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Abstract. With development of deep learning, 3D reconstruction has become more and
more popular based on it. For complexity and variability of 3D reconstruction object
itself, overall reconstruction quality of 3D reconstruction method based on voxels is not
high. 3D reconstruction method based on point cloud has better reconstruction effect than
the method based on voxel. In this paper, a fully connected point cloud deformation net-
work and a GraphX-based multi-resolution point cloud deformation network is proposed.
Experiments show its efficiency and when IoU is used as evaluation metrics, problem of
poor quality evaluation in most voxel-based methods can be solved.
Keywords: 3D Reconstruction, Point Cloud, Deep Learning

1. Introduction. Traditional 3D object reconstruction methods based on monocular
vision usually use accurate models [1, 2], or use 2D annotations [2] to assist during re-
construction. But these methods are usually limited to some Specific 3D reconstruction
scene. Due to complexity and change of real scenes and data, such models that require
assumptions are not effective in practical applications.

With development of deep learning and the emergence of large-scale shape sets, such
as the ShpaeNet dataset [3], and progress of data-driven methods, researchers have been
interested in methods that imitate human visual system. Since 2015, scholars have used
deep learning to complete 3D reconstruction based on 2D images. At the same time,
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representation method of the 3D reconstruction results plays a vital role in choice of
architecture of 3D reconstruction network based on deep learning [4], this affects quality
and efficiency of 3D reconstruction results. For 3D reconstruction based on monocular
vision, since useful information is basically enriched in the surface of the 3D shape or the
area near surface, voxel-based method often causes unnecessary waste. Point cloud is a
common method to represent 3D surface.

Fan et al. [5] designed a point set generation network (PSGN), which can generate
a target 3D point cloud by inputting a single 2D image. As enlightening study, this
method proves the power of 3D representation method of point cloud. Jiang et al. [6] also
adopted a similar method, they introduced Geometric Adversarial Loss (GAL) to improve
it. Unlike reconstruction network architecture that directly generates a 3D point cloud
from a single image, Zeng et al. use depth map generated from a single 2D image as an
intermediate expression. Then, they generated depth map into a partial point cloud and
a complete point cloud in turn.

Previous methods have a common disadvantage that generated point cloud is relatively
sparse. Although shape is similar to tag point cloud, it is difficult to demonstrate sur-
face details of 3D shape due to small number of points in point cloud. In addition, to
one-step method of predicting dense point clouds from a single 2D image, gradually im-
proving reconstruction resolution of point clouds is also a commonly used method. Yu
et al. [7] proposed a network structure that outputs a dense point cloud from a sparse
point cloud, namely punet network, which implements point cloud upsampling. Based on
this, Mandikal and Radhakrishnan [8] proposed DensePCR network. It is a deep pyramid
network that improves resolution of point cloud in stages. Firstly, it uses a simple en-
coding and decoding network to output a sparse point cloud with 1024 points. Then the
sparse point cloud passes through two dense reconstruction networks is done to increase
resolution to 16 times and finally form a dense 3D point cloud. Dense reconstruction net-
work firstly aggregates global and local features from point cloud, and increases number
of points to 4 times by copying itself. In order to ensure that the copied points will not
produce the same results as the origin, different disturbances will be added between the
same points.

Dense reconstruction of point clouds based on deep learning is inseparable from fea-
ture extraction of point clouds. Due to disorder of point clouds, convolutional neural
network acting between neighboring pixels is difficult to directly use on point clouds. In
order to use powerful convolution neural network on point cloud, Li et al. [9] proposed
χ-convolution. Main idea of χ-convolution is to make good use of local information like
a convolutional neural network, but point cloud does not naturally carry position infor-
mation on arrangement like pixels, and there is no edge between vertices like a grid. So
the first step of χ-convolution is to find K neighborhoods of a certain point through K
nearest neighbor algorithm, and then process features of these K points. It is similar
to resolution of the 2D feature map in convolutional neural network will gradually de-
crease, and number of channels will increase. And it is similar to resolution of 2D feature
map in convolutional neural network will gradually decrease, and channel number will
increase. χ-Convolution will aggregate points in neighborhood and reduce the number of
points. It also aggregates features of all points and increases feature dimension, so that
the neighborhood of the point is more representative.

Although point clouds have good performance on complex 3D shapes, as an unstruc-
tured 3D shape description method, it is difficult for us to use point clouds on regular grids
to represent convolutional neural networks well. So, a 3D point cloud reconstruction net-
work based on deformed network is proposed here. We conducted related experiments on
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ShpaeNet dataset and demonstrated superiority of 3D point cloud reconstruction network
based on the deformed network.

2. Our Proposed Method. The point cloud-based 3D reconstruction network is shown
in Figure 1 Reconstruction network is mainly composed of three modules: a 2D image
coding network, a point cloud feature extraction network, and a point cloud deformation
network.

Figure 1. Design of 3D Reconstruction Network Based on Point Cloud

For a given 2D image corresponding to a 3D point cloud object, we first use the en-
coding network of 2D image to encode it, and continuously increase number of channels
and reduce resolution through the layered 2D convolution operation. Finally, we extract
multi-scale feature map of 2D image. Point cloud feature extraction network uses the
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important information of 2D coordinates of each point in the initial random point cloud
to further perform feature extraction from the multi-scale features extracted from the
above-mentioned 2D image encoding network, and extracts local features, style features
based on specific points, and global features based on the entire point cloud. In the figure,
orange part is the specific point feature, blue part is the style feature, white part is 3D
coordinates of the random point cloud, and the yellow part is the global feature.

Then we mix these features with randomly generated initial point cloud, and input them
into deformed network, namely the 3D point cloud decoder, to generate the predicted
point cloud of the 2D image.

2.1. Local Features of Point Cloud. For input random initial point cloud, the only
information it has is the 3D coordinates of each point in the point cloud through a random
function. With help of camera internal parameters, we can convert 3D coordinates of each
point in point cloud into 2D coordinates of feature map output in above-mentioned 2D
image coding network, so as to realize the projection of the 3D random point cloud to
the 2D feature map. For a real point cloud, if we want to correctly project each point
in the point cloud to a 2D image with different angles, we should use camera parameters
of 2D image to perform operations such as deformation and rotation on the point cloud.
We use inverse process of random point cloud generation to calculate coordinates of each
point in point cloud projected to a 2D plane, aMnd then scale these coordinates to 2D
feature maps of different sizes. Since 2D coordinates obtained in above calculations are
floating-point values and cannot accurately describe the specific pixel coordinates of the
feature map, we will use the bilinear interpolation method to calculate feature value with
distance as the weight from the four pixels adjacent to the floating point. The coordinates
are then used as local feature of each point in point cloud. Through bilinear interpolation,
we can add rich specific point features to each point in the point cloud.

2.2. Stylistic Feature of Point Cloud. In order to derive global shape information,
we obtained a concept from literature on image style transfer [10]. By transferring ”style”
of 2D image to point cloud, we can describe global shape information of point cloud to a
certain extent, which is called the style feature here. From a global perspective, mean and
variance of feature map obtained by multi-level convolution of a 2D image of an object
can be used to describe the shape of the object to a certain extent. After retrieving these
mean and variance from the multi-scale feature map of 2D input image, eliminate mean
and variance in features corresponding to original point cloud, and finally ”embed” mean
and variance of 2D image feature map into 3D point, the style transfer is completed. Here,
we will use Adaptive Instance Normalization (AdaIN) to transfer the style of the random
initial point cloud.

Let Xi ∈ Rci×hi×wi denote feature map numbered obtained by 2D image from 2D image
coding network, the number of channels is ci, the height is hi, and the width is wi. Let
Yi ∈ RN×ci represent the dimensional feature obtained by passing the coordinate value of
the point cloud through a series of multi-layer perceptrons, and yj represents the feature
vector of a point j in the point cloud at this scale.µXi

and σXi
represent mean and variance

calculated from the entire , and respectively represent the mean and variance calculated
from the entire Yi. Here we define the 2D to 3D AdaIN formula as shown in formula (1).

AdaIN (Xi, yi) = σXi

yj − µYi
σYi

+ µXi
(1)

2.3. Fully Connected Point Cloud Deformation Network. As a network structure
can guarantee that the result will not become worse, the residual network structure is
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very popular. For the fully connected point cloud deformation module introduced above,
we added a shortcut connection and named it the residual fully connected point cloud
deformation module, resFC module for short, to ensure that the fully connected point
cloud deformation network can be as fast as possible use point cloud features extracted
from 2D images. Its structure is shown in Figure 2.

Figure 2. resFC module

2.4. Multi-resolution Point Cloud Deformation Network. Graph convolution [11]
can take advantage of the local interaction feature between points in point cloud, but graph
convolution is applied to the representation of a 3D grid with a topological structure. The
point cloud is not like a 3D grid that there is edge information between each point, so
graph convolution cannot be used in the point cloud. Literature [12] proposed a point
cloud deformation network module called GraphX, as shown in Figure 3. GraphX is a
network module similar to MLP-Mixer network [13].

Figure 3. GraphX point cloud deformation module similar to MLP-Mixer structure

For input point cloud features, GraphX module first transposes them, and then uses a
fully connected layer for processing. At this time, features in the same dimension between
each point in the point cloud will exchange information with each other. By modifying the
output dimension of fully connected layer, we can adjust number of points in point cloud.
Compared with the upsampling process in Pixel2Mesh [14] that the increase in number of
points in the grid is limited by number of edges in grid, and number of edges can only be
increased by vertices at a time, using this structure can obviously adjust number of points
more flexibly. After that, we transpose point cloud features and perform full connection
operation to get the deformed point cloud. χ-convolution and graph convolution act on
the neighborhood, while the GraphX deformation operation similar to MLP-Mixer acts
on entire point cloud. The mathematical definition of the point cloud deformation module
based on GraphX is shown in formula (2):

f
(0)
k = h (nk) = h

(
W T

(∑
fi∈F

wi,kfi + bk

)
+ b

)
(2)
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F ∈ Rd represents set of d-dimensional feature vectors of the point cloud, fi is a feature

vector on it, and f
(0)
i is output feature vector of the k-th layer. For fi and f

(0)
i , wik, bk ∈ R

are the mixed weights and mixed deviations obtained by training, W ∈ Rd×d0 , B ∈ Rd0

are parameters of the fully connected layer immediately after the mixing operation.
In order to ensure that the network can learn more useful feature information, for

GraphX-based point cloud deformation module, we also designed its residual version,
referred to as resGraphX module for short, and its structure is shown in Figure 4.

Figure 4. resGraphX module

Based on resGraphX module, we improved GraphX module and proposed a GraphX-
based multi-resolution point cloud deformation network(MGXN). Its structure is shown
in Figure 5. When the point cloud feature extraction network passes points with fea-
tures into GraphX-based multi-resolution point cloud deformation network, it will use
3 different resGraphX modules to convert original point cloud into 3 point clouds with
different resolutions. Based on these three point clouds, we use resGraphX module to
upsample them, and finally get three point clouds with the same number of points. After
connecting these three point clouds, and after a series of resGraphX modules, we get the
final reconstructed point cloud.

Figure 5. Multi-resolution point cloud deformation network based on GraphX
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2.5. Loss Function. Since the point cloud is a disordered 3D shape representation, order
of the points in the point cloud does not affect representation of 3D shape of the point
cloud, so for the 3D point cloud reconstruction network, we need to use a loss function
that does not change the relative order of the input points to describe the gap between
the predicted point cloud and the real point cloud.

In some algorithms, some scholars also use a loss function similar to L1 loss [15], but the
generated 3D shape surface is relatively rough. In the field of 3D reconstruction based on
point clouds, we often use earth removal distance (EMD) and chamfer distance (CD) to
measure the gap between two point clouds, and use them as a loss in the training process
of the 3D reconstruction network function.

Chamfer distance can be used as a measure of the gap between different point clouds.
Specific mathematical formula is as follows, let P ∈ R3 and Q ∈ R3 denote two different
point cloud shapes, then the chamfering distance dCD(P,Q) between the point clouds P
and Q is calculated as the formula (3) shown.

dCD(P,Q) =
1

|P |
∑
p∈Q

min
q∈Q
‖p− q‖22 +

1

|Q|
∑
q∈Q

min
p∈P
‖q − p‖22 (3)

3. Experimental Results and Analysis. In this article, we use a subset of the ShapeNet
dataset [16]. 3D-R2N2 provides a rendered 2D image and ground truth point cloud for
this ShapeNet subset, which was then processed by Nguyen et al. [12]. The dataset is
composed of a total of 43,783 3D point cloud models in 13 categories, and in this article
we use the default dataset segmentation method attached to the database.

The calculation formula of IoU is shown in formula (4). IoU represents the ratio of
intersection and union between two sets A and B. Extend to binary 3D voxels, it is the
ratio of intersection and union between two 3D voxels.

IoU(A,B) =
|A ∩B|
|A ∪B|

(4)

When using the chamfer distance as the evaluation index of the reconstruction quality,
we choose 3D-R2N2 [17], PSGN [5], Pixel2Mesh [14] and PCDnet [12] four baselines
to compare the experimental results. In the training process of the 3D reconstruction
network, Adam optimizer is used, the learning rate is set to 5e-5, and the batchsize to
4. All others use the default settings. The number of points generated in the experiment
is 2000. The chamfer distance between the 3D reconstruction result and the tag point
cloud is shown in Table 1. Here, the average chamfer distance of each category and the
average chamfer distance of all categories is given. Results of PCDnet [12] are obtained
from recurring experiments, and the best results have been blacked out.

It can be seen from the Table 1 that 3D reconstruction quality of GraphX-based multi-
resolution point cloud deformation network used in this experiment has surpassed the
previous best reconstruction method in evaluation index of chamfer distance. In addi-
tion, it can be found that the reconstruction quality of the multi-resolution point cloud
deformation network based on GraphX completely exceeds fully connected point cloud de-
formation network [18-20]. The fully connected point cloud deformation network cannot
change the number of points in point cloud during point cloud deformation process, while
the GraphX-based multi-resolution point cloud deformation network will continuously
sample the point cloud during the point cloud deformation process. Even if we increase
the number of points in the initial random point cloud to increase features of points that
reach point cloud deformation network through point cloud feature extraction network,
connect point cloud deformation network still can’t have the reconstruction performance
beyond the multi-resolution point cloud deformation network based on GraphX.
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Table 1. Quantitative comparison of chamfer distance between point
cloud based 3D reconstruction network and four baselines on 13 main cat-
egories of shapelnet dataset

Category 3D-R2N2 [17] PSGN [5] Pixel2Mesh [14] PCDnet [12] FCnet MGXN
airplane 0.895 0.430 0.477 0.123 0.136 0.119
bench 1.819 0.629 0.624 0.201 0.234 0.195
cabinet 0.735 0.439 0.381 0.264 0.314 0.263
car 0.845 0.333 0.268 0.190 0.228 0.187
chair 1.432 0.645 0.610 0.316 0.359 0.309
monitor 1.707 0.722 0.755 0.251 0.293 0.248
lamp 4.009 1.193 1.295 0.528 0.572 0.529
speaker 1.507 0.756 0.739 0.413 0.484 0.413
firearm 0.993 0.423 0.453 0.124 0.136 0.122
couch 1.315 0.549 0.490 0.262 0.305 0.256
table 1.116 0.517 0.498 0.295 0.336 0.287
cellphone 1.137 0.438 0.421 0.157 0.190 0.158
watercraft 1.215 0.633 0.670 0.212 0.243 0.210
mean 1.445 0.593 0.591 0.257 0.295 0.254

When using IoU as the evaluation index of reconstruction quality, we choose PSGN [5],
GAL [6], PCDnet [12] and the 3D reconstruction method based on shape layer four base-
lines to compare experimental results. PCDnet are obtained from recurring experiments.
The larger the IoU value, the better, and the best result has been blackened.

Table 2. Quantitative comparison of point cloud based 3D reconstruction
network with IOU (%) of four baselines on 13 main categories of shapenet
dataset

Category PSGN [5] GAL [6] PCDnet [12] Shape Layer method MGXN
airplane 60.1 68.5 73.4 61.8 73.6
bench 55.0 70.9 72.5 61.7 71.2
cabinet 77.1 77.2 78.1 80.9 78.3
car 83.1 73.7 83.3 83.9 83.4
chair 54.4 70.0 66.3 49.7 65.9
monitor 55.2 80.4 73.4 50.7 73.6
lamp 46.2 67.0 53.2 55.5 51.2
speaker 73.7 69.8 70.8 69.0 70.6
firearm 60.4 71.5 74.9 55.1 75.2
couch 70.8 73.9 77.0 67.3 77.1
table 60.6 71.4 60.4 53.5 60.1
cellphone 74.9 77.3 85.4 82.9 84.9
watercraft 61.1 67.5 75.4 53.5 75.1
mean 64.0 71.2 72.6 64.3 72.3

It can be seen from Table 2 that the 3D reconstruction quality of the point cloud-based
monocular vision 3D reconstruction network used in this experiment is very close to the
current best result in the IoU evaluation metrics.
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For qualitative analysis, several 2D images are selected to display reconstruction results.
Reconstruction results are shown in Figure 6. The left side is the target 2D image, the
middle is the target tag point cloud, and the right is the reconstruction point cloud.

Figure 6. Display of 3D reconstruction results of some objects

4. Conclusions. By improving the extraction of specific point features, style features
and global features of the point cloud, a 3D point cloud reconstruction network based on
a deformed network is proposed. Through experimental evaluation and ablation experi-
ments, we demonstrate the effectiveness of 3D point cloud reconstruction network based
on deformed network in monocular 3D reconstruction. When the chamfer distance is used
as the evaluation index, this reconstruction network can obtain better results than other
baselines.
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