
Journal of Network Intelligence ©2021 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 6, Number 4, November 2021

Detection of Insulator Defects Based on Improved
YOLOv3

Ren-Jie Song

Department of Computer Science
Northeast Electric Power University

No. 169 Changchun Road, Jilin, Jilin, China
1939811347@qq.com

Dong-He Jin*

Department of Computer Science
Northeast Electric Power University

No. 169 Changchun Road, Jilin, Jilin, China
Corresponding Author: 506433601@qq.com

Khishiguren Dovagdorj

Department of Electrical and Computer Engineering
Chungbuk National University

Cheongju 28644, Republic of Korea
khishigsurend@chungbuk.ac.kr

Received May 2021; revised August 2021

Abstract. At present, UAV is widely used in insulator defects detection of transmis-
sion line. In order to effectively detect insulator defects in aerial images in real time, an
insulator defects detection method based on improved yolov3 is proposed. According to the
definition of receptive field in convolutional neural network, a new yolov3 targets detec-
tion network is constructed. Then the depthwise separable convolution and anti residual
block are used to reduce the size of the model and improve the detection speed. Finally
through the cascaded structure of two object detection models, the insulator defects detec-
tion problem is transformed into a two-stage object detection problem. The experimental
analysis shows that this method can effectively locate the defects in insulators in real time,
and a good compromise is achieved between the speed and accuracy of insulator defects
detection. It has good practicability in insulator defects detection based on UAV.
Keywords: insulator defects, object detection; YOLOv3, depthwise separable convolu-
tion, anti residual block

1. Introduction. Due to their close relation to daily life and the national economy,
power grids have become particularly important [1-2]. Insulators are essential equipment
in high-voltage power transmission system [3]. They are made of high-strength insulating
materials such as ceramics, tempered glass or synthetic rubber, which play a role of
support and insulation in the operation of power grids [4]. With the rapid construction of
China’s power grids and the growth of the number of insulators, power accidents caused
by insulator defects are also increasing. Defects of the insulator mainly come from its poor
working environment [5]. Snow, haze and bird droppings in the field will result in flashover
of the external insulation of the insulators, lightning may cause electrical breakdown, and
storm and external force damage will cause damage to the mechanical structure of the

859



860 R. J. Song, D. H. Jin and K. Dovagdorj

insulators [6]. Once the insulator is defective, it will greatly improve the risk probability
of failure of the entire high voltage line and pose a great threat to the safe operation of
the power grids. Therefore, ensuring the effective working state of insulator is particularly
important to maintain the safe and stable operation of power grids [7]. Transmission line
inspection is an essential means to ensure the normal operation of electrical equipment
and maintain the safe and stable operation of power grids. The traditional transmission
line inspection adopts manual patrols or manned helicopter inspection to inspect the
relevant equipment of the transmission line, which is inefficient and costly. The review
of staff based on subjective experience also has the problem of insufficient accuracy. In
recent years, with the development and progress of science and technology, more and
more enterprises and institutions began to implement the ”Intelligent patrol inspection”
of the combination of UAV and artificial intelligence technology [8]. Intelligent patrol
inspection refers to the patrol inspection technology that uses UAV to collect data and
images of power lines, and then uses computer vision technology to analyze the collected
image information instead of human beings, so as to finally realize digital and unmanned
operation process. Intelligent patrol inspection has the characteristics of accuracy, safety,
efficiency and economy. It is the advance direction of Power Patrol Inspection Technology
in the future. In practical applications, the images captured by UAV usually contain
complex geological environment backgrounds such as towers, mountains, rivers, grasslands
and farmland. These factors are easy to lead to sinful defect detection.

Wang et al. [9] used YOLO to find the insulators in the images, and then the insulator
masks are extracted based on the salience detection. Finally, the horizontal projection
method is used to locate the insulator defects’ location. However, this method of locating
the defect position in the horizontal projection curve is sensitive to noise, which will affect
the detection effect. Guo et al. [10] used the Faster-RCNN object detection framework to
detect the insulator strings on the images taken by the drone, and then converted the RGB
images of the detected insulator strings area to the HIS space, and performed threshold
segmentation on the H channel and the S channel. This method extracted the insulator
strings from the background area, and finally determined whether the insulator string
had defects according to the distance between the insulator sheets. Although this method
can detect insulator strings of high accuracy, the two-stage objects detection framework
Faster-RCNN requires higher hardware resources, and compared with one-stage object
detection algorithms such as YOLO and SSD, it is slower in detection and cannot be
embedded into UAV. Zheng et al. [11] used the improved YOLOv3 method to detect
insulators and other power equipment in infrared images, but could not detect defects
in the equipment. Zhao et al. [12] used OAD-BSPK to locate multiple insulators with
different angles in complex aerial images. The above methods usually locate the insulators
first, and then extract the characteristics of the insulators and determine their state by
using the traditional image processing method or shallow learning method. These methods
usually have certain requirements for the size, shape, angle and background of insulators,
so they are not appropriate for practical application. To solve the above problems, a
complete solution of insulator defects detection based on improved YOLOv3 algorithm is
proposed. In order to better to detect insulator defects, cascade architecture is adopted.
Firstly, the insulators are detected, and the detected insulators are used as input to
detect the defects in the insulators. In order to compensate for the increased amount
of computation caused by the cascade architecture, the detection speed is improved by
optimizing the network structure. This method is more universal and can locate insulator
defects quickly and accurately.

2. Insulator defects detection.
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2.1. YOLO object detection algorithm. The two-stage object detection algorithm
does not share the convolution parameters between the candidate region recommendation
network and the detection network. For example, the Faster R-CNN [13] algorithm first
uses RPN network to generate candidate regions, and then the feature extraction net is
used to classify the objects in the candidate region and return to the bounding box. This
algorithm has the disadvantage of slow detection speed.

Two-stage object detection frameworks are generally slow in detection. In order to
improve the speed of object detection, Redmon et al. [14] proposed an algorithm called
YOLOv1, which uses features to extract the last layer of the network’s feature map to
classify the target category and regression the bounding box. YOLOv1 is not good at
detecting objects and small objects that are close to each other. This is because YOLOv1
only predicts in a feature map of one scale and only predicts two boundary boxes in one
grid. Later, a series of improved YOLO versions used a deeper and more powerful feature
extraction network, and used the strategy of setting Anchor Box (a priori box) in Faster
R-CNN, using a full convolutional network, and passing the prediction of the prior box
Offset to reduce the difficulty of network training. YOLOv2 [15] overcomes the short-
comings of YOLOV1’s low recall rate and high positioning error rate, while improving
the accuracy of object classification. YOLOv3 [16] further improves the accuracy rate
than YOLOv2. In terms of network structure, YOLOv3 combines the multi-branch con-
volution of GoogLeNet [17] and the direct connection method of ResNet [18]. Although
YOLOv3 has high detection accuracy, it is also much faster than the two-stage object de-
tection framework such as Faster-RCNN. However, due to the deep network structure of
darknet-53, its real-time performance on low-performance embedded devices is not ideal.
Therefore, this paper proposes a lightweight YOLOv3 model, and refers to the RFB Net
that simulates the receptive field of human vision to enhance the feature extraction ability
of the network, which makes up for the lack of feature extraction ability after the network
depth is reduced. In order to improve the real-time performance when the accuracy of
model detection is slightly reduced but still meets the requirements. Figure 1 shows the
network structure of YOLOv3.

2.2. Improving the network structure of YOLOv3. Although YOLOv3 has high
detection accuracy, it is also much faster than the two-stage object detection frameworks
such as Faster R-CNN. However, since the darknet-53 it uses has a relatively deep network
structure, the real-time performance on low-performance devices or PCs is not ideal.

In this paper, a new feature extraction network is used to replace the feature extraction
network darknet-53 of YOLOv3. The improved algorithm reduces the regression scale of
the detection algorithm and the number of layers of the backbone network. The deep
separable convolution is used to reduce the amount of network calculation. The feature
maps of different scales have different receptive fields. Therefore, the receptive fields are
improved by adding multi-scale branches to the three scale feature extraction layers of
the backbone network. Firstly, each branch is down sampled, and the feature map with
a smaller scale has a larger receptive field. Then, the feature extraction is carried out on
the feature map of this scale, and the feature fusion is carried out with the feature map
of the main branch after up sampling by the nearest neighbor interpolation method. This
structure can better extract and integrate local and global information of different scales,
improve the ability of shallow network to extract semantic information and improve the
ability of target feature detection. The improved network structure of YOLOv3 is shown
in Figure 2.

In the figure2, Conv3 is a convolution kernel with a size of 3Ö3, Conv1 is a convolution
kernel with a size of 1Ö1, RFB is an RFB layer, and ARB is an anti residual block that
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Figure 1. Structure of YOLOv3

uses Depthwise separable convolution, the ARB with step size of 2 is used to replace the
max pooling for feature down sampling. And perform up-sampling in the 13Ö13 feature
layer, enlarge the feature map to 26Ö26, and superimpose it with the feature map of the
previous layer with a size of 26Ö26, finally the prediction is carried out on two scales of
13Ö13 and 26Ö26.

2.3. Improved Convolutional layer. The improved detection algorithm uses a Depth-
wise separable convolution composed of Depthwise (DW) convolution and Pointwise (PW)
convolution [19] instead of conventional convolution operations. The structure is shown in
Figure 3. Different from the conventional convolution operation, one convolution kernel
is only responsible for one channel in the DW convolution machine, and one channel is
convolved by only one convolution kernel. The number of convolution kernels is equal to
the output dimension of the previous layer feature map, that is, the input feature map of
this layer corresponds to the convolution kernel one by one. Therefore, the dimension of
the feature maps cannot be expanded, and the feature information of different channels
at the same spatial position is not effectively used. Therefore, we add PW convolution to
merge these feature maps to generate new maps. PW convolution uses 1 Ö 1 convolution
kernel to weight sum the feature maps of the previous layer in the depth direction and
generate a new feature map.
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Figure 2. Structure of improved YOLOv3

Suppose the size of the original images is DF × DF , the dimension is M , the size of
the Convolution kernel is DK × DK , and the number of channels is N . The calculation
amount of ordinary convolution operation is:

Cn = DF ×DF ×M ×N ×DK ×DK (1)

The calculation amount of the Depthwise separable convolution is:

Cd = DF ×DF ×M ×DK ×DK + DF ×DF ×M ×N (2)
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Figure 3. Depthwise separable convolution

The ratio of the calculation amount of the Depthwise separable convolution to the calcu-
lation amount of the ordinary convolution is:

Cn

Cd

=
1

N
+

1

D2
K

(3)

The DW convolution can effectively reduce the computational complexity and the size of
the model, but it can not solve the problem that the gradient disappears with the increase
of convolution layers. Ordinary residual structure uses 1Ö1 convolution operation to
map high dimensional space to low-dimensional space, which will compress feature map
and damage feature expression. Therefore, we used the anti-residual block. First, the
number of channels is expanded to 4 times through 1Ö1 convolution, and then 3Ö3 DW
convolution is used to extract high-dimensional spatial features, and finally through 1Ö1
The PW convolutional layer maps the result to the new feature space. Figure 4 is the
internal network structure diagram of the anti-residual structure used in this paper. In
order to prevent gradient explosion, gradient disappearance and speed up the network
convergence, the output value after each reel operation is normalized, which makes it
easier and more stable to train the neural network model. According to the definition
of the receptive field in the convolutional neural network, the receptive field module is
added to the feature extraction network, which is called the RFB layer in this paper.
The RFB layer combines the ideas of multi-branch convolution (Inception) and hollow
convolution to simulate human visual perception as much as possible [20], strengthen the
feature extraction ability when using a lightweight backbone network. The structure is
shown in Figure 5.
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Figure 4. Internal structure of Anti Residual Block

Figure 5. Structure of RFB layer

RFB layer adopts multi branch structure, and the convolution kernel size of each branch
is different. In order to decrease the training parameters and network training complex-
ity, each branch adopts the bottleneck structure.The shortcut structure integrating the
features of the previous layer and the features of the current layer is used to solve the prob-
lem of gradient divergence when increasing the network depth, To reducing the amount
of network parameters and calculations, replaced the 5 × 5 convolution with two 3 × 3
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convolutions, and used 1×7 and 7×1 asymmetric convolution replaced 7×7 convolution.
The dilated convolution adds a parameter hole rate on the basis of the original convo-
lution, which is recorded as R. This parameter controls the degree of expansion of the
convolution kernel, and fills the unoccupied area in the original convolution kernel with
0. The effective height and width of the dilated convolution kernel are as following:

H = FH + (FH − 1)(R− 1) (4)

W = FW + (FW − 1)(R− 1) (5)

The height and width of the original convolution kernel are represented by FH and FW .
Specifically, the ordinary convolution operation is to multiply the adjacent pixels of the
feature map, while the dilated convolution operation is to multiply the pixels with a fixed
interval R. Without increasing the number of extra calculations, the receptive field is
improved.

2.4. Selection of Anchor-box. The original YOLO algorithm needs to manually select
the size of a priori box, but the size of the manually selected a priori box does not match
the size of the target object well. In order to optimize the regression speed of the training
object’s bounding box, the size of the prior box should be as close as possible to the size
of the detected object. Therefore, we need to get the size of the prior box by K-means
clustering algorithm on the boundary box of the training set. In the calculation process
of K-means algorithm, the distance between objects is usually the Euclidean distance.
However, it only cares about the distance between the centers of objects, and cannot
describe the overlapping relationship between objects of different sizes. Therefore, the
IOU is used in this paper. IOU is the ratio of the intersection and union of two object
frames. The formula for calculating the distance of IOU is as follows following:

IoU =
I(box, centroid)

U(box, centroid)
(6)

d(box, centroid) = 1 − IoU(box, centroid) (7)

2.5. Insulator defects detection method based on cascaded structure. The aerial
images have complex backgrounds, and the size of insulators and insulator defects area
in the images is quite different. Using ordinary object detection algorithm to detect large
and small targets at the same time will have a high false detection rate. In order to solve
this problem, a novel detection architecture which can not only locate insulators but
also detect their defects is proposed. The proposed model transforms insulator defects
detection into two cascaded object detection problems, uses the improved YOLOv3 object
detection algorithm to locate the insulator positions, then cuts out the insulator area from
the original images according to the coordinate information, and finally takes the cut out
images as the input of the object detection algorithm of the second stage to detect the
defects on the insulators. This method reduces the possibility that the object to be
detected in the image is too small to be detected, and improves the accuracy of insulator
defects detection. Figure 6 shows the structure of cascaded convolutional neural network
in this paper.

3. Experimental Results.

3.1. Model Trainings. Data sets used in this paper includes:247 defective Insulator pic-
ture and 601 standard insulator images. It includes the location information of insulators
and insulator defects. Due to the limited size of training samples, the method in reference
[21] is used to expand the data to avoid over fitting in the process of model training.



Detection of Insulator Defects Based on Improved YOLOv3 867

Figure 6. Structure of RFB layer

Fig. 7 is an example of the original data set, and Fig. 8 is the image datasets after data
expansion.
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Figure 7. Dataset examples

The experiment is carried out under the operating system of Ubuntu 16.04. Using the
deep learning framework pytorch. The CPU used in this experiment is Intel Core i5-7500,
graphics card is NVIDIA GTX 1080Ti, memory size is 16GB.

In this paper, 80 % of the above data sets are randomly selected as the training set, and
the remaining 20% as the test set. After repeated experiments, it is concluded that the
model trained by using the model training parameters in Table 1 has the best detection
effect. Fig. 9 shows the network convergence curve when the parameter is used for
training.
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Figure 8. Data augmentation

Table 1. Description of training parameters

Parameter Name Value
Batch Size 16
Learning Rate 0.001
weight decay 0.0005
Optimizer Adam
Momentum 0.9
MatchThreshold 0.5
NMS 0.3

3.2. Experimental evaluation criteria. In multi class object detection, each class can
draw a curve according to recall and precision. AP is the area under the curve, and
map is the average value of multi class AP. In object detection, map can well express the
accuracy of the algorithm. The calculation of precision and recall rate is as follows:

Precision =
TP

TP + FP

(8)

Recall =
TP

TP + FN

(9)



Detection of Insulator Defects Based on Improved YOLOv3 869

Figure 9. Loss curve

TP is the number of positive samples detected as positive, and FP is the number of
negative samples detected as positive. FN is the number of Yin and Yang samples tested
as negative. Figure 10 shows the precision recall curve in this paper.

Figure 10. Precision-recall curve

Besides detection accuracy, another important performance index of object detection
algorithm is speed. The real-time detection is very important for some application scenar-
ios. Frames per second (FPS), the number of pictures that can be processed per second,
is a common index to evaluate the speed.

3.3. Experimental result. Table 2 lists the model size of YOLOv3, Tiny-YOLOv3 and
the improved YOLOv3 proposed in this paper, the average accuracy on the VOC2007
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data set and the amount of calculation required to process a picture. It can be seen that
compared with Tiny-YOLOv3, the improved network model in this paper has advantages
in all aspects. Compared with YOLOv3, although the accuracy has declined, it has greater
advantages in terms of model size and calculation volume. Therefore, it is suitable for
deployment on mobile devices.

Table 2. Performance comparison of different object detection algorithms

Name Size(MB) mAP GFLOPs
YOLOv3 246.5 79.2 65.7
Tiny-YOLOv3 34.7 58.4 5.52
ImprovedYOLOv3 25.8 65.1 4.72

Fig. 11 is a detection effect diagram using single-stage YOLOv3, cascade YOLOv3 and
the improved algorithm proposed in this paper. Among them, (a) is the result diagram of
normal insulator defects detection, (b) is the result diagram of defective insulator defects
detection under simple background, and (c) is the result diagram of defective insulator
defects detection under complex background.

Figure 11. Insulator defects detection results

Table 3 lists the detection results of insulator defects detection using different algo-
rithms. It can be seen that the method provided in this paper can ensure the detection
speed while maintaining high accuracy. The improved algorithm has significant advan-
tages in detection speed than the original algorithm. Compared with the single-stage
detection algorithm, the cascaded algorithm has significantly improved the accuracy of
detecting insulator defects. Because the proportion of insulator defects in the whole pic-
ture is very small, it is difficult to detect. Therefore, detecting the insulators in the picture
first, cutting them, and then using the detected insulators as input to detect the defects
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in the insulators can effectively avoid this problem. While maintaining high accuracy, the
algorithm realizes real-time detection and model lightweight, and is suitable for embedded
edge computing of UAV.

Table 3. comparison of insulator defects detection algorithms

Name FPS
Insulator
(AP@0.5)

Defect
(AP@0.5)

mAP
(0.5)

Insulator
(AP@0.75)

Defect
(AP@0.75)

mAP
(0.75)

Faster R-CNN 5.6 92.05% 62.33% 77.19% 85.72% 50.66% 68.20%
SSD 15.6 90.69% 62.57% 76.63% 86.78% 55.98% 71.38%

YOLOv3 29.2 89.86% 61.45% 75.66% 84.28% 52.64% 68.46%

Improved YOLOv3
126.5 86.06% 64.56% 75.31% 82.74% 56.94% 69.84%

Cascaded
Faster R-CNN

2.4 91.94% 88.38% 90.16% 84.49% 80.56% 82.56%

Cascaded
SSD

4.0 90.87% 87.98% 89.3% 86.73% 83.50% 85.12%

Cascaded
YOLOv3

8.3 90.03% 86.68% 88.355%85.62% 81.45% 83.56%

Cascaded
Improved YOLOv3

59.4 86.25% 87.80% 87.02% 82.57% 79.62% 81.10%

4. Conclusion. This paper presents an insulator defect detection method based on im-
proved YOLOv3 algorithm. The improved YOLOv3 algorithm uses a new shallow feature
extraction network, and uses a deep separable reel to replace the traditional reel oper-
ation, which effectively improves the detection speed of the network. The use of the
anti-residual structure prevents the gradient from disappearing during the training pro-
cess, and the detection accuracy is ensured by increasing the RFB layer and predicting on
the feature maps of two scales of 13Ö13 and 26Ö26. Finally,defect detection of insulators
is realized by cascading two improved YOLOv3 algorithms. Experimental results show
that compared with other algorithms, this algorithm has the advantage of fast detection
speed while maintaining a higher accuracy rate, and can detect insulators in aerial images
in real time.
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