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Abstract. Mapping natural languages into query languages such as SQL that can be
executed on structured tables has become an important part of semantic parsing research.
Most existing methods use column names as table features and combine the syntax of the
query language to design the model. However, for large tables, the scope of representa-
tion by column names is limited, and they ignore some common problems in practical
applications, such as a column in a table is called repeatedly, keywords between natural
language and table are not matching exactly, which makes it difficult to generalize these
methods to real scenarios. In this paper, we propose a new semantic parsing model named
TableSQL for database tables based on object-aware and overlapping relation mapping.
First, we extract information about objects in the table that are related to natural language
queries. Then, we integrate this information with inherent dimensional characteristics
of the table to enhance the relational mapping between natural language queries and
structured tables. We also implement overlapping relation mapping on the same column
by defining special labels. Finally, we design a fuzzy matching method based on span
prediction to alleviate the problem of incomplete keyword matching. Experimental results
on the TableQA dataset show that the method significantly outperforms existing methods
in terms of logical formal and execution accuracy.
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1. Introduction. Semantic parsing is a task of mapping natural language utterances
to logically structured representations. In recent years, this work has been extended to
the generalizable Natural Language Interface to Database (NLIDB) [1], where natural
language queries from ordinary users are mapped to Structured Query Language (SQL)
that can be executed on relational databases, and the database used in the test is not
visible during training. This process can be understood as a Text-to-SQL task designed to
facilitate the interaction between non-professional users and structured tabular knowledge,
and can be applied to several scenarios such as cross-domain data retrieval and intelligent
Q&A (Question and Answer). In this task, Chinese is a low-resource language [2] and
has not been sufficiently studied. Unlike English, which has been extensively studied,
Chinese has unique language forms and customs. In English, there are a large number
of dummy words between real words to help identify the components of the sentence and
there is a separator between words, while the structure of Chinese sentences is generally
loose, sometimes focusing on the meaning rather than the form, and there is no separator
between words. These lead to challenges for this research. Therefore, we focus on semantic
parsing for tables in Chinese scenarios.

To fulfill this task, many existing methods understand it as an encoding-decoding pro-
cess, where the encoding process is to obtain the mapping between natural language
queries and database tables to analyze user query intent and decoding process requires
generating executable SQL statements based on the results of previous process. Seq2SQL
[3] models the task based on the inherent syntactic structure of SQL and uses a reinforce-
ment learning strategy to generate query condition. SQLNet [4] divides SQL statements
into SELECT and WHERE clauses, while refining the sketch of each clause to transform
the Sequence to Sequence (Seq2Seq)[5] generation task into a sequence-to-set slot-filling
task. SQLova [6] uses BERT [7] to obtain contextual features from queries and tables,
which also investigates the effect of different decoders. IE-SQL [8] aligns and labels query
sequences based on SQL statements, and learns the role of each sequence in the SQL
statement by automatically generating annotations.

Figure 1. An example of semantic parsing for tables task.
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Although these methods achieve promising results, they have three limitations. First,
they all use column names in table as representatives to discover the mapping between
natural language queries and database tables, while ignoring the table contents. This
is intuitively natural, as the column names cover common attributes of table content,
and the sheer volume of table contents are not conducive to organization and utilization.
However, in practical scenarios, the queries raised by users are often colloquial and do
not explicitly specify column names in table. As the example in Figure 1, giving a
natural language query and a corresponding database table, generating the relevant SQL
statement and executing them to get the answer. The darker parts of the query indicate
the different attributes of the related objects and the darker rows in the table are query-
sensitive candidate rows (Section 3.1.1). For example, the query is “麻烦帮我查查在
中国内地或在中国香港上映的 3D 电影都有哪些啊?(Could you please help me to check
which 3D movies are shown in mainland China or Hong Kong, China?)”, Combined with
its corresponding SQL statement, we find multiple entities in the query establish mapping
relationships with the table. These entities include“中国内地 (mainland China)”,“中
国香港 (Hong Kong, China)”and“3D”, where“中国内地 (mainland China)”and“中国
香港 (Hong Kong, China)”correspond to the column“地区 (Place)”in the table and the
relationship between them is not obvious. The more serious one is that the relationship
between“3D”and its corresponding column“封装 (Package)”is imperceptible. However,
most existing methods use column names such as “地区 (Place)”, “封装 (Package)”
, etc. to characterize the table in encoding process and ignore the concrete content of
the table, which may be hard to represent the mapping between heterogeneous data. In
addition, words with similar meanings often appear in the same table, such as “通用名
(generic names)”and“商品名 (trade names)”,“商户名称 (merchant names)”and“门
店名称 (store names)”,“地区 (regions)”and“省份 (provinces)”, etc., which is easy
to cause confusion on the selection of columns in the mapping process.

Second, in the process of generating the SQL statements, they do not take into account
the fact that the same column in a table is called multiple times. This situation generally
occurs in the WHERE clause. For the example in Figure 1, if user makes a query“哪些电
影是 3D或者 4D的？(Which movies are 4K or 3D?)”on the table and its corresponding
SQL statement is “SELECT 影片名称 (Film); From Table; WHERE 封装 (Package)=
4K or 封装 (Package)=3D”This is a simple and common problem, but what makes it
special is that in WHERE clause, the column“封装 (Package)”is combined with“4k”
and“3D”respectively to form the condition, in other words, the column“封装 (Package)”
is used twice at the same time. However, most existing methods cannot generate such
SQL statement, they usually calculate the probability value of each column in the table
being called, and then pick the column with high probability. That means when they are
selecting columns as conditions in the WHERE clause, each column has only one chance
to be selected. Therefore, they cannot achieve the mapping of overlapping relations on
the same column.

Finally, most of the existing works ignore the fact that the keywords for specified con-
ditions mentioned in query may not exactly match the information in database tables.
Especially in the practical application of Chinese scenes, the raised queries are often gen-
eral, because users are not aware of the database details. Therefore, when expressing key
information, some abbreviations, aliases and even misspellings often appear. For exam-
ple, “索尼 (Sony)”in query corresponds to “索尼公司 (Sony Corporation)”in table,
or “首都师范大学 (Capital Normal University)”to “北京师范大学 (Beijing Normal
University)”, etc. To alleviate this problem, although some methods try to identify key-
words through sequence annotation[8], this usually requires additional annotation work,
so keyword information matching remains difficult.
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To overcome the above problems, we focused on the TableQA dataset published in the
literature [9], which is a Q&A task on database tables. We propose TableSQL, which is a
new semantic parsing model for heterogeneous data. In the process of encoding, in order
to solve the problem of inadequate use of tables, we try to incorporate table contents
into a unified representation of two heterogeneous data from an object perspective. We
consider each row of data in table contents as a description of different attributes of an
object, and each column of data is a summary of different objects on the same attribute.
In addition, multiple objects in a table are often involved in a user query. Therefore,
we consider incorporating information about multiple objects related to the query in the
encoding process. We first extract candidate rows from the table that are sensitive to
user’s query as object sets and treat each candidate row as an object. Then, we con-
catenate the attributes of each object extracted with the information of the column in
which they are located. For each column in the table, we further distinguish different
mapping relationships by introducing custom labels, which can implement overlapping
relational mappings, and train the model to determine whether each column in the table
needs to be called repeatedly based on the query. Horizontally, we use RoBERTa [10]
as an initialization to encode the concatenated sequence jointly with query to capture
mapping relationship between the query and columns based on a single object. Finally,
in the vertical direction, we integrate information about different objects from same query
by an alignment self-attention mechanism to fuse multiple objects attribute features on
the same column in the table. For decoding, we design a generic SQL statement template
and decouple it into different components. In the process of finding the keywords used
for condition values in WHERE clause, we extract the correct keywords from the table to
improve the accuracy of the query results by predicting the span of keywords in the query
and using fuzzy matching. This can effectively deal with the difficulty of keyword match-
ing. Specifically, in model training, we first slice the query sequence by n-gram. Then,
we designed a fuzzy matching method to determine the span of keywords in the query
by calculating the similarity of each candidate term to the keyword in ground truth. In
model inference, the inverse process is executed, we first predict the span of keywords in
the query and then finding the correct keywords in the database table by fuzzy matching
methods. In order to enhance the syntactic connection between individual SQL com-
ponents, we use a multi-task learning method so that different tasks optimize the same
objective function during the training process. The results show that we have achieved
89.7% of the logical form accuracy and 92.0% of the execution accuracy on the TableQA
dataset, which is a competitive result compared with the existing methods. In this paper,
we make four contributions.
(1)We design TableSQL, a semantic parsing model for tables in Chinese scenarios. It can
effectively address three limits in existing methods, which include inadequate use of ta-
bles, limited number of relationship mappings on the same column in table and difficulty
in matching keywords.
(2)We propose an object-aware multi-dimensional table content enhancement encoding
method, which enhances the perception and mapping capabilities between queries and
tables while helping to remove the semantic ambiguity between the columns in table.
(3)We propose a custom labels method in encoding process, which implements overlap-
ping relationship mapping on the same column in table, to solve the problem that existing
methods cannot make repeated calls to the same column when generating WHERE con-
ditions.
(4)We propose a fuzzy keyword matching method based on span prediction, which en-
sures that the generated SQL statements are executed accurately on the table by finding
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the keywords related to query in table contents and the whole process does not require
additional labeling.

The rest of this paper has the following structure. In the second section, we sort out
related work. In the third section, we propose our methodology and illustrate each part
of it in detail. Experimental details and analysis of results are presented in the fourth
section. Finally, in the fifth section we summarize the full work.

2. Related Works. Semantic analysis of heterogeneous data has become one of the
research hotspots in Natural Language Processing (NLP) in recent years. Such as program
code [11], SPARQL Protocol and RDF Query Language [12], SQL [13], etc. Semantic
parsing of tables is the process of converting natural language queries into SQL statements
that can be executed on a database to get the corresponding answer. With the creation
of large-scale datasets such as WikiSQL [5], Spider [14] and Sparc [15]. Data-driven deep
neural networks have become the dominant approach in the field.

Most of the existing works develop their model based on a Sequence to Sequence
(Seq2Seq) framework and divide the whole task into encoding and decoding processes.
Subsequently, many methods have improved on this basis. Dong et al. [16] obtained the
state-of-the-art result on ATIS (5,410 queries to a flight booking system) and GeoQuery
(880 language queries to a database of U.S. geography) datasets by introducing the at-
tention mechanism. Wang et al. [17] uses the attention-based copying mechanism to
intercept keywords from natural language queries during the decoding process, thus re-
ducing the error rate of the traditional Seq2Seq method. TypeSQL [18] further considers
the type of entity on the basis of SQLNet to improve the entity mapping process between
utterance and table. In order to make full use of the relational database structure, differ-
ent from the methods based on Seq2Seq, SyntaxSQLNet [19] and IRNet [20] use trees to
represent the structured knowledge in database, while Global-GNN [21] and RAT-SQL
[22] adopt a graph neural network method to model table features.

Previous models mostly design feature extractor based on Recurrent Neural Networks
(RNN), Long-Short Term Memory (LSTM) and Graph Neural Networks (GNN) when
encoding heterogeneous data. In recent years, pretraining technology provides an effec-
tive solution to the large-scale parameter learning in deep neural networks. Especially
pretrained models [7, 23, 24] make significant progress in many NLP tasks. BERT is a
fully connected neural network structure composed of multiple bidirectional Transformer
[25] encoders stacked. It consists of two important components. The Masked Language
Modeling (MLM) mechanism is designed to perform tasks similar to cloze filling and the
Next Sentence Prediction (NSP) method is designed to determine the context relationship
between two sentences. BERT achieves the new state-of-the-art performance on multiple
different tasks. As Hwang et al. [6] mentioned, the use of complex BERT on Text-to-SQL
tasks to improve performance requires careful design. The key to achieving this goal is to
build a semantic analysis bridge between natural language and database table.

With the application of pretrained models, the effect of Text-to-SQL task has been
further improved [6, 22, 26]. SQLova is a typical representative that uses BERT to encode
natural language queries with table column names, and achieves performance beyond
humans on the WikiSQL dataset. X-SQL [26] uses a similar approach, further combines
the type information of the column, and adopts multi-task learning method to enhance the
structured representation of downstream tasks. Wang et al. [22] propose a relationship-
aware self-attention mechanism for database relational encoding and alignment of natural
utterances and tables, while further improving the performance through BERT.
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Figure 2. The structure of TableSQL.
Since there are few Chinese resources related to Text-to-SQL task, most of the existing

works are carried out around English scenarios. In recent years, the proposal of large-
scale Chinese datasets such as CSpider [2], DuSQL [27], and TableQA create conditions
for research in Chinese scenarios. Sun et al. [9] pointed out that existing Text-to-SQL
task datasets (such as WikiSQL) often assume that every natural language query can be
answered in a given database table. Besides, the entity information between query and
table can be completely matched. But this assumption cannot be extended to actual
application scenarios. Therefore, for query answerability and entity linking problem,
they propose a challenging large-scale Chinese dataset TableQA. They also found that
models such as SQLOVA, X-SQL, Coarse-to-Fine [28], which perform well on the WikiSQL
dataset have significantly lower performance on TableQA. This illustrates the challenge
and necessity of studying Text-to-SQL task in Chinese scenarios.

3. Methodology. Our entire model architecture is shown in Figure 2. In encoding
process, we combine a natural language query with the most relevant k rows in the
candidate table separately for horizontal domain joint encoding. In vertical self-attention
section, we facilitate the flow of semantic information on the same column through vertical
alignment attention mechanism. In decoding process, each subtask uses the vectors at
different positions after the pooling operation for the respective semantic parser. The
inference process of the model can be understood as giving a natural language query and
a database table, the model outputs the SQL statements that can be executed on the
database. In this section, we present the details of the model, which can be divided into
encoding and decoding processes.

In the process of encoding. First, we extract objects from table contents that are
sensitive to the query raised by user to form a candidate table (Section 3.1.1). We calculate
the edit distance of each cell to the query, and then the sum of edit distance of all cells in
the same row is used as the sensitivity of the object represented by the row to the query.
The composition of the candidate table is determined by the level of sensitivity. Then, we
encode different candidate rows with the query separately in horizontal direction (Section
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3.1.2). We design a sequence code for each cell value in the candidate row, which consists
of the name of column in which the cell is located, the type of the column, cell value, and
custom labels. The query is concatenated with all sequence codes of a single candidate
row and fed to the encoder together. Finally, for each candidate row involved in the
encoding result, the vectors corresponding to the special labels are fused in the vertical
direction by an attention mechanism to achieve the integration of the same attributes
among different objects (Section 3.1.3).

In the process of decoding, a generic SQL sketch is designed and decoupled into eight
components, each of which is treated as a subtask. With multi-task learning we achieve
uniform optimization of all subtasks and we will introduce these subtasks separately in
Section 3.2.

3.1. Joint Encoding of Query and Table Structure. When representing two het-
erogeneous data, we first select query-sensitive rows from the table in database to build
a candidate table, then integrate the horizontal and vertical semantic information in the
table to ensure that it is fully utilized.

3.1.1. Query-Sensitive Rows Extraction. Semantic parsing for tables requires mapping
relationships between natural language queries and database tables. However, a natural
language query usually only involves a few rows of objects in a table which contains a lot of
data. If all table contents are used for feature learning, many irrelevant information may
not only bring noise, but also causes difficulties to the encoding processing. Therefore, it
is necessary to filter the original table.

We propose a simple and effective row extraction strategy. As shown in Figure 1, we
filter table based on attributes of different objects mentioned in the natural language
query to get query-sensitive rows, which are used to form a candidate table. Giving a
natural language query q and a corresponding table T . We calculate the edit distance
[29] between each table content cell p in T and q according to Levenshtein distance [30],
which is denoted as Dp,q(m,n). m, n denote the indexes of the characters in p and q
respectively, Where m ∈ {1, ..., |p|}, n ∈ {1, ..., |q|}, and |p|, |q| denote the string length
of p and q respectively. The calculation follows the process.

Dp,q(m,n) =


max(m,n) ,min(m,n) = 0

min

 Dp,q(m− 1, n) + Cdel(pm)
Dp,q(m,n− 1) + Cins(qn)
Dp,q(m− 1, n− 1) + Csub(pm, qn)

 ,min(m,n) ̸= 0
(1)

Where pm denotes the m-th character in p. Similarly, qn denotes the n-th character
in q. C refers to the cost function of operating on characters, which generally takes the
value 1. Cdel(x), Cins(y), Csub(x, y) respectively represent the cost of deleting x, inserting
y, and substituting x for y. Note that when x = y, Csub(x, y) = 0.

Then, accumulate the edit distance of all cells in each row to get similarity score S
between the row object and q. We sort the similarity scores of all rows and select the top
k rows with the highest scores to form a final candidate table.

Si =
∑Tb

j=1
Dpij ,q

(m,n) (2)

Here, Si refers to the similarity score of the i-th row. pij denotes the j-th cell of the
i-th row in table T , and i ∈ {1, ..., Ta}, j ∈ {1, ..., Tb}. Ta, Tb refer to the number of rows
and columns in table T content respectively.
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3.1.2. Horizontal Cross-Structural Joint Encoding. We jointly encode candidate tables
and natural language queries on the horizontal domain. First, we use the same method as
TABERT [31] to create serialization codes for the data in candidate table corresponding
to different queries. Specifically, the cell information in table is represented in a linear
sequence of column name, column type and cell value, they separated by a special symbol
”|”. The sequence construction follows.

Column |Type|V alue (3)
Where Column represents the column name, Type represents the column type, and

V alue represents the value of the cell.
Most of existing works adopt independent modeling methods when selecting columns

from the table [4, 32]. Specifically, a binary classifier is designed for each column to
predict whether the column is selected, but this independent modeling approach is not
only difficult to deal with the repeated use of columns in SQL clauses, but also splits or
even lose the correlation between the columns during training and prediction.

In response to the above problems, we propose a new custom labels method to model
this situation. From TableQA, we find that in SELECT clause, the same column in table
can only be selected once at most. In WHERE clause, the same column in table is used
twice at most. Therefore, in order to compare and select a particular column multiple
times in the global space. We set different labels for each column. Specifically, an example
as shown in Figure 2, three custom labels are added after the linearization sequence of
each column. For a query and each row of data in the candidate table, it is expressed in
the following way.
[CLS], Q1, Q2, ..., QL, [SEP],
COL1|TY PE1|V AL1, [WHE_TY PE1_1], [WHE_TY PE1_2], [SEL_TY PE1], ...,
COLc|TY PEc|V ALc, [WHE_TY PEc_1], [WHE_TY PEc_2], [SEL_TY PEc], [SEP]

(4)
Where Qi indicates the i-th character in query Q, L indicates the length of query and

i ∈ {1, ..., L}. COLj indicates the name of the j-th column in table, j ∈ {1, ..., c} and
c is the number of columns. TY PEj indicates the value type of the j-th column and
TY PEj ∈ {TEXT,REAL}, which denotes text and number column types. V ALj is
the value corresponding to the j-th column in the candidate row. [WHE_TY PEj_1],
[WHE_TY PEj_2], [SEL_TY PEj] are custom labels. [CLS] and [SEP] are special
labels defined by RoBERTa. [CLS] is used to represent the input global semantic infor-
mation, [SEP] is used to separate queries and tables.

Custom labels can serve the following three purposes. First, they separate different
columns in a table and ensure independent input of columns. Second, it gives a represen-
tation of how each column is used in SQL statements. In the three labels for each column,
[WHE_TY PEj_1]means the first time selected by WHERE clause, [WHE_TY PEj_2]
means the second time selected by WHERE clause, and [SEL_TY PEj] means selected
by SELECT clause. Different labels capture corresponding semantic information accord-
ing to their meanings during training. This method provides a global perspective for the
comparison of columns, and avoids the local effect caused by the independent modeling
of each column. Third, in the process of constructing custom labels, we also distinguish
the types of column by TY PEj, which means columns of type TEXT and REAL have
different labels. This approach can input the column type information into encoder as a
kind of prior knowledge, so as to further learn the attributes between different columns
during the training process.

As shown in Figure 2, according to a natural language query and a query-sensitive
candidate table containing k rows, we construct input sequences [E1, E2, ..., Ek] and send
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them to a Transformer encoder initialized with RoBERTa in turn to obtain the hidden
layer vector [H1,H2, ...,Hk]. Where Hi ∈ R|Ei|×d, |Ei| indicates the length of the sequence
Ei, d denotes the output dimension and i ∈ {1, ..., k}.

3.1.3. Attribute Fusion Based on Vertical Alignment Attention Mechanism. We expand
joint encoding representation of a natural language query and a database table. First
extracting k rows query-sensitive objects to form a candidate table. Then in horizontal
domain, each row in the candidate table is jointly encoded with the query. Finally, the
corresponding hidden layer representation of k rows is obtained. However, this approach
fragments semantic information of the same attributes between different objects in the
candidate table and this expansion leads to a query corresponding to multiple hidden
layer representations, so they need to be integrated.

In order to enable the semantic information to flow in the vertical direction. For
different encoding outputs [H1,H2, ...,Hk] of the same query, we design a V -layer stacked
vertically aligned self-attention module to fuse the semantic characteristics of different
objects (rows) under the same attribute (column) in table, as shown in Figure 2. Unlike
TABERT, to reduce the computational cost, we no longer perform vertically aligned
attention operations on entire sequence. We focus selectively on vectors with special label
positions of the sequence, like [CLS] which comes from RoBERTa, and special labels which
we defined additionally in section 3.1.2.

In each layer, align the output of the k rows hidden layers and perform a self-attention
operation on the vertically aligned vectors. We use HV ∈ Rd×k to denote any set of
alignment label vectors in the same vertical direction. First, the vector for each label
is linearly mapped to three different spaces, the corresponding matrix vectors Q,K,V ∈
RD×k are calculated respectively and D denotes the space vector dimension .

Q =WQHV (5)
K =WKHV (6)
V =WV HV (7)

Here, WQ,WK ,WV ∈ RD×d represent the trainable parameter matrix respectively and
Q = [q1, ..., qk], K = [k1, ..., kk], V = [v1, ..., vk].

Then, denoting k groups of input sequences with (K,V) = [(k1, v1), ..., (kk, vk)] and
calculating attention scores with corresponding vector qj to get the output vector Hout =
[hout

1 , ..., hout
k ] ∈ RD×k. For each vector hout

j , j ∈ {1, ..., k}, we calculate.

hout
j = Attention ((K,V), qj)

=
k∑

i=1

αjivi

=
k∑

i=1

softmax(f(ki,qj))vi

(8)

Where αji represents the attention distribution weight of the j-th output corresponding
to the i-th input and i ∈ {1, ..., k}. f(·) takes the method of scaling the dot product.

We also use a multi heads self-attention [25] mechanism to capture different interactive
information in multiple projection spaces. The self-attention operation is performed in N
projection spaces, we have.

MultiHead(HV ) =WM [Hout
1 , ...,Hout

N ] (9)
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Where Hout
n is the output vector Hout in the n-th projection space, which is calculated

following formula (5)-(8). The trainable parameters in different projection spaces are not
shared and n ∈ {1, ..., N}. MultiHead(·) indicates multi heads self-attention calculation
operation, WM indicates the trainable matrix.

Finally, the results of all vertical layers are aggregated into a mean pooling layer to
calculate the fused output for different specified label which is defined as HPOOL. Subse-
quently, different parts of HPOOL will be used for the corresponding downstream semantic
parser.

3.2. Multi-Task Learning.

3.2.1. Divide Subtask by SQL Component. To distinguish the modeling process for two
SQL components containing SELECT and WHERE, as shown in Figure 2, we extract
corresponding feature vectors from HPOOL based on the custom labels in formula (4).
In other words, the semantic features of each column in different SQL components are
represented by the vectors corresponding to the custom labels, as shown in the following
formula.

HPOOL
j,WHE_TYPEj_1,HPOOL

j,WHE_TYPEj_2,HPOOL
j,SEL_TYPEj (10)

Then, we reorganize the feature vectors of all columns according to SQL components
including SELECE and WHERE. They are denoted respectively as HPOOL

SEL and HPOOL
WHE ,

which are calculated as follows.

HPOOL
SEL = contact

(
HPOOL

1,SEL_TYPE1 , ...,H
POOL
c,SEL_TYPEc

)
(11)

HPOOL
WHE = contact

(
HPOOL

1,WHE_TYPE1_1, ...,HPOOL
c,WHE_TYPEc_2

)
(12)

Here, contact indicates the splicing operation on vectors, and HPOOL
SEL ∈ RD×c, HPOOL

WHE ∈
RD×2c.

Figure 3. SQL sketch. $ refers to the slot that needs to be filled. *
indicates that the number of corresponding slots.

Following the slot filling method proposed by the SQLNet model, we create a SQL
sketch as shown in Figure 3. The advantage of this approach is that it utilizes the
structural information of SQL. In order to fill contents of different slots in the sketch,
the generation of SQL statement can be decoupled into eight subtasks, which include
SEL-NUM, SEL-COL, SEL-AGG, WHE-NUM, WHE-COL, WHE-OP, WHE-VAL and
WHE-CONN. Different colors are used in Figure 2 to indicate the use of vectors on
different subtasks. We use W with different subscripts to indicate trainable parameters
of each subtask and note that they are not shared in all tasks.

• SEL-NUM. Predict the number of selected columns in SELECT clause. We found
that this number is generally limited. So, we set an upper limit M for the number of
columns in SELECT clause and use the global vector HPOOL

CLS which is corresponding to
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label [CLS] to predict the number of columns. Thus transforming the SEL-NUM task
into a M+1 classification problem (0 to M , 0 means that there is no column in SELECT
clause). The calculation follows.

PSEL−NUM = softmax(WSEL−NUMHPOOL
CLS ) (13)

• SEL-COL. Select the columns in SELECT clause from the table. We use the se-
mantic representation vector HPOOL

SEL which corresponds to the label [SEL_TY PEj] to
obtain the probability distribution of all columns occurring in SELECT clause.

PSEL−COL = softmax(WSEL−COLHPOOL
SEL ) (14)

• SEL-AGG. Predict the aggregate function of the selected column in SELECT clause.
Every column in SELECT clause correspond to an aggregate function, and the aggregate
function in database include NULL, AVG, MAX, MIN, COUNT, SUM. Note that NULL
means no aggregation function, AVG means taking the average value, MAX, MIN re-
spectively indicates the maximum and minimum value. Similar to the SEL-COL task,
we also use vector HPOOL

SEL for prediction, with the difference that SEL-AGG task is a
six-classification problem when predicting the aggregate function for each column.

PSEL−AGG = softmax(WSEL−AGGHPOOL
SEL ) (15)

• WHE-NUM. Predict the number of selected columns in WHERE clause. Similar to
SEL-NUM, the same vector corresponding to label [CLS] is used and an upper limit N is
also designed for the number, which can be understood as a N+1 classification problem.

PWHE−NUM = softmax(WWHE−NUMHPOOL
CLS ) (16)

• WHE-COL. Predict the columns in WHERE clause. Similar to the SEL-COL
task, we use semantic representation vector HPOOL

WHE which corresponds to the labels
[WHE_TY PEj_1] and [WHE_TY PEj_2] to calculate the probability of each column
being called once and twice in WHERE clause, respectively.

PWHE−COL = softmax(WWHE−COLHPOOL
WHE ) (17)

• WHE-VAL. Predict the values corresponding to different conditional columns in
WHERE clause. Since in actual scenarios, the keywords of natural language queries often
do not exactly match the values in table. To ensure the execution accuracy of SQL
statements, we use the value in the database as the standard.

Unlike in English, where the word is the smallest semantic unit. When dealing with
Chinese inputs, characters are often used as the minimum encoding units, and most of
the individual characters do not have complete semantics, which makes the extraction of
conditional values difficult. At the same time, the execution of SQL is rigorous. To ensure
that the final generated SQL statements can be executed to get the correct results, we
adopt a fuzzy keyword matching method based on span prediction in model training and
inference to regulate and correct the keywords in the query.

Specifically, we first slice the entire query by n-gram to obtain candidate words. For
the range of n, we determine dynamically by the sequence length of the V alue in ground
truth for each example and n ∈ {nmin, ..., nmax}(nmin ≥ 1).

nmin = len(V alue)− i (18)
nmax = len(V alue) + i (19)

Where, len(·) denotes the calculation of sequence length. i is the hyperparameter,
usually taken as i = 3.
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Then we propose a heuristic boundary matching method to calculate the span of key-
words in the query. As shown in Figure 2, using the different pooled vector to predict the
start and end positions of keywords from the query to determine the approximate range.
The specific calculations are as follows.

HSTART
Q_COL = relu

(
WSTART

H HPOOL
Q + WSTART

WHE HPOOL
WHE

)
(20)

P START
WHE−VAL = softmax

(
WSTART

Q_COLHSTART
Q_COL

)
(21)

HEND
Q_COL = relu

(
WEND

H HPOOL
Q + WEND

WHEHPOOL
WHE

)
(22)

PEND
WHE−VAL = softmax

(
WEND

Q_COLHEND
Q_COL

)
(23)

Where, HPOOL
Q ∈ RD×L indicates the vector after pooling operation corresponding to

the query in formula (4). P START
WHE−VAL, P

END
WHE−VAL ∈ RL×2c are predicted indexes of start

and end positions in the query respectively.
We divide keyword mismatch problem into two categories according to column type.

First is TEXT type, which mainly includes the keywords in query are abbreviations or
aliases for the ground truth in table. For this type of case, we directly use the fuzzy
matching method. Then is REAL type, which means that numeric units of the keywords
in query and table are inconsistent. For example, the“20000 yuan”in query corresponds
to“2”(ten thousand yuan as the unit) in table. This inconsistency also includes between
Chinese and Arabic numerals. For REAL type keywords, we first unify their format
by regular expressions. However, unlike TEXT type, values of REAL type may not be
forced to originate from tables. It can be determined by the will of the user and the SQL
statement can execute this intent. Therefore, when dealing with values of numeric type,
we only convert their units and no longer match similar values from the table.

After obtaining the span of the keyword, we design an evaluation function to match it
with ground truth for TEXT type columns, which consists of two matching mechanisms.
One is the edit distance we used in row extraction (Section 3.1.1). For the other method,
we use the difflib module in python library. This is a method for comparing the simi-
larity between pairs of hash sequences, to avoid recurring nonsensical sequences and thus
matching the longest consecutive subsequence. Our evaluation function E(·) is defined as
follows.

E(x, y) = σS1(x, y) + (1− σ)S2(x, y) (24)

Where, x, y indicates a span of the keyword and a ground truth value respectively. S1

and S2 are two matching methods, both of them return a similarity score from 0 to 100.
σ is a hyperparameter and we take it as 0.5.

Finally, we select the value with the highest evaluation function score from the corre-
sponding column in table to generate the SQL statement.
• WHE-OP. Predict the operator which determines the relationship between each

column and its corresponding value in WHERE clause. All operators include >,<,=, ! =.
Similar to the SEL-AGG task, we use HPOOL

WHE to design it as a four-classification problem,
calculated as follows.

PWHE−OP = softmax(WWHE−OPHPOOL
WHE ) (25)

• WHE-CONN. Predict the connection relationship between the columns in WHERE
clause, which includes NULL, AND, OR. Note that NULL means no connection relation-
ship. We use vector HPOOL

CLS to transform it into a triple classification problem.

PWHE−CONN = softmax(WWHE−CONNHPOOL
CLS ) (26)
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3.2.2. Loss Function. We optimize the loss function for each subtask. SEL-NUM, SEL-
AGG, WHE-NUM, WHE-OP, WHE-VAL and WHE-CONN use the cross-entropy loss
function. To compare different columns in SELECT and WHERE clauses on the global
space, we use Kullback-Leibler [33] divergence as the loss function to learn the probability
distribution of each column being called in SQL clause. We also find that the subtasks
are not independent of each other. For example, SEL-NUM and SEL-COL respectively
predicts the number and name of the columns in the SELECT clause, and there is a
correlation between them. Inspired by multi-task learning [34], we adopt a regularized
learning strategy to accumulate the loss function of all subtasks to form the overall ob-
jective function. so as to play a role similar to the mean constraint on the parameters of
each subtask in training and optimizing the objective function.

4. Experiments.

4.1. Dataset. We use the TableQA dataset, which is the only public Chinese single-table
query dataset we know. As a large-scale cross-domain Q&A dataset based on tables,
TableQA contains 64891 natural language queries, 20311 unique SQL statements and
more than 6000 tables. It is similar in data scale to the English dataset WikiSQL, but
further considers entity links and the answerability of queries, which is closer to the real
scene. So it is more challenging. In order to further test the generalization ability of the
model, the tables in dev and test sets are not visible to the train set.

4.2. Evaluation Metric. We follow the evaluation metrics used on WikiSQL, which
includes logical form accuracy (ACClf) and execution accuracy (ACCex). In addition,
we further calculate the average of them (ACCmean). Specifically, ACClf denotes the
proportion of the number of generated SQL statement that can accurately match the
ground truth to the total number of samples. ACCex denotes the proportion of the total
number of samples that can obtain consistent results with ground truth after executing
the SQL statement. ACCmean is a comprehensive effect on two evaluation indicators.

4.3. Implementation Details. The experiment uses the model given by TableQA as the
baseline, which is improved on SQLNet. We developed TableSQL on pytorch [35], and
initialize its encoder from a Chinese RoBERTa model , which uses the Whole Word Mask
method to mask the whole words in the Chinese sentence instead of a single character
in pretraining process. We train TableSQL on a NVIDIA TITAN RTX GPU with 24GB
memory. The encoder based on Transformer has 12 layers, and each layer has 12 self-
attention heads, with a hidden layer size of 768, and the hyperparameters in vertical
attention mechanism are set in line with encoder. Maximum input length of the encoder
is 512 and the number of candidate rows k = 3. We adopt BertAdam as the optimizer,
which learn rate is 12e-6, and warm up is 2e-2. We use the same training, validation,
and testing datasets as the TableQA release. When training, we randomly permute the
example order and the column order in a table. The batch size is set to 16, and training
60 epochs. We check the overall accuracy once on each epoch and stop the training if
there is no improvement in 8 checks.

4.4. Results and Discussion. We compare five state-of-the-art methods on this dataset.
SQLNet is our baseline model which proposes a sequence to set architecture based on SQL
syntax. It is based on a bidirectional LSTM of the glove initialization word embedding
to design the encoder. SQLova introduces BERT in the encoding, which encodes natural
language queries and column names together. Then, they are fed into a separate LSTM
structure with an attention mechanism that combines column names. Coarse2Fine first
generates a rough sketch according to input query. Then, it further fills in missing details.
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X-SQL has redesigned the method to capture global information in the process of encoding
based on SQLova, and uses execution guidance to enhanced decoding effects.

Table 1. Comparison of TableSQL with other methods on dev and test
sets.

Methods Dev Test
ACClf ACCex ACCmean ACClf ACCex ACCmean

SQLNet 61.3 66.2 63.7 61.4 67.2 64.3
SQLova 81.4 85.3 83.3 81.7 85.8 83.7

Coarse2Fine 73.0 76.9 74.9 72.6 76.7 74.7
MQAN 75.7 79.2 77.4 74.8 78.8 76.8
X-SQL 82.9 87.0 84.9 83.3 87.6 85.4

TableSQL 87.7 90.2 89.0 89.7 92.0 90.9

Table 1 shows a comparison of TableSQL with other methods on dev and test sets. Note
that the performance of the methods used for comparison are modified and reproduced
from their original papers, as these methods originally used a different dataset than ours.
The experimental results show that TableSQL consistently outperforms the compared
methods in terms of logical form accuracy, execution accuracy and their comprehensive
effects. Compared to the last state-of-the-art method X-SQL, we achieve absolute im-
provements of 6.4%(ACClf), 4.4%(ACCex) and 5.5%(ACCmean) on test set.

To further investigate the advantages of TableSQL, we also provide a breakdown of the
logical form accuracy by component on dev set in Table 2. Note that the results used
for comparison in the experiment are published along with TableQA. The experimental
results show that compared to the best results available, TableSQL achieves significant
advantages on two subtasks WHERE-COL (98.0 vs 79.4) and WHERE-VAL (94.4 vs
49.5). We also achieve an average absolute advantage of 9.6% over the latest improved
version of SQLova (End2End) on 8 SQL components. Notably, in WHERE-COL and
WHERE-VAL task, we get a significant improvement of 18.8% and 44.9% compared to
SQLova (End2End), which is the key to the overall performance improvement of our
model. We attribute this to TableSQL better captures the mapping relationship between
natural language queries and database tables.

4.5. Ablation Study. Since the process of learning mapping relationships between queries
and tables is implicit in our method (Section 3.1.2). To further visualize the ability of
TableSQL to establish mappings between heterogeneous data. Inspired by BertViz [36],

Table 2. Performance of each method on different SQL components (dev
set).

SQL
Causes Components SQLNet SQLova SQLova

(offline)
SQLova

(End2End) TableSQL

SELECT
NUM 98.6 99.3 99.3 99.2 99.6
COL 91.5 96.1 96.1 96.2 97.4
AGG 93.7 98.1 98.1 98.2 98.2

WHERE

NUM 90.1 95.7 95.7 95.1 98.1
COL 71.2 79.4 79.4 79.2 98.0
OP 86.5 93.3 93.3 93.1 98.9
VAL 43.2 44.1 47.4 49.5 94.4
CONN 91.2 95.9 95.9 95.2 98.1
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we qualitatively evaluate the distribution of attention at key locations during horizon-
tal cross-structural joint encoding. Specifically, we visualize the effect of multi heads
self-attention for some layers in the Transformer structure initialized with RoBERTa.

We use a Transformer structure with 12 attention layers where each layer contains
12 headers and use the variable l to denote the different attention layers. To show the
role of custom labels in our method when mapping overlapping relationships, we plot
the distribution of attention weights for custom labels to the entire input sequence on
different layers. We use a vanilla version of our model which takes only column names
when serializing encoding (Section 3.1.2) to eliminate the effect of types and values. To
facilitate graph readability, we choose some samples with small query length and table
size.

As shown in Figure 4, when the query is “可以告诉我锦州港和华夏航空的股票代码
分别是多少吗？(Can you tell me the stock symbols of Jinzhou Port and China Airlines?)”
, its corresponding table contains a total of seven columns. It can be seen that both“锦
州港 (Jinzhou Port)”and “华夏航空 (China Airlines)”correspond to column “名称
(Name)”in the table, that means column“名称 (Name)”is called twice in the query. In
our method, we found that two custom labels [whe_text_1] and [whe_text_2] of column
“名称 (Name)”are strongly related to the keywords“锦州港 (Jinzhou Port)”and“华夏
航空 (China Airlines)”in the query respectively. Specifically, in Figure 4.A, [whe_text_1]
for column“名称 (Name)”has significantly higher attention weights on“锦州港 (Jinzhou
Port)”than other tokens. In Figure 4.B, [whe_text_2] for column “名称 (Name)”has
significantly higher attention weights on“华夏航空 (China Airlines)”than other tokens.

We further find that our method has some robustness when we enter an example that
tends to confuse the model. As shown in Figure 5, when the query is“请问一下快递公司
2018 年单量大于 10 亿件并且 2017 年大于 10 亿件的市占率最大是多少？(What is the
maximum market share of courier companies with a unit volume greater than 1 billion
in 2018 and greater than 1 billion in 2017?)”. Two column names“2018”and“2017”
mentioned in the query are not easily distinguishable. Other than that, the operation
of both columns is “大于 10 亿件 (greater than 1 billion pieces)”. But we find that
our model can still distinguish them in some attention layers. Specifically, in Figure 5.A,
when l = 9, [whe_real_1] for column“2018”has a higher attention weight on“大于 10
亿 (greater than 1 billion)”than other tokens. In Figure 5.B, when l = 11, [whe_real_1]
for column“2017”has significantly higher attention weights on“大于 10亿 (greater than
1 billion)”which close to the fragment “2017”than other tokens. In Figure 5.C, when
l = 9, [sel_real] for column “市占率 (market share)”has significantly higher attention
weights on “最大 (maximum)”than other tokens, which is the operation function for
column “市占率 (market share)”in SELECT clause.

To further evaluate the effect of other techniques on model performance, we conduct
ablation studies by removing the technique to be evaluated from the model. As shown in
the Table 3, we still use ACClf, ACCex and ACCmean as evaluation metrics to analyze the
gains generated by each method. We also try to initialize encoder with different pretrained
model such as Chinese BERT to explore the impact on TableSQL. Specifically, we first
study the number of candidate rows k in the query-sensitive rows extraction process. We
find that the selection of k has a significant impact on the model performance, and the
model performance drops sharply when k is taken as 4. We speculate that this may be
due to the incorporation of too much noise. When k = 3 , the mean accuracy of the
model reaches the best result of 87.8% (Dev) and 90.0% (Test). We also find a slight
performance degradation on the mean accuracy 1.2% (Dev) and 0.9% (Test) in TableSQL
under this condition compared to the RoBERTa-based model in Table 2. Nevertheless,
the performance of the TableSQL still outperforms X-SQL 2.9% (Dev) and 4.6% (Test),
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(a) (b)

Figure 4. Visualization of custom labels on Transformer attention layer,
where l = 10.
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(a) (b) (c)

Figure 5. Visualization of custom labels on different Transformer atten-
tion layers.
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Table 3. Results of the ablation study. “-”in the setting indicates the
removal of a method.

TableSQL(with different k) Dev Test
ACClf ACCex ACCmean ACClf ACCex ACCmean

k = 2 86.1 89.1 87.6 88.2 90.5 89.4
k = 3 86.3 89.3 87.8 88.8 91.1 90.0
k = 4 85.4 88.2 86.8 87.0 89.5 88.3

Setting(k = 3)
-Rows Extraction 85.6 88.6 87.1 87.8 90.2 89.0
-Vertical Alignment Attention 85.9 88.8 87.4 87.0 89.7 88.4
-Serialization Encoding 85.5 88.9 87.2 86.8 89.7 88.3
-Fuzzy Matching 80.8 84.2 82.5 83.6 86.3 85.0

which illustrates the effectiveness of our approach from another perspective. Then, based
on the model with the number of candidate rows k = 3 , we observe and analyze the gains
generated by other techniques.

First, for query-sensitive rows extraction strategy, we use random sampling to replace
it. We find it brings an absolute improvement of 0.7% (Dev) and 1.0% (Test) to the mean
accuracy. Second, we study the effect of the vertical alignment attention mechanism,
which is same as the situation that the number of candidate row k is 1. We find that
the mean accuracy is improved by 0.4% (Dev) and 1.6% (Test), which indicates that the
method of using attention mechanism to fuse information in vertical direction is effective.
Third, when evaluating the gain from serialized encoding, we use a similar approach as
in previous visualization studies, considering only the column names in encoding process.
We find that serialization encoding of table content and column type can further improve
the mean accuracy of 0.6% (Dev) and 1.7% (Test). At last, in the extraction of value
in WHERE clause, we analyze the effect of the fuzzy matching method. Compared to
just getting the keyword span from the query, further fuzzy matching with database
tables could bring an absolute improvement of 5.3% (Dev) and 5.0% (Test) to the mean
accuracy of the model. The impact on execution accuracy is significant, because some
SQL statements generated by relying only on key information in the query are difficult to
execute to get the correct results. The accuracy of logical form also decreases significantly
in this process, which we speculate may be related to the multi-task learning during
training.

4.6. Error Analysis. Compared with the ground truth in TableQA dev set, the reasons
for the wrong prediction results are mainly concentrated in the following categories. (1)
REAL type keyword error. The numerical data in ground truth comes from the table,
but the values we predict come from user queries, and some of them do not appear in the
table. However, SQL language have the ability to process numerical data during execution
and could still execute user’s intention. Although this error brings about the loss of the
accuracy of the logical form, it has less impact on execution accuracy. (2) Errors, missing
and redundant columns in the WHERE clause. Such errors mostly occur in specialized
fields such as materials and finance, which contain a large number of specialized terms.
Although pretrained models can help TableSQL working on cross-domain data, there are
limitations for some specific domains. In the future we will consider reducing this error
by additional pretraining. (3) The order of the condition in the SELECT and WHERE
clauses are different with ground truth. This kind of error is acceptable, which will not
affect the execution accuracy of the SQL statement, but only reduces the accuracy of the
logical form.
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5. Conclusion. In this paper, we propose a new generalizable semantic parsing model
TableSQL for database tables. Firstly, it encodes two heterogeneous data, which includes
automatically sensing the objects mentioned in the table and integrating information
about the same object with different attributes and different objects with same attributes.
This method can take full advantage of the structured knowledge and helps to better
capture the mapping relationship between two heterogeneous data. In addition, we design
a new label-based encoding method which implements multiple relational mappings on
the same column of a table, compensating for the shortcomings of traditional methods.
In decoding, we reorganize the SQL generation process based on the semantic knowledge
and SQL syntax features obtained from the encoder, and design a new keyword matching
method, which helps the model to learn the matching relationship between fuzzy words
with the same meaning but different forms. Overall, TableSQL achieves competitive
performance, with a 5.5% absolute gain of mean accuracy to the last state-of-the-art
method. Through ablation experiments, we observe that various parts of our method
are effective. In the future, we hope to extend our model to SQL generation tasks that
include more complex components such as multi-table linking and nesting.
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