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Abstract. The air quality monitoring networks are the main tool for measuring, man-
aging and evaluating urban air quality. However, the existing monitoring network has
the problem of uneven distribution, some places are dense and some places are sparse.
In order to solve this problem, it is necessary to optimize the monitoring network. For
this reason, we propose a remote optimization method, which uses the available data of
adjacent stations to estimate the pollutant concentration of the target station instead of
measurement. For the air quality monitoring networks, we first use a combination of
cluster analysis and correlation analysis to identify the six air pollutants PM2.5, PM10,
sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone in the monitoring network
whether there is redundant monitoring equipment. Then use long short-term memory
(LSTM) predicts the pollutant concentration of the target station based on the data of
adjacent stations to replace redundant monitoring equipment. For areas without moni-
toring stations, we use data from adjacent stations to set up virtual stations to monitor
pollutant concentrations. Experimental results show that this method can effectively op-
timize the layout of the air quality monitoring networks, reduce costs, and improve the
integrity of monitoring information.
Keywords: Air quality monitoring network, Remote optimization strategy, Long short-
term memory, Redundant equipment, Virtual monitoring station.

1. Introduction. In the past few decades, air pollution has become a major problem
in the world [1,2]. Air pollution affects people’s daily life and health [3-5]. In response
to this, the Chinese government has established air pollution monitoring networks in
most cities. But the layout of the monitoring network has problems with unreasonable
distribution, which will not only increase the financial burden but also affect the integrity
of air pollutant monitoring information.To this end, the air pollution monitoring network
needs to be optimized.

To this end, some researchers have used several methods to optimize the air pollution
monitoring network. Gómez-Losada et al. [6] used a hierarchical clustering algorithm,
to examine the similar behavior in Seville air quality monitoring network. Lu et al. [7]
adopted principle component analysis to discover the redundant equipment for optimizing
the air monitoring networks. Cotta et al. [8] proposed robust principal component analysis
to identify air quality monitoring stations that present similar behavior for any pollutant
or meteorological measure. D’Urso et al. [9] adopt a Fuzzy C-Medoids to detect possible
information redundancy in the monitoring networks and then, decreasing the number of
monitoring stations.

Artificial intelligence algorithms are widely used in predictive models [10-13]. Some
statistical and machine learning techniques have been developed to predict the pollutant
concentration in the air quality monitoring network [14-18]. Random forest and xgboost
are two more commonly used methods. Yang et al. [19] used the random forest to
predict PM2.5 concentration. Besides algorithms developed based on traditional statis-
tical methods and machine learning methods, more and more studies recently started to
implement deep learning technologies for air pollution prediction. Prakash et al. [20] pro-
posed a wavelet-based recurrent neural network (RNN) model to forecast one step hourly,
daily mean, and maximum daily concentrations of ambient CO, NO, PM2.5, and other
most prevalent air pollutants. Krishan et al. [21] extended a long short-term memory
network for air pollution prediction and achieved better performance than other deep
learning methods. Eric KeWang et al. [22] proposed a method of Object segmentation of
monitor systems based on the Internet of drones provides a reliable theoretical basis for
key property monitoring, environmental monitoring, disaster monitoring, and agricultural
monitoring.
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With the continuous deepening of artificial intelligence and machine learning research,
various types of neural networks and their variants are also emerging in an endless stream,
and they all play an important role in their respective fields. The long short-term memory
(LSTM) network improved on the basis of recurrent neural networks (RNN) compensates
for the disappearance and explosion of gradients in RNN networks, and can make full
use of longer-distance time series information. LSTM network has many successful ap-
plication cases in the fields of pattern recognition, machine translation, traffic pattern
detection, traffic flow prediction, stock trading, medicine, etc. [23-25], but there are very
few researches on environmental monitoring.

All of these studies indicate that there exists redundant information in the air quality
monitoring network. However, the existing method only reduces redundant equipment
and does not make an overall optimization of the air quality monitoring network. In this
article, we try to explore some feasible methods to optimize the air quality monitoring
network. We take the Fuzhou Air Quality Monitoring Network as a research case. For
this reason, the situation of redundant equipment in the monitoring network is first re-
vealed. Then based on the similarity, LSTM is used to predict the air concentration of
the target station, which ensures that the prediction can replace the lost value caused by
the disassembly of the equipment. Then, for areas without monitoring stations, we set up
virtual monitoring stations through the air data of adjacent stations to monitor the areas
without monitoring stations.We used LSTM, XGBoost and RF models to predict and
compare the pollutant concentration results. It shows that the prediction accuracy and
effect of LSTM network model are better than the other two models. Experiments show
that this method can improve the comprehensiveness and accuracy of urban pollution
monitoring.

2. Materials and methods.

2.1. Study area. Fuzhou is located in the middle east of Fujian Province. The landform
of Fuzhou is a typical estuary basin, and its elevation is mostly between 600 and 1,000
meters. Fuzhou lies on the north bank of the estuary of Fujian’s largest river and is an
important commercial and government center on the southeast coast of China. Fuzhou
has a typical subtropical monsoon climate with suitable temperature, warm and humid.

2.2. Data sources. There are five national-controlling air quality monitoring sites in
the urban area of Fuzhou city (Figure 1). There are five national-controlling air quality
monitoring stations in the urban area of Fuzhou city (Figure 1). Shida station(SD), Ziyang
station(ZY), Yangqiaoxilu station(YQXL), and Wusibeilu station(WSBL) are located in
densely populated urban areas. Gushan station(GS) located in Gu Mountain. At these
stations, concentrations of PM2.5, PM10, sulfur dioxide, nitrogen dioxide, ozone and
carbon monoxide are monitored. In this study, the real-time hourly mass concentrations of
six kinds of pollutants from January 1, 2019, to September 31, 2019, at the five monitoring
stations were collected from China National Environmental Monitoring Center.

2.3. Remote optimization strategy. We propose a remote optimization strategy. We
estimate the air data of the target station through the air data of adjacent stations.
For the monitoring network, we first perform cluster analysis and correlation analysis
on the monitoring sites of the six air pollutants, so that we can determine which air
pollutant monitoring equipment in the monitoring network has redundancy. Then we use
the available data of adjacent monitoring stations to predict the air data of the target
station and use the prediction results to replace the actual values measured by redundant
monitoring equipment. For areas that are not monitored by monitoring stations, we use
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Figure 1. Location of the Fuzhou air monitoring station

a remote optimization strategy to set up virtual monitoring stations to monitor the air in
locations where no monitoring stations have been deployed.

2.4. Cluster analysis. Cluster analysis is a multivariate statistical method, and the
most used cluster analysis method is hierarchical clustering. Consider multiple samples of
the research object as one type, and consider several samples as the same type, calculate
their mutual distance or similarity coefficient, and combine the samples with the smallest
distance or the largest similarity into one category. The size of Euclidean distance reflects
the similarity relationship between individuals, as shown in Eq.(1).

dij =

√∑n

t=1
|xit − xjt|

2
(1)

2.5. Correlation analysis. Cluster analysis is a multivariate statistical method, and the
most used cluster analysis method is hierarchical clustering. Consider multiple samples of
For a certain pollutant, if the pollution information of the monitoring station has a high
degree of correlation, it means that the environment around the two monitoring stations
has high similarity. We use the Pearson correlation coefficient r to analyze the correlation,
as shown in Eq.(2).

r =

∑n
i=1 (xi − x) (yi − y)√∑n

i=1 (xi − x)2
∑n

i=1 (yi − y)2
(2)

2.6. Long Short Term Memory. LSTM improved from the recurrent neural network
model (RNN). The unit of LSTM shown in Figure 2. There are three types of gates in
a unit: forget gate, Input gate, Output gate. The gate mechanism used to control the
discarding or to retain information, making the memory information in the time series
controllable. The formula of LSTM shown in Eq.(3)-(7).

ft = σ(Wf [ht−1, xt] + bf ) (3)

it = σ(Wi [ht−1, xt] + bi) (4)

ot = σ(Wo [ht−1, xt] + bo) (5)

ct = ftct−1 + it tanh (Wc [ht−1, xt] + bc) (6)

ht = ot tanh(ct) (7)
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Figure 2. LSTM unit

2.7. Model performance. In our study, three indexes were employed to measure ac-
curacy. These indexes are the coefficient of determination (R2), root mean square error
(RMSE), Mean absolute percentage error(MAPE), and calculated as follows:

R2 =
(
∑N

i=1 (yitrue − ytrue)(yipred − ypred))
2∑N

i=1 (yitrue − ytrue)
2∑N

i=1 (yipred − ypred)
2 (8)

RMSE =

√
1

N

∑N

i=1
(yitrue − yipred)

2
(9)

MAPE =
∑N

i=1

∣∣∣∣yitrue − ypredyitrue

∣∣∣∣100

N
(10)

N denotes the number of evaluation samples,yitrue is the observed value,yipred is the pre-
dicted value,ytrue is the average of the observed value,ypredis the average of the predicted
value.

3. Results and discussion.

3.1. Monitoring network redundancy analysis. The Pearson correlation analysis is
employed to have a first look at the linear relationships of six kinds of pollutants among
all stations. Then the cluster analysis is utilized to reveal the redundant information in
the monitoring network.

Figure 3 displays the results of Spearman correlation analysis among five stations. First,
it is found that the correlation coefficient between GS station with other stations is low.
GS station located in Gu Mountain, which results in distinctive behavior with others.
Thus, GS station is not redundant monitoring stations. Secondly, for the four stations
located in the urban area of ZY, WSBL,YQXL, and SD, we found that PM2.5, PM10, ni-
trogen dioxide, and ozone have relatively high correlations, and the correlation coefficients
in most cases greater than 0.8. For carbon monoxide, sulfur dioxide, the correlation coeffi-
cient is relatively low. Therefore, sulfur dioxide and carbon dioxide monitoring equipment
are not redundant monitoring equipment.

Besides, cluster analysis carried out and the results exhibited in Figure 4. Analyze six
kinds of pollutants according to the RDCC value calculated from SPSS. For PM2.5, ZY
and WSBL stations are one category, SD and YQXL stations are the other. For PM10, ZY
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Figure 3. Analysis of the correlation (Pearson’s r) between monitoring
stations for six kinds of pollutants

and SD stations are one category, WSBL and YQXL stations are the other. For nitrogen
dioxide, WSBL, YQXL and SD stations are one category. For ozone, ZY and WSBL
stations are one category. For sulfur dioxide, SD and WSBL stations are one category,
ZY and YQXL stations are the other. For carbon monoxide, SD and WSBL stations are
one category. The lower the RDCC value within the category, the more similar behaviors
the category presents. The results of Pearson correlation analysis and cluster analysis
show that there are redundant devices in the air quality monitoring networks.

3.2. Analysis of prediction results of remote optimization strategy. According
to redundancy analysis, we use LSTM, XGBoost, and Random forest (RF) three models
to predict PM2.5, PM10, ozone, and nitrogen dioxide concentration at the target station.
For a better illustration, the predicted results at ZY station is selected as an example to
examine three model performance. The adjacent stations of ZY station are WSBL, SD,
YQXL, GS stations, but the correlation coefficient of GS station is low, so the GS station
is not considered. The prediction result is shown in Figure 5. For PM2.5 and nitrogen
dioxide, the prediction effect of the LSTM model is better than the other two models.
For PM10 and ozone, the prediction effects of the three models are similar.

For a better illustration, Table 1 presents the statistical evaluation indices of the three
models at all stations except the GS station. From the table, some conclusions can be
addressed 1), it can be recognized that the LSTM model has a better prediction effect than
the XGBoost model and the RF model; 2), the remote optimization strategy confirmed
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Figure 4. The dendrogram for six kinds of pollutants

the possibility of predicting pollutant concentration at target station using available data
from adjacent stations.

Overall, this strategy confirmed that the pollution level at some stations could be
well predicted instead of measurement directly. This strategy reveals the possibility of
removing or relocating some equipment in the air quality monitoring network in the future.

3.3. Feasibility analysis of virtual monitoring station. For areas not monitored
by monitoring stations, we use available data from adjacent stations to set up a virtual
monitoring station. Because adjacent monitoring stations may not have a high correlation
with unmonitored areas, we need to test whether the target station with low correlation
is suitable for remote optimization strategy. The correlation between the GS station and
its adjacent stations is low, so we choose GS station as our target station. The adjacent
stations of GS stations are ZY and SD stations.
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Figure 5. Comparison of prediction results of three models at ZY station

The prediction results using the LSTM model are shown in Figure 6. For six kinds of
pollutants, 0.68 < R2 < 0.94 . This means that it is feasible to use a remote optimization
strategy to set up virtual monitoring sites in unmonitored areas.
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Table 1. Forecast results evaluation

XGBoost RF LSTM
MAPE RMSE R2 MAPE RMSE R2 MAPE RMSE R2

ZY

PM2.5 21.29% 6.96 0.79 22.49% 7.05 0.79 15.65% 5.68 0.86
PM10 14.01% 11.54 0.81 14.27% 11.23 0.82 15.10% 13.03 0.76
Ozone 38.63 12.16 0.91 39.84% 12.05 0.91 30.39% 12.83 0.90

Nitrogen Dioxide 28.45% 8.83 0.71 29.48% 8.81 0.71 17.25% 6.54 0.84

YQXL

PM2.5 16.70% 5.86 0.78 17.89% 5.72 0.78 13.31% 4.49 0.86
PM10 15.72% 11.05 0.72 15.63% 10.81 0.73 16.75% 11.31 0.71
Ozone 30.03% 14.63 0.87 30.72% 13.55 0.89 24.45% 12.10 0.91

Nitrogen Dioxide 37.75% 8.03 0.67 38.99% 8.05 0.67 17.28% 6.53 0.84

SD

PM2.5 24.26% 7.02 0.74 25.76% 7.32 0.72 13.62% 5.33 0.85
PM10 13.88% 11.07 0.79 14.92% 11.16 0.79 14.12% 10.76 0.80
Ozone 18.35% 14.73 0.87 20.20% 15.57 0.85 15.42% 12.26 0.91

Nitrogen Dioxide 22.92% 8.76 0.64 24.63% 8.95 0.62 16.89% 6.09 0.83

WSBL

PM2.5 19.07% 6.83 0.77 20.42% 6.92 0.76 12.91% 5.07 0.87
PM10 18.44% 12.31 0.69 20.10% 12.93 0.67 15.62% 9.76 0.80
Ozone 19.57% 10.52 0.93 21.41% 10.87 0.93 25.51% 11.98 0.92

Nitrogen Dioxide 20.91% 7.67 0.70 22.00% 7.81 0.69 16.42% 6.02 0.82

Figure 6. Prediction results of six kinds of pollutants at GS station

4. Conclusions. We have presented a remote optimization strategy to optimize the air
quality monitoring network. Firstly, the correlation analysis and cluster analysis are
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employed to reveal the redundant information in the monitoring network. The results
verified the existence of redundant equipment in the monitoring network. Then the LSTM,
XGBoost and RF are developed to predict Pollutants concentration. The prediction
results successfully confirmed that the prediction effect of the LSTM model is better than
the other two models and the pollutant concentrations measured by redundant equipment
can be well estimated with the available data at adjacent stations. Secondly, we test the
feasibility of setting up virtual monitoring stations through remote optimization strategies.
The result proves that the air data of the unmonitored area can be monitored through
the adjacent stations. This strategy can optimize the air quality monitoring network and
expand its monitoring range. The results, therefore, have great practical significance for
improving the comprehensiveness and accuracy of urban pollution monitoring.
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