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Abstract. Network Function Virtualization (NFV) technology can realize on-demand
distribution of network resources and improve network flexibility. It has become one
of the key technologies for next-generation communications. Virtual Network Function
Service Chain (VNF-SC) deployment is an important problem faced by network func-
tion virtualization technology. In this paper, the problem VNFs deployment for VNF-SC
in inter-data center elastic optical networks (inter-DC EONs) is investigated. First, a
multi-objective mathematical model, which minimizes total time delay and energy con-
sumption, is establish. In this model, VNF-SCs are divide into two classes, i.e., part of
required VNFs in each VNF-SC is dependent, others are independent. Second, Multi-
Strategy Particle Swarm Optimization based MOEA/D (MSPSO-MOEA/D) is proposed
to solve the model effectively. In MSPSO-MOEA/D, Chebyshev decomposition mecha-
nism is used to transform multi-objective optimization problem into a series of single
objective optimization subproblems. A new optimal mutation strategy is deeply studied
in order to propose a new Particle Swarm Optimization (MSPSO) algorithm with multi-
strategy. Finally, to show high performance of the proposed algorithm, large number of
experiments are conducted. Experimental results indicate that the proposed algorithm has
more advantages than compared algorithms.
Keywords: Network Function Virtualization, multi-objective, MOEA/D, VNF-SC

1. Introduction. With the emergence of new network technologies such as cloud com-
puting, software-defined network and network function virtualization, the future network
operation and maintenance is moving towards the direction of virtualization and intelli-
gence [1, 2]. Network function virtualization provides a method of service node virtual-
ization, which uses the general server to replace the special middleware in the traditional
network, which can greatly reduce the construction and operation costs of network oper-
ators, and improve the flexibility and expansibility of network management [3-5]. Since
network end-to-end services usually require different service functions, it has become an
important research topic to construct network service function chain by using virtualiza-
tion technology, and make reasonable allocation and scheduling of resources, which has
attracted extensive attention from academia and industry [6].

In general, traffic needs to be processed by network functions in a specified order to
enhance application security and performance. Ordered network functions can be called
Service Function Chain (SFC) [7]. In NFV network, SFC is composed of a set of ordered
VNFs [8]. Given a series of communication service requests containing SFC requests, the
corresponding VNF and its communication path need to be deployed to complete these
services. Due to the VNF software nature, its deployment location can be more flexible.
Different deployment locations produce different energy and resource consumption [9, 10].
Therefore, for the communication service request containing SFC request, NFV network
needs an effective method to determine the VNF deployment location and communication
path to reduce energy consumption and resource consumption [11]. This kind of problem
is called the VNF initial deployment optimization problem.

In recent years, the existing research usually sets an optimization goal of service function
chain mapping according to different service requirements and network scenarios, and
designs heuristic algorithm to solve it. Considering the problem of dynamic network
function deployment and routing optimization, jointly optimized the acceptable maximum
flowrate and energy consumption, established a mixed integer linear programming model,
and designed an approximate allocation algorithm based on flow compensation to solve the
problem [12]. Literature [13] considered the deployment of SFC in the context of content
distribution network, and minimized the deployment cost on the premise of ensuring the
delay requirements. The optimization problem was transformed into an integer linear
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programming problem, and a proactive VNF chain deployment algorithm was proposed
to solve the problem. Literature [14] proposed an algorithm of outsourcing service function
chain to cloud (MOSC), which transformed the deployment locations of different VNFs
on an SFC into hidden states in the implicit Markov model, and solved the model with
Viterbi algorithm. Literature [15] takes the workload and basic resource consumption
(BRC) into consideration, and establishes a planning model with the goal of minimizing
the number of active servers, and then designs a heuristic T-SAT algorithm to solve it. A
joint construction and mapping method of service function chain based on backtracking
method is proposed [16]. This method starts from the current deployment node and
adopts greedy strategy to deploy the next service function. In the deployment process,
the state of the whole underlying network is not considered and it is easy to fall into local
optimum. Literature [17] proposed link load balancing based on ant colony optimization
algorithm, which added link load, delay and packet loss to ant algorithm to identify the
shortest routing path and reduce the minimum delay between nodes. Literature [18]
proposed a load balancing method based on the response time of the server, in which the
controller was used to obtain the response, and the server selected the minimum time or
the most stable response time of the server.

In this paper, the problem VNFs deployment for VNF-SC in inter-data center elastic
optical networks (inter-DC EONs) is investigated. A multi-objective mathematical model,
which minimizes total time delay and energy consumption, is establish. In this model,
VNF-SCs are divide into two classes, i.e., part of required VNFs in each VNF-SC is depen-
dent, others are independent. In addition, Multi-Strategy Particle Swarm Optimization
based MOEA/D (MSPSO-MOEA/D) is proposed to solve the model effectively.

2. Problem Formation.

2.1. Network and VNF-SC Description. Directed graph G(V,E) denotes an inter-
data center elastic optical networks (inter-EONs). V = {v1, v2, . . . , vNV

} denotes the
nodes set, and NV represents the number of nodes. For vi(i = 1, 2, . . . , NV ), it can be
described as vi = {Ci, Si}, where Ci and Ti is the CPU and storage resource on vi. Similar
to the previous work, we also assume that only some specific virtual network functions
(VNFs) can be applied by a node. For vi(i = 1, 2, . . . , NV ), the set of VNFs can be

denoted as V NF V
i =

{
V NFi1 , V NFi2 , . . . , V NFid , . . . , V NFi

Ni
vnf

}
, where N i

vnf is the

number of VNFs, and V NFid ∈ V NF , where V NF is the set of all the VNFs and can be
denoted by V NF =

{
V NF1, V NF2, . . . , V NFNvnf

}
. Nvnf is the number of VNFs. The

set of optical links represented by E = {lij|vi, vj ∈ V }, and the link between node vi and
node vj denoted by lij. NE is the number of links. In each link, there are NF available
frequency slots, and denoted as F = {f1, f2, . . . , fNF

}.
R = {r1, r2, . . . , rk, . . . , rNR

} represents a set of VNF-SCs, where NR is the number of
VNF-SC. rk(k = 1, 2, . . . , NR) is denoted as rk = (sk, dk, bk, V NF

R
k , SeqV NF

R
k ). The

source node, destination node and initially required frequency slots are denoted as sk, dk
and bk, respectively. V NFR

k = {V NFk1 , . . . , V NFka , . . . , V NFk
NR
k

} and SeqV NFR
k =

{seqV NFk1 , . . . , seqV NFkb , . . . , seqV NFk
sNR

k

} are two classes of VNFs that rk required,

and NR
k and sNR

k represents the number of VNFs in V NFR
k and SeqV NFR

k , respectively.
In V NFR

k , all the required VNFs are independent, that is to say, the order of these VNFs
is flexible. In SeqV NFR

k , all the VNFs are dependent, i.e., they must be arranged in a
special order.

2.2. Mathematical Modeling.
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2.2.1. Objective function. There are two objectives, it is to minimize the total time delay
and energy consumption to serve all the VNF-SCs. The one objective is minimize total
time delay to serve all the VNF-SC. The total time delay can be expressed as

ttotal = tproc + ttrans + tprop + tquene (1)

where tproc, ttrans, tprop and tquene represent processing delay, transmission delay, propaga-
tion delay and queuing delay. Processing delay is the time it takes to process the VNF-SC
on the node. This article adopts the definition of the processing delay model based on
the common processor sharing algorithm, namely

tproc =

NR∑
k=1

tiproc =

NR∑
k=1

(liproc/l
i
flow)× f i

proc (2)

where lproc denotes the current VNF-SC on the node, lflow is an approximate fraction
of the VNF-SC that the VNF-SC will contribute to the node, and fproc is the VNF-SC
processing time. Transmission delay of VNF-SC, propagation delay and queueing delay
is defined in [19]. We can normalize the objective as

f1 =
tproc + ttrans + tprop + tquene

NR × (max{tiproc}+ max{titrans}+ max{tiprop}+ max{tiquene})
(3)

Since tiproc ≤ max{tiproc}, titrans ≤ max{titrans}, tiprop ≤ max{tiprop} and tiquene ≤ max{tiquene},
we have 0 ≤ f1 ≤ 1.

Another objective is to minimize energy consumption to serve all the VNF-SCs. Let
N i

f denote the number of VNFs on node vi, the total energy consumption of the node vi
can be calculated by

Ei = Ei
s +

N i
f∑

k=1

Ek
f,i (4)

where Ei
s and Ek

f,i denote the overhead of the start energy consumption, energy consump-
tion of k-th VNF on vi, respectively. Thus, the total energy consumption is

Etotal =

NV∑
i=1

Ei +

NE∑
i=1

NE∑
j=1

N ij
f∑

k=1

Ek
ij (5)

where Ek
ij represents the energy consumption of k-th VNF on link lij. Similar to the first

objective, this objective can be normalized as

f2 =

NV∑
i=1

Ei +
NE∑
i=1

NE∑
j=1

N ij
f∑

k=1

Ek
ij

NV∑
i=1

(Ei
s +

NF∑
k=1

Ek
f,i) +

NE∑
i=1

NE∑
j=1

NF∑
k=1

Ek
ij

(6)

Similarly, we have 0 ≤ f2 ≤ 1. Some constraints should be satisfied for the proposed
model, all the constraints can be found in our previous work [20].

3. Multi-objective Evolutionary MSPSO-MOEA/D Algorithm.
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3.1. Particle Swarm Optimization. Particle Swarm Optimization (PSO) is a kind
of random searching algorithm based on swarm cooperation designed by simulating the
foraging behaviour of birds. The evolutionary process is as follows:
(1) Initialization: Let NS denote the population size, the position and velocity of the
i-th individual can be expressed as xi = (xi1, xi2, . . . , xid) and vi = (vi1, vi2, . . . , vid),
respectively.
(2) Update: position and velocity of i-th individual can be updated by

vt+1
i = wvti + c1r1(p

t
i − xti) + c2r2(p

t
g − xti)

xt+1
i = xti + vt+1

i

where xti and vti are current position and velocity of i-th individual on t generation,
respectively. pti and ptg are the best position of the i-th individual and all the individuals
in the population until now. w is inertia weight. ci(i = 1, 2) are two learning factors. In
general c1 = c2 = 2. r1 and r2 are generated randomly in [0, 1].
(3)Selection: Selecting the appropriate individual according to the fitness value of the
individual.

3.2. MOEA/D Algorithm based on Chebyshev Decomposition. The decomposition-
based multi-objective evolutionary algorithm has great advantages in maintaining the
distribution of solutions. The distribution of solutions can be optimized by analyzing
the information of neighboring problems. The commonly used decomposition methods in
MOEA/D include weighted sum method, Chebyshev method and penalty-based bound-
ary intersection method, etc. [21, 22]. Generally speaking, the Chebyshev method is
the most widely used method. Using Chebyshev method to decompose a multi-objective
optimization problem into a set of optimization sub-problems, mathematically described
as follows {

min gtch(x|λi, z∗) = max
1≤i≤m

{λi|fi(x)− z∗i |}
s.t. x ∈ Ω,

(7)

where z∗ = (z∗1 , z
∗
2 , . . . , z

∗
m)T is a reference point. λ = (λ∗1, λ

∗
2, . . . , λN) represents a set of

uniformly distributed weight vectors. For z∗i (i = 1, 2, . . . ,m), it has z∗i < min{fi(x)|x ∈
Ω}.

For each pareto solution, there is always a weight vector to make the solution of Eq.
(8) the optimal solution, which corresponds to the Pareto optimal solution of the multi-
objective optimization problem.Chebyshev polymerization method is added in the method
of chebyshev ρ parameters, is a weighted sum polymerization method and chebyshev
method. By adjusting the ratio of the two methods, it combines the fast convergence of
the weighted summation polymerization method and the good distribution of Chebyshev
method. The mathematical description of Chebyshev polymerization is as follows:

min gAT (x|λ, z∗) = max
1≤i≤m

{λi|fi(x)− z∗i |}+ ρ
m∑
i=1

λifi(x) (8)

3.3. MSPSO-MOEA/D Algorithm. This algorithm decomposes a multi-objective op-
timization problem into a series of single-objective optimization sub-problems, and opti-
mizes these sub-problems at the same time. Then the MSPSO algorithm is used to replace
the genetic algorithm in MOEA/D, which realizes the effective solution of the problem.
The pseudo code of MSPSO-MOEA/D is as follows:
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Algorithm 1: Pseudocode of MSPSO-MOEA/D

1 Initialize the population N , set the weight vectors of evenly distributed as
λ = (λ∗1, λ

∗
2, . . . , λN), and the number of weight vectors in each neighborhood is T .

2 Set EP as the empty set.
3 Calculate the Euclidean distance of any two weight vectors and find the nearest T

weight vectors of each weight vector. For each i = 1, 2, . . . , N , let
B(i) = i1, i2, . . . , iT . For each j ∈ B(i), λj is T neighborhood vector of λi.

4 The initial population x1, x2, . . . , xN is generated uniformly and randomly in the
feasible space.

5 For each i = 1, 2, . . . , N , calculating FV i = F (xi).

6 Initialization the reference point z∗ = (z1, z2 . . . , zm)T .
7 Genetic recombination: an individual y is randomly selected from B(i) and a new

solution is generated using MSPSO.
8 Improvement: by using heuristic method to improve y for special problems, the

solution y′ is generated.
9 Function evaluation: evaluation function F (y′).

10 Update z: for each j = 1, 2, . . . ,m, if zj > fj(y
′), let zj = fj(y

′).

11 Update the neighborhood solution: for each j ∈ B(i), if gtch(y′|λ, z) ≤ gtch(xj|λ, z),
let xj = y′, FV j = F (y′).

12 Update EP : Remove all vectors dominated by F (y′) from EP .
13 If none of the vectors in EP dominated by F (y′), add F (y′) to EP .
14 Terminal condition: if the ending condition is met, the algorithm stops and

outputs EP . Otherwise go to Step 3.

4. Experiments and Analysis. In order to verify the effectiveness and efficiency of the
algorithm, experiments were carried out on two widely used networks. In the section 4.1,
the parameters used in the algorithm will be given. The experimental results are obtained
in section 4.2. Then, the experimental results are analyzed in section 4.3.

4.1. Parameters Setting. Two widely used networks (NSFNET and US backbone)
were used in the experiments. FSs is 12.5 GHz, and the transmission distances of BPSK,
QPSK, 8QAM, and 16QAM are selected as 9600, 4800, 2400, and 1200 km, respectively.
In two topologies, all VNF-SCs in each group satisfy an uniform distribution. In order
to make the algorithm converge to the optimal solution, tmax = 2000 is used. Generally
speaking, when the population is large, longer calculation time is required. In addition,
when the population size is small, it will lead to poor population diversity. Therefore, the
population size selected in the experiment is NP = 100. Each VNF-SC that the frequency
slots meet the uniform distribution in [1, 10], and each link has 2000 frequency slots, that
is, NF = 2000.

4.2. Experimental Results. In order to verify the performance of the proposed al-
gorithm, we compared the proposed algorithm MSPSO-MOEA/D with the other three
algorithms. The first algorithm is EEM, which is cited in the literature [23]. Another
method proposed in the literature quotes [24], denoted as RSAGA. In order to improve the
network performance index, RSAGA studied the VNF-SC deployment problem combin-
ing modulation level allocation and spectrum allocation. In addition, we also compared
MSPSO-MOEA/D and PSO-MOEA/D.

The number of data center nodes are fixed as ND = NV /4, ND = NV /2 and ND =
3NV /3. In each experiment, number of VNF-SCs are set as NR = ρNV (NV − 1), and
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ρ = 0.25, 0.5, 1, 2 and 4, respectively. Figure 1 and Figure 2 show the total time delay
and energy consumption obtained in NSFNST and US Backbone when ND = NV /4. The
total time delay and energy consumption obtained in NSFNST and US Backbone when
ND = NV /2 are shown in Figure 3 and Figure 4, respectively. Figure 5 and Figure 6 show
the total time delay and energy consumption obtained in NSFNST and US Backbone
when ND = 3NV /4.
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Figure 1. Total time delay obtained when ND = NV /4.
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(b) Energy consumption in US Backbone

Figure 2. Energy consumption obtained when ND = NV /4.

To demonstrate the uniformity, convergence, diversity of the proposed algorithm [25,
26], the following two metrics are used to evaluate the pareto solutions:

• Spacing Index (SI): defined by Eq.(9) below.
SI(A) =

√
1

|PF ∗|−1
∑

z∈PF ∗

(
d̄− d(z)

)2
d(z) = min {‖z − z′‖|z 6= z′, z′ ∈ PF ∗}
d̄ = 1

|PF ∗|
∑

z∈PF ∗
d(z)

(9)

Spacing Index is used to metric the uniformity of the pareto solution. The smaller
of SI, the better of the solutions.
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(b) Time delay in US Backbone

Figure 3. Total time delay obtained when ND = NV /2.
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(b) Energy consumption in US Backbone

Figure 4. Energy consumption obtained when ND = NV /2.
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(b) Time delay in US Backbone

Figure 5. Total time delay obtained when ND = 3NV /4.

• Hypervolume Index (HI): which is used to test the uniformity, convergence and di-
versity of the solutions, and defined by the following Eq.(10).

HI(PF ∗) =
⋃

z∈PF ∗

vol(z) (10)
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Figure 6. Energy consumption obtained when ND = 3NV /4.

Table 1. Statistical results (Mean and Standard Deviation) of the SI and HI.

NSFNET USBackbone
SI HI SI HI

0.25

0.25 2.7804(1.82E-02) 9.9096(3.56E-01) 1.9816(2.13E-02) 10.9964(4.48E-01)
0.5 3.1554(2.15E-02) 10.1947(4.12E-01) 2.2841(2.36E-02) 11.2921(4.95E-01)
1 3.7260(3.29E-02) 10.9833(4.89E-01) 2.5355(3.43E-02) 12.1934(5.32E-01)
2 4.0251(4.29E-02) 11.2486(5.79E-01) 2.7852(4.98E-02) 13.4140(6.28E-01)
4 4.5996(5.38E-02) 12.5158(6.48E-01) 3.4457(5.73E-02) 14.5094(7.12E-01)

0.5

0.25 3.2356(3.58E-02) 10.1947(4.12E-01) 3.1245(3.43E-02) 11.2839(4.87E-01)
0.5 4.2568(3.95E-02) 10.8574(4.97E-01) 3.9854(3.89E-02) 12.6741(5.39E-01)
1 5.9872(4.13E-02) 11.3684(6.12E-01) 5.2812(4.25E-02) 13.5876(6.24E-01)
2 6.3871(4.74E-02) 12.0258(6.81E-01) 6.1578(5.37E-02) 14.5231(6.97E-01)
4 7.0217(5.23E-02) 12.9852(7.35E-01) 6.9756(6.04E-02) 15.0124(7.42E-01)

0.75

0.25 3.3482(3.76E-02) 10.8752(4.34E-01) 3.7631(3.87E-02) 11.6732(4.98E-01)
0.5 4.5632(4.08E-02) 11.2874(5.21E-01) 4.2418(4.05E-02) 12.9742(5.75E-01)
1 6.1274(4.91E-02) 11.8736(6.54E-01) 5.6397(4.64E-02) 13.6741(6.63E-01)
2 6.7452(5.18E-02) 12.5416(7.01E-01) 6.7468(5.80E-02) 14.8762(7.21E-01)
4 7.5687(5.87E-02) 13.2461(7.72E-01) 7.1846(6.29E-02) 15.9715(7.76E-01)

where vol(z) is the hypervolume of area which is surrounded by z and the reference
point r = (r1, r2, . . . , rm). m is the dimensionality of the objective space.

4.3. Experimental Analysis. Figure 1, Figure 3 and Figure 5 show the total time
delay obtained by the algorithm MSPSO-MOEA/D and compared benchmark algorithms
(EEM, RSAGA and PSO-MOEA/D) in two networks. In Figure 1, the total time delay
is obtained in two network when ND = NV /4. It can be seen from the experimental
results that the total delay obtained by MSPSO-MOEA/D is smaller than the comparison
algorithm with the same number of VNF-SCs. Similarly, the total time delay obtained
are shown in Figure 3 and Figure 5 when ND = NV /2 and ND = 3NV /4, respectively.
It can be seen from the experimental results that the total delay obtained by MSPSO-
MOEA/D is smaller than the comparison algorithm with the same number of VNF-SCs.
In each figure, the total time delay increases as the number of VNF-SCs increases. when
ND = NV /4, the total time delay obtained by the MSPSO-MOEA/D is 3.1% to 4.7% less
than that obtained by EEM, RSAGA and PSO-MOEA/D when the number of VNF-SCs
is 0.25NV (NV − 1). When the number of VNF-SCs is 4NV (NV − 1), the total time delay
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obtained by MSPSO-MOEA/D is 7.1%-11.2% less than those obtained by EEM, RSAGA
and PSO-MOEA/D, respectively.

Figure 2, Figure 4 and Figure 6 show the energy consumption obtained by the algorithm
MSPSO-MOEA/D and three benchmark algorithms (EEM, RSAGA and PSO-MOEA/D)
in two networks. In Figure 1, the energy consumption is obtained in two network when
ND = NV /4. It can be seen from the experimental results that the total delay obtained
by MSPSO-MOEA/D is smaller than the comparison algorithm with the same number of
VNF-SCs. Similarly, the energy consumption obtained are shown in Figure 3 and Figure
5 when ND = NV /2 and ND = 3NV /4, respectively. It can be seen from the experimental
results that the MSPSO-MOEA/D algorithm obtains a smaller energy consumption than
the algorithm with the same number of VNF-SCs. In each figure, energy consumption
increases as the number of VNF-SCs increases. when ND = NV /4, the energy consump-
tion obtained by the MSPSO-MOEA/D is 2.8% to 4.1% less than that obtained by EEM,
RSAGA and PSO-MOEA/D when the number of VNF-SCs is 0.25NV (NV − 1). When
the number of VNF-SCs is 4NV (NV − 1), the total time delay obtained by MSPSO-
MOEA/D is 7.6%-12.8% less than those obtained by EEM, RSAGA and PSO-MOEA/D,
respectively.

Table 1 demonstrates the distance index and overcapacity index (mean and standard
deviation) on the two networks. This shows that the MSPSO-MOEA/D algorithm can
find various Pareto optimal solutions under the conditions of different numbers of VNF-
SCs and data centers. In this way, it is more likely to meet the requirements of decision
makers. In addition, it can be seen from Table 1 that SI and HI indexes, as well as
MSPSO-MOEA/D, can obtain better PF for our dual-objective optimization model.

5. Conclusions. In this paper, the problem VNFs deployment for VNF-SC in inter-data
center elastic optical networks (inter-DC EONs) is investigated. A multi-objective math-
ematical model, which minimizes total time delay and energy consumption, is establish.
In this model, VNF-SCs are divide into two classes, i.e., part of required VNFs in each
VNF-SC is dependent, others are independent. Second, Multi-Strategy Particle Swarm
Optimization based MOEA/D (MSPSO-MOEA/D) is proposed to solve the model effec-
tively. In MSPSO-MOEA/D, Chebyshev decomposition mechanism is used to transform
multi-objective optimization problem into a series of single objective optimization sub-
problems. A new optimal mutation strategy is deeply studied in order to propose a new
particle swarm optimization (MSPSO) algorithm with multi-strategy. Finally, to show
high performance of the proposed algorithm, large number of experiments are conducted.
Experimental results indicate that the proposed algorithm has more advantages than
compared algorithm.
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