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Abstract. This study suggests a solution to the routing optimization insufficiency based
on the reverse elite sparrow search algorithm (RESSA) for energy balancing and network
lifetime prolonging in wireless sensor networks (WSN). The node’s consumption and the
remaining energy priority to balance consumption in the data forwarding to the cluster
head are considered the optimal path evaluation function. The obtained results of the
experimental the suggested scheme are compared with the other methods show that the
proposed scheme increases data forwarding round numbers and consumes less energy, the
remaining energy more, and higher efficiency of node energy consumption.
Keywords: Wireless sensor networks, Sparrow search algorithm, Routing optimization,
Intelligent algorithms

1. Introduction. Due to the limited node energy, difficult positioning, and harsh de-
ployment environment [1], wireless sensor networks (WNS) often leads to node failure [2]
or disuse due to power supply [3,4]. Therefore, maximizing the energy of the service life
of the network is an important issue in implementing WSN applications [5,6]. The WSN’s
construction and the application take communication as the center, data as the element,
transmission as the purpose, and application as the guide. Unlike traditional computer
networks, ”small storage space, low computing power, large coverage density, and difficult
battery replacement” are the main characteristics of WSN computing nodes [7].

An efficient routing algorithm is crucial for saving energy consumption. The rout-
ing problem of deploying WSN application is encountering complication computations
whenever using the traditional methods, like gradient and arithmetical algorithms [8].
Metaheuristic algorithm is a promising way to deal with complex problems such as a
routing table specifically for deploying WSN applications [9].

Many scholars have studied routing optimization of WSN using swarm intelligence opti-
mization in recent years, such as genetic algorithm (GA) [10], particles swarms optimiza-
tion algorithm (PSO) [11], Whales optimization algorithm (WOA) [12], sparrow algorithm
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(SSA) [13], hybrid particles swarm optimization with bat algorithm (PSO-BA)[14], Sun
Wukong evolution (MKE) algorithm [15]. However, these traditional optimization meth-
ods have their shortcomings, such as low search efficiency, easy to fall into optimal local
solution, difficulty to obtain the optimal global solution, and so on. Besides, most of
the above methods only consider the minimum energy consumption of the path as the
optimization goal [5,16], without considering the limitations of the remaining energy of a
node, which leads to the rapid failure of the node [17].

This paper introduces a WSN routing scheme based on an improved sparrows search
routing (ISSR) algorithm. The ISSR is enhanced based on the elite reverse learning strat-
egy and the firefly algorithm (FA) [18], emitting light for balancing energy and prolonging
lifetime in WSN. The proposed algorithm has a high convergence speed and considers the
balance of the total network energy consumption during routing optimization and im-
proving the network life cycle compared to the other algorithms in the works of literature.

2. WSN Routing Mathematical Model. The implementing WSN can be laid out
representation by an undirected weighted graph G, G = {V,E}, where V is the set of
network nodes with {v1, v2, . . . , vn} [10,19], E is the inter-node communication link set
with {e1, e2, ..., en} [20]. Whether an effective link is formed between node i and j in WSN
can be expressed as follows:

xi,j =

{
1, ifEdge from node i to node j is chosen for routing

0, others
(1)

The distance from node vi to vj is expressed as d(vi, vj), and the link length is expressed
as: Energy consumption in WSN is a crucial issue to consider. In data transmission by
sensor nodes, communication energy consumption is far greater than calculation energy
consumption [3], so the influence of calculation energy consumption is ignored. The WSN
node’s energy consumption model [4] is given as follows.

Ec = λd(vi, vj)
n (2)

Where λ is the energy consumption coefficient, the short-distance multi-hop forwarding
mode is adopted between network nodes and n = 2. Node routing in WSN is constrained
by effective distance, and it is supposed that distance between nodes is considered as
an effective transmission way with D0. Then the effective transmission distance between
nodes satisfies the following constraints:

d (vi, vj) ≤ d0, and vi, vj ∈ V (3)

Where vi, vj are nodes corresponding to edges.

2.1. Residual energy model. The energy consumption efficiency of WSN network
nodes is considered in the process of data transmission with saving energy consump-
tion [19,21], that is, the energy consumption of the whole transmission path is the least
as possible as the following formulated expression.

min (Ec) =
∑
i,j

xijλd(vi, vj)
2 (4)

Where xij is equal to 1. The efficiency of node energy consumption will result only
pursuing in a fixed data transmission path of nodes, which will lead to premature failure
of nodes in the path of minimum energy consumption. Therefore, to prolong the network
lifetime, the balance of energy consumption of network nodes must be considered, that
is, the remaining energy of nodes should be considered in the process of routing, and the
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nodes with more remaining energy should be used to forward data [22]. The residual
energy index of the node is defined as.

ωi =
Er0
Eri

(5)

Where Er0 is the initial node energy consumed, and Eri is the node’s current remaining
energy i. It can be seen from Eq. (6) that ωi ≥ 1. Theoretically speaking, when the energy
of the node is exhausted until it dies, Eri is 0 and ωi has an infinite value [23]. To avoid
low energy nodes being selected as routing nodes, in this paper, if the remaining energy is
1/10 of the initial energy, it is regarded as a low energy node [24]. For low-energy nodes, a
larger number, maxN, is used to punish them. Then Eq. (6) can be expressed as follows.

ωi =

{
Er0
Eri

, The remaining energy ≥ 1/10 of the initial energy

maxN, The remaining energy < 1/10 of the initial energy
(6)

In the routing process of WSN, considering the balance of energy consumption of nodes,
the remaining energy of the entire routing node is required to be the highest. That is, the
sum of the remaining energy exponents of the whole routing node is minimized as follows.

min (ωs) =
∑
i

ωi (7)

Fitness function of routing optimization can be expressed as.

Fitness = min (ωs)×min (Ec) (8)

The routing optimization fitness function is modeled with considering the balance and
effectiveness of energy in network path selection.

3. Improved Sparrow Search Algorithm. This section presents an Improvement ver-
sion of Sparrow search algorithm (RESSA) based on the opposition based learning (OBL)
as elite reverse learning strategy and FA. Before presenting apprach detailly, we review
the original algorithm of SSA.

3.1. SSA algorithm. Sparrows search algorithm (SSA) is a kind of swarm-intelligence
optimization methods based on the behavior of the sparrows foraging and avoiding preda-
tors [13]. Sparrow search algorithm mainly simulates the process of sparrows group for-
aging processing. The sparrows group foraging process is a finder-follower model with
superimposed detection warning mechanism. Among sparrows, individuals who find the
food better serve as finders, and other individuals serve as followers. At the same time, a
certain proportion of individuals in the population are selected to conduct reconnaissance
and early warning (scout). If danger is found, they will give up food, and safety comes
first. We use virtual sparrows to search for objects through simulation experiments. And
the following matrix is used to represent the position of individual sparrows.

X =


x1,1 x1,2 . . . . . . x1,d
x2,1 x2,2 . . . . . . x2,d

...
xn,1

...
...

...
xn,2 . . . . . .

...
xn,d

 (9)
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In the formula, n is the sparrows number and d is the variable dimensions. The fitness
values of the sparrows can be formulated as vector solution as follows.

F (X) =


f([x1,1 x1,2 . . . . . . x1,d])
f([x2,1 x2,2 . . . . . . x2,d])

...
f([xn,1

...
...

...
xn,2 . . . . . .

...
xn,d])

 (10)

Where F (X) and n are the fitness value of an individual and the sparrows number re-
spectively. In SSA, finders with higher fitness scores were given priority in getting food
during the search. Also, because the discoverer is responsible for finding food and guiding
the entire population movement. As a result, the discoverers were able to search for food
over a much wider area than the participants. According to the rules, the discoverer has
a high energy reserve and is responsible for searching the area with rich food in the whole
population, providing foraging area and direction for all entrants. Once the sparrow de-
tects a predator, the individual begins to sing as an alarm signal. When the alarm value
is greater than the safety value, the finder will take the participants to other safe areas
for foraging. In each iteration, the location of the finder is updated as follows:

X t+1
i,j =

{
X t
i,jexp

(
−i

αitermax

)
if R2 < ST

X t
i,j +QL if R2 ≥ ST

(11)

Where X t
i,j and t are a solution of representation the j − th dimension value of the i− th

sparrow in iteration and the current iteration, with j = 1, 2, ..., d; d is dimension of search
space. itermax is the constant with the most iterations. α ∈ (0, 1] is a random number.
R2 ∈ [0, 1] and ST ∈ [0.5, 1] represent alarm values and safety thresholds, respectively.
Q is a random number that follows a normal distribution. L represents a 1 by D matrix
where every entry is 1. There are no predators around if R2 < ST , the finder goes into
extensive search mode. Some sparrows have found predators, if R2 ≥ ST , all sparrows
need to fly to other safe areas quickly. For entrants, the lower their energy, the worse their
foraging position in the population as a whole. Some entrants may constantly monitor the
finders to increase their predation rate and compete for food resources, during monitoring
the finders of some entrants frequently. Once they see that the discoverer has found good
food, they will immediately leave their current position for moving to compete for food.
If the sparrow is assigned ”win”, they could get the finder’s food immediately that their
position could be updated as formula for enrollees is as follows.

X t+1
i,j =

{
Qexp

(
Xt

worst−Xt
i,j

i2

)
if i > n/2

X t+1
P +

∣∣X t
i,j −X t+1

P

∣∣A+L otherwise
(12)

Where XP and Xworst are the best occupied position by the finder and the worst occupied
position in the world at the moment respectively. A represents a 1 × d matrix in which
each element is randomly assigned 1 or −1, A+ = AT (AAT )−1. When i > n/2 indicating
that the i− th of the entrants with a poor fitness value was most likely to starve without
food. Let’s assume that 10% to 20% of the sparrow population is aware of the danger.
The mathematical model of the scout can be expressed as.

X t+1
i,j =

 X t
best + β

∣∣X t
i,j −X t

best

∣∣ if fi > fg

X t
i,j +K

(
|Xt

i,j−Xt
worst|

(fi−fw)+ε

)
if fi = fg

(13)

Where Xbest is the best obtained solution as the current global optimal location. β is a
normal distribution of random numbers with a mean of 0 and a variance of 1 that is as a
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parameter of step size control. K × [−1, 1] is a random number. The fitness functions is
symbol f is measured with some values, e.g., fi, fg and fw are the current sparrows fitness
value, the global best and worst fitness values, respectively. ε is the minimum constant
to avoid zero division error. For simplicity, when fi > fg means sparrows are at the edge
of the group. Xbest represents the location of a population center around which it is safe.
fi = fg indicates that sparrows in the middle of the population are aware of the danger
and need to be close to other sparrows. K is the sparrow moving direction, which is also
the step size control coefficient

Table 1. Selected benchmark functions parameters

3.2. Improvement SSA. SSA is one of the most advantageous search algorithms with
strong local search ability and faster convergence speed [9], but weak global search capa-
bility and jump out of optimal local operation is weak and vulnerable to local optimum,
this leads to a basic sparrow optimization search algorithm efficiency is not stable, reverse
learning mechanism is optimized by grouping distribution problem effective method [9].

Opposition Based Learning (OBL) is expressed as if x is in the range [a, b], then the
opposite particle of x can be expressed as x = a + b − x. In D-dimensional space, the
concept of reverse learning can still be applied. For D-dimensional search space, let
S(x1, x2, .., xi.., xD), xi ∈ [ai, bi](i = 1, 2, ..., D) is the forward solution of the problem,
and then the corresponding inverse vector can be expressed as S ′

(
x

′
1, x

′
2, . . . , x

′
D

)
, xi =

ai + bi − xi. The best fitness value can be selected as a new optimization group through
direct screening or other optimization strategies, making the particles in the optimization
space quickly converge to the optimal solution’s location.

Elite reverse learning strategy is used in the comprehensive collection of the best fitness
value to generate new solutions of 20% and 20%, then 20% of the new generation of the
total solution to join the original solution and inverse solution set, at this point, to the
fitness value reordering of the total in the collection, sorted out 20% of the total worst
fitness value from the set of solutions so that we get the new optimization group [9].

In the firefly algorithm, individual fireflies emit light, and the light acts as a signal to
attract other individual fireflies [25]. We assume that (1) each firefly will be attracted to
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all other brighter fireflies and will move to that position without discrimination between
genders. (2) In the firefly algorithm, its attractiveness is directly proportional to its
brightness. For any two fireflies, one of them will always move towards the one brighter
than itself. The brightness of the firefly is constantly changing and decreases with the
increase of the distance. (3) If the individual firefly does not find any other firefly that
is brighter than the one given to it, it will randomly move to update its position.The
optimized mathematical form that produces the new solution Xinew is as follows.

Q1 = Ristar ×
rand (−0.5, 0.5)

D
(14)

Xinew = Xi ×Q (15)

The position update formula of firefly from the FA with i− th attracted to move toward
Firefly j − th is given as follows.

xi = xi + β1* (xj − xi) + α*

(
rand− 1

2

)
(16)

Where xi, and xj are the spatial positions of firefly i and j, α × [0, 1] is the step size

factor, rand is a uniformly distributed random number on [0,1]. β1 = β0*e
−γr2i,j , with β0

is the maximum attraction and I = I0*e
−γr2i,j , I0 is the maximum fluorescence brightness

of fireflies. γ is the absorption coefficient of light intensity, and the fluorescence decreases
gradually with the increase of distance and the absorption of media. r(i,j) is the spatial
distance.

Table 2. A comparison of obtained optimization results of the proposed
RESSA with the PSO, GA, SSA algorithms for the benchmark functions.

3.3. Entrant Location Update. SSA algorithm can be described as randomly finding
a position near the current optimal position. The variance of each dimension away from
the optimal position will become smaller, that is, there will not be a big difference between
the optimal position and the optimal position in one dimension. In contrast, the difference
between other positions is small. Because A+, A is a matrix of size 1×D (1 row and D
columns). (

AAT
)−1

=

(−1, 1, −1
)−1

1
−1

−1 = (3)−1 =

(
1

3

)
(17)
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XAT
(
AAT

)−1
L = (1, 2, 3)

−1
1
−1

(1

3

)
(1, 1, 1) =

1

3
(−11 + 12 + (−1) 3) (1, 1, 1)

=

(
−2

3
,−2

3
,−2

3

)
=

1

D
(L1x1 + L2x2 + L3x3) (1, 1, 1)

=
1

D

(
D∑
d=1

(rand {−1, 1}xd) ,
D∑
d=1

(rand {−1, 1}xd) ,
D∑
d=1

(rand {−1, 1}xd)

) (18)

The position of the participant can be simplified and updated. Formula j should not
appear on both sides of the formula, which means that a variable is a number rather than
a vector. The details are updated as follows.

X t+1
i,j =


Qexp

(
Xt

worst−Xt
i,j

i2

)
if i > n/2

X t+1
P + 1

D

D∑
d=1

(rand {−1, 1}) (
∣∣X t

i,j −X t+1
P

∣∣) if i ≤ n/2
(19)

Where Xworst is the worst position of the sparrow in the current population, and XP

is the most position of the sparrow in the population. If (i > n/2), the value of which
is the product of a standard normally distributed random number and an exponential
function based on the natural logarithm, which corresponds to the standard normally
distributed random number when the population converges. If (i ≤ n/2), the value is
the position of the current optimal sparrow plus the random addition and subtraction
of each dimension of the distance between the sparrow and the optimal position, and
the sum is equally divided into each dimension. The sparrow search algorithm and the
firefly algorithm are combined, and the RESSA is proposed to take advantage of the
complementary advantages and disadvantages of the two algorithms to carry out the
iterative update. If the sparrow is in the current optimal position, it will flee to a position
near itself. How close it depends on the ratio of the difference between the distance from
the worst position and the difference between the food and the worst food in its position.

X t+1
i,j =

X
t
best + β1

∣∣X t
i,j −X t

best

∣∣+ α
(
rand− 1

2

)
if fi > fg

X t
i,j +K

(
|Xt

i,j−Xt
worst|

(fi−fw)+ε

)
if fi = fg

(20)

The reverse elite learning strategy and the group communication in the FA algorithm,
the improved spatial search method, according to the new strategy, improves the sparrow
search algorithm to fall into the dilemma of local optimal easily and adds the group
information exchange function to enhance the global search ability.

3.4. Numerical Test Results. The optimization ability of the RESSA can be fully
investigated through various types of benchmark functions. Twelve selected different
types functions used to test the proposed FSSSA. Some test function parameters is listed
in Table 1. The obtained results of the suggested scheme are compared with PSO [7], GA
[6], and SSA [9] algorithms. The setting experiment is detailed as: population size N = 30,
maximum iteration times T = 100, dimension D of the objective function, and upper and
lower bounds ub and lb of the initial value were selected according to the reference functions
in Table 1, the number of finders pNum and the number of sparrows reconnaissance and
warning sNum were both 20% of the population size. To avoid the contingency of the
optimization results and to prove the stability of RESSA, the experimental results of 30
independent runs of each benchmark function were selected as the experimental data. For
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(a) Test function no. 01 (b) Test function no. 06

(c) Test function no. 10 (d) Test function no. 11

Figure 1. Comparison of convergence curves of 4 algorithms obtained on
the benchmark functions

the 12 benchmark functions, the mean value and standard deviation of each algorithm are
taken as the final evaluation indexes. Table 2 lists a comparison of optimization results
of the proposed RESSA with PSO, GA, SSA for the benchmark functions.

As seen from the experimental results, the optimization results of the RESSA are
better than those of the other three algorithms; In terms of optimization accuracy, the
optimization results of F1-F4 and F10-F12 of RESSA are greatly improved compared
with the other three algorithms. For functions F7 and F9, RESSA can effectively jump
out of the local optimum and stably find the global optimal solution. Figure 2 presents
five optimization algorithms. It can be seen from the convergence curve that RESSA is
significantly better than the other three algorithms in terms of convergence speed and
optimization precision, which indicates that RESSA can fully guarantee the searching
ability while ensuring the exploration ability, without losing the diversity of population
and optimization stability.

4. Solution WSN Routing Optimization by Applied RESSA.

4.1. Experimental Environment Setting. The proposed RESSA is used to solve the
WSN optimization problem, and the sparrow position adopts an integer sequence coding
scheme. Assume that the number of nodes in the network is n, and each node in the
wireless network built has an independent number corresponding from 1 to n. Assume
that the source node is vs and the destination node is vd. The possible path from the
source node to the destination node is Rj = (vs, vj2, vj3.., v(jn−1), vd), vji(i = 1, 2, 3, .., n−1)
is a random arrangement of other node numbers except source node and destination
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Figure 2. Comparison of residual network energy of four algorithms

node, and these node numbers are different from each other. An n-dimensional vector
identifies an efficient route satisfying the constraint of Eq. (4) with 0 and 1 elements
Xj = (xjs, xj2, xj3, ...x(jn−1), xjd). The value of xji in each dimension is 0 or 1. When the
value is 1, it means that the corresponding numbered node is selected as the routing node;
if the value is 0, the corresponding node is not selected as the routing node. Since the
source and destination nodes must be in the route, the values of xjs and xjd are always
1. For example, X = (1, 0, 1, 1, 0, .., 1, 1) indicates that vs → v3 → v4 → v(n−1) → vd
constitutes an efficient route. The effect of particle velocity is to change the position
of the particle, which is defined as Sj = (sj1, sj2, sj3, ..., s(jn−1), sjn), and the speed sji is
between [−4.0,+4.0], which represents the possibility that node i is selected as the routing
node, that is, the possibility that xji takes 1. Doing the same with the S function.

4.2. Algorithm Update Mechanism. Let the optimal position (global optimum) searched
by the whole particle swarm be Rg = (vs, vg2, vg3, ..., vgn−1, vd). The current optimal posi-
tion (individual optimal) found by the j-th particle is Rpj = (vs, vp2, vp3, ..., v(pn−1), vd), the
corresponding routing identification vector for Xpj = (xp1, xp2, xp3, ..., x(pn−1), xpn). For a
population composed of M particles, the node arrangement vector of individual members
is Rj, and the corresponding effective routing identification vector is Xj. The reverse
population is ORj = (vs, v̄j2, v̄j3, . . . , v̄jn−1, vd), j = 1, . . . ,M . vs and vd are the number
of source node and destination node respectively, vs, v̄j2, v̄j3, . . . , v̄jn−1, vd is a permuta-
tion of different integers between 1 and n. The inverse component of each dimension is
calculated according to the following formula [9].

v̄ji = 1 + n− vji (21)

The components of the valid routing identity vector OXj = (xjs, x̃j2, x̃j3, . . . , x̃jn−1, xjd)
corresponding to ORj are assigned as follows: if nodevji is selected as a route, then
the reverse node x̄ji generated by Equation (10) is also selected as a route, then the
corresponding value of xji is 1; On the other hand, if vji is not selected as a route, then
xji is 0. Similarly, x̃ji cannot be selected as a route, and x̃ji is 0.

4.3. Algorithm Description. According to the above algorithm ideas and improvement
strategies, the specific execution steps of the improved sparrow search algorithm routing
optimization method proposed in this paper are as follows.

Step1: Initialize parameters. Including population size M, the number of network
nodes n, the proportion of discoverers, the proportion of scouts, and the max-iterations
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Figure 3. Comparison of the network survival times of four algorithms

Tmax. There is also basic information to determine the routing node, such as effective
transmission distance, initial energy, and residual energy, etc.

Step2: Initialize the population. In addition to the starting node and the targeting
node, different arrangement of n− 2 node numbers is randomly generated, namely, Rj is
generated. If constraint (4) is satisfied among nodes in Rj, the routing identification of
the corresponding node is set to 1, namely, the value of Xj is determined. If the source
node and the destination node form a valid communication link, an accurate particle is
generated; otherwise, regenerate. After the particle is generated, its initial velocity Sj is
randomly set.

Step3: Implement the reverse elite learning strategy. The fitness values of each particle
of the current population and reverse population were evaluated. M individuals satisfying
the path constraints and having the best fitness values were selected from the current
population and reverse population to form the new current population.

Step4: update the historical optimal solution and the global optimal solution of the
whole population of sparrows.

Step5: update the population according to the position update formula of the finder,
participant, and scout.

Step6: Reevaluate the fitness value of each sparrow agent, update the historical optimal
solution of each sparrow agent, and update the global optimal solution of the population.

Step7: If the termination condition of iteration is met, the search will stop and the global
optimal solution will be output. Otherwise, return to Step3 and continue to optimize the
search.

Table 3. Comparison of success rate of algorithm searching optimal solu-
tion

Algorithm Find the optimal number of times The success rate
PSO [11] 41 82%
GA [10] 36 72%
SSA [13] 43 86%
RESSA 47 94%

4.4. Simulation Experiment Results and Analysis. In this experiment, the network
covers a rectangular plane area of 100m×100m, 50 sensor nodes are randomly distributed,
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and nodes are numbered uniformly. The initial energy of nodes is 0.5J , and the effective
transmission distance between nodes is D0 = 20m. Let the population size be 30, the
finder ratio be 0.7, the scout ratio is 0.2, the FA α = 0.2, β0 = 2, γ = 1,m = 1, and
the maximum number of iterations Tmax be 100. The simulation experiment compares
genetic algorithm, particle swarm optimization algorithm, sparrow search algorithm, and
improved sparrow search algorithm. Under the premise of the same experimental envi-
ronment parameters, each algorithm was run 10 times, and the average value was taken
as the final result. Figure 1 shows the remaining energy wireless sensor network and the
network running time (by the number of data sent round) the change of the relationship
between, can be seen from the diagram to improve the sparrow search algorithm is supe-
rior to genetic algorithm, PSO algorithm and the SSA, the reason is that in this paper,
the reconstruction of the algorithm is not the frequent path, is quickly established a better
path, data transmission, with less energy consumption you have the most energy left.

The network lifetime is an important indicator to reflect the network performance. In
this paper, the number of surviving nodes is used to represent the network. As shown in
Figure 2, in the initial stage of the network, the energy of each node is sufficient and there
is no dead node. However, with the increase of network running time, as PSO [7], GA
[6], and SSA [9] only consider the optimal path without considering the residual energy
factor, some nodes are frequently used as routing nodes, which consume a lot of energy
and die faster. However, the improved sparrow search algorithm proposed in this paper
considers the energy state when choosing the path. It balances the energy consumption
of the network, so that there are many surviving nodes, and the network’s survival time
is significantly improved.

Table 1 compares the success rates of the three algorithms for searching the optimal
route in optimization ability of various. Under the premise of the same experimental
parameters, the three algorithms were run 50 times respectively, and the success rate
of finding the optimal solution in 50 runs was counted. As can be seen from the data
in the table, since the algorithm in this paper introduces the reverse learning strategy
in the optimization process and considers the mechanism of the firefly algorithm at the
same time, it enriches the diversity of the population and increases the probability of the
algorithm finding the optimal solution, and its optimization success rate is significantly
higher than that of the other two algorithms.

5. Conclusions. This paper presented an enhanced sparrow search algorithm with re-
versing elite learning strategies (called RESSA) the firefly algorithm for the optimal so-
lution to the wireless sensor network (WSN). The improved sparrow search algorithm
comprehensively considers the influence of the total energy consumption and the resid-
ual energy of nodes on the network lifetime. The increasing group was implemented the
diversity of particles update to prevent the algorithm falls into the local optimum and
enhance the global search ability of the algorithm. The simulation results show that the
RESSA has strong optimization ability, low overall energy consumption, and longer node
survival time in prolonging the life cycle of WSN.
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