88.12% 87.57% 86.65%
Accuracy of the 100th epoch 94.34% 92.33% 91.42% 91.06%
Loss of the 10th epoch 0.2720 0.2926 0.3070 0.3257
Loss of the 100th epoch 0.1553 0.1942 0.2304 0.2331

5.2. Discussion. Accuracy of observation instruments data: In this work, the
waveform processing model of the reference did not perform well. One of the reasons
is the architecture of the image processing process of librosa is not suitable for general
waveform processing, and the parameters are not adjusted to the best state. Further ex-
ploration of better architectures and training parameters may improve their performance.
In practical applications, the consistency of the electromagnetic observation instruments
and the recorded data are greatly affected by the environment. For example, some in-
struments only record once every 3 minutes, and some instruments are interfered by the
surrounding magnetic field, and the valid signals cannot be extracted from noise. To
improve the accuracy and resolution of the experiment, instruments with higher signal-
to-noise ratio should be deployed.
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Figure 6. The accuracy and loss curves of the training and accuracy sets
for 30 epochs for improved VGG model

The relationship between the number of FFT point and resolution: In liborsa,
the temporal resolution is the ability to distinguish the immediate impact in the time
domain. Frequency resolution shows the ability to distinguish adjacent single-frequency
tones in the frequency domain. It appears that the smaller the L, the larger the time
resolution; and the larger the N fft, the larger the frequency resolution. In fact, high
resolution cannot be selected only according to L ≤ N fft. When the length of each
frame is not equal to the number of FFT points, it needs to be filled with zeros. But
the zero padding operation cannot increase the frequency resolution. When the original
data length remains unchanged, no matter how to increase the number of FFT points,
the waveform frequency resolution cannot be improved. Adding zeros in the time domain
or frequency domain can only increase the interpolation density in another domain, not
the resolution.

Over-fitting and under-fitting: The number of training samples is not enough to
train a model that can be generalized to new data. Data augmentation is used to improve
the data to prevent overfitting. This work uses the read image in keras to perform multiple
random transformations to achieve data enhancement. The seismic electromagnetic data
is recorded sequentially a day, it can be performed by shift, shear, and flip. The enhanced
data comes from the original image, in order to further reduce over-fitting, it is necessary
to add a dropout layer before the model densely connected to the classifier dense, and use
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the regularization method to discard the random vector elements. The determination of
seismic electromagnetic signals is a binary classification problem, and binary crossentropy
function can be used as a loss function to determine the performance of the algorithm.
Gradient descent to the value of the input image of the convolutional neural network can
be applied to maximize the response of a certain filter, obtain the image with the largest
response of the selected filter.

6. Conclusion. The traditional method of identifying seismic waveforms is mostly to
process the waveform of the seismic signal directly, such as empirical mode decompo-
sition, which performs Hilbert-Huang transform (HHT) on the decomposed signal and
extracts the first three intrinsic mode function (IMF) ) The linear prediction cepstral
coefficients (LPCC) characteristic parameter of the component. Then use hidden Markov
model (HMM) to establish the identification model of natural earthquake and artificial
blasting [28]. The processing method is computationally complex and has low repeatabil-
ity.

There is no direct evidence and theoretical support for the exact correlation between
the occurrence of electromagnetic anomalies and earthquakes. Using improved short-time
Fourier transform (STFT) and VGG16 architecture neural network model, the method
described in this work has good classification performance for electromagnetic anomalies
and various seismic electromagnetic images, which can be used to understand seismic
electromagnetic phenomena.
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