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Abstract. In this paper, we study a job scheduling problem for a computer center with
two heterogeneous computing clusters, where one type of clusters offers computing service
with a finite-capacity buffer and the other type of clusters offers unlimited waiting buffer.
We formulate the job queueing process as a queueing model based on a state-dependent
Quasi-Birth-and-Death (QBD) process. Besides, we derive a matrix-analytic method to
determine the steady-state probability, and present computing formulas for evaluating the
average queue length and waiting time. Through the presented matrix geometric solution,
we can obtain the performance measures of interest for the heterogeneous computing sys-
tem. In the numerical experiments, we also illustrate the relationship between the system
performance and model parameters of our interest. It shows that the proposed two-level
job queueing system makes full use of the overall resources of the computing platform,
and achieves a better job scheduling performance. The findings in this work could reveal
the managerial insights into the operational process of computer centers with two-type
heterogeneous clusters.
Keywords: Computing Cluster Management, Job Scheduling, Queueing System, Het-
erogeneous Service, Matrix-Geometric Method.

1. Introduction. In recent years, the operation of a collection of heterogeneous comput-
ing servers has become an essential and important managerial issue for the university-level
computer centers. As an important base of national science and technology innovation,
several colleges and universities in China have established their own service platforms
of high-performance computing in order to improve their scientific research strength and
level. In the national key special plan, “The 13th Five Year Plan for National Science and
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Technology Innovation”, it was clearly proposed to develop advanced computing tech-
nology, and focus on strengthening the research, development and application of high-
performance computing [1]. Various computer simulation applications have been applied
to important research fields [2], such as environment and disaster protection, instrument
manufacturing, digital contents, biomedical, engineering design, etc.

In the routine work of the university-level computer center, there are many scientific
applications that require the execution of a large number of independent jobs resulting in
significant overall execution time. Users continually submit their computing jobs to the
system, each with unique service-level requirements as well as value to the user and/or
resource owner. The implementations of heterogeneous systems in computer centers have
been lasting progress for past decades [3-5]. The collection of heterogeneous servers is fed
by a single common stream of computing jobs, where each job is dispatched to exactly
one type of the heterogeneous servers for processing or computing. The charge of job
scheduling is to determine when and how each job should be executed in order to maximize
the aggregate utility of our system. Therefore, it is an important issue for managers in the
computer center to run their heterogeneous servers efficiently and to be easily accessible
for end-users.

For the better understanding of the dynamic behavior of the involved processes, we
have to deal with constructions of mathematical models which describe the stochastic
service of randomly arriving requests [6-9]. The queueing process of computing jobs
scheduled on heterogeneous servers is complicated [10, 11]. Various managerial goals for
job assignment, such as queuing efficiency and system utilization, are usually conflicting
[12, 13]. The matrix analytic method is one of the most commonly used mathematical
tools in queueing theory to evaluate the performance of queueing systems of our interest,
such as those works in [14-16] and references therein.

The aim of our work is to provide an analytic mechanism for managing heterogeneous
servers in a computer center. We are going to derive a two-tier queueing model with
two types of heterogeneous servers, where one type offers the upscale service with a
limited buffer size, and the other offers the normal service with unlimited waiting space.
In this paper, we will develop a computing method to evaluate the performance of the
studied system. We will formulate a two-dimensional state dependent quasi-birth-and-
death (QBD) process, and determine the steady-state probability for the studied queueing
system. Besides, we will also conduct a queueing analysis to illustrate the impact of the
finite buffer on the system performance, such as the average queue length and the average
waiting time. The main contribution of this study is to provide a matrix-analytic solution
to analyze the stochastic process for the proposed two-tier queueing system.

The structure of the present paper is organized as follows. In Section 2, we will introduce
the development of high performance computing platforms in Chinese universities. In
Section 3, we are going to derive a two-tier queueing model and demonstrate a queueing
analysis based on a matrix-analytic method. In Section 4, we will conduct a series of
numerical experiments on the system performance when varying the model parameters.
Finally, the concluding remarks are summarized in Section 5.

2. High Performance Computing Platforms in University-level Computer Cen-
ters. In this section, we introduce the construction of university-level computer centers,
and summarize the applications in scientific research of high-performance computing plat-
form in Chinese universities. In recent years, Chinese universities have paid more and
more attention to high-performance computing, and spent a lot of money to establish
high-performance computing public service platform. Due to the great progress made by
high performance computing in many fields, colleges and universities deeply realize that
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high performance computing platform plays an important supporting role in improving
the ability of technological innovation, accelerating the speed of innovation, and reducing
the research and development cost.

In China, the main mission of high performance computing platforms at colleges and
universities is to provide broad computing services to research community, including large-
scale scientific MPI applications in various research fields. For example, many scientific
applications can be computed on the high performance computing platforms [17, 18], in-
cluding the design of disaster prevention technology, first principle simulation, biomedical
research of molecular dynamics, next generation sequencing analysis, the numerical simu-
lation of weather forecasting, and so on. For dealing with large-scale computer simulations
in those works, several simulation software packages could be installed in the clusters at
our computer centers, such as WRF, NAMD, LAMMPS, CPMD, SOAPdenovo, Bowtie,
ABINIT, etc.

With the rapid development of hardware acceleration technology, several computer
centers tend to configure computing devices with different performance in each clusters.
For example, in addition to CPU, they would be also equipped with graphic processing
units (GPU) and multi-core integrated cores, which results in heterogeneous computing
clusters [19, 20]. While greatly improving the performance of the computing platform,
the heterogeneous clusters also bring several challenges to the operational management
of scheduling computing jobs, such as those works in [21-25].

As a university-level computer center, the computing platform aims to provide scientific
computing and simulation services for related disciplines of the whole school. Taking a
computer center at Sanming University as an example, the requirements of the computing
platform for job scheduling are summarized as follows:

i. It provides a single job management function for users, that is, users submit, query
and manage their own serial and parallel jobs through a single job tool.

ii. It makes full use of idle computing resources, improves the overall resource utiliza-
tion, reduces the job queuing time.

iii. It can ensure the fairness of resource use between user groups.
iv. It can ensure the efficient resource allocation of large parallel jobs, and to achieve

efficient scheduling of large-scale computing jobs.
v. A variety of job queues are provided to meet the various computing needs of different

users.

The parallel computer systems are valuable resources that are shared commonly by the
users in our university. The computing platform at our computer center has become
a basic means of teaching and scientific research innovation, which is conducive to the
improvement of the comprehensive competitiveness.

The computing power provided by a computer center would greatly improve the ability
and level of scientific works, and contribute to the progress of related teaching in colleges
and universities. For example, the high performance computing platform at Chinese uni-
versities can provide support conditions for the long-term development of the discipline
construction of the colleges and universities. Besides, it also improves the scientific re-
search strength and level of Chinese universities. However, there are quite a number of
university-level computing platforms with low efficiency, resulting in a waste of resources.

Therefore, it is an important issue for colleges and universities to develop a good man-
agement scheme to make these expensive equipment play a full role. In the present paper,
we are going to conduct a queueing analysis on job scheduling at a computer center with
two-type heterogeneous clusters to improve the effectiveness and use efficiency of the
computing platform.
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Figure 1. A two-tier queueing system with heterogeneous servers.

3. A Queueing Analysis for Job Management on a Computing Platform with
Two Heterogeneous Clusters. In this section, we introduce a queueing analysis for job
management on a computing platform with two heterogeneous clusters. We will formulate
a queueing model to analyze the queueing process of jobs to be scheduled on two types of
heterogeneous computing clusters. In addition, we will also derive a computing method
for determining the system performance.

3.1. Problem Definitions. As shown in Figure 1, we study a two-tier queueing system
with heterogeneous servers. The job scheduling system consists of a single common login
management of jobs and two heterogeneous servers, where the normal server offers service
without limited waiting space, and the upscale server offers high-performance service with
a finite buffer size K. Note that each arriving job is dispatched to exactly one type of these
two heterogeneous servers for executions. The computing jobs dispatched to a particular
type of servers are run in First-Come-First-Served order [26].
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We assume that the arrival process of jobs occurring at the computing platform follows
a Poisson distribution with average rate λ. Meanwhile, it is assumed that the running
time of jobs follows exponential distributions. We denote the average service rate for the
normal server as µn, and denote the average service rate for the upscale server as µu.

Next, we denote qn(t) as the queue length (including the job in service) at the normal
server at time t, and denote qu(t) as the queue length (including the job in service) at the
upscale server at time t. Then, the system state of the studied two-tier queueing system
can be defined as (qn(t), qu(t)) on the state space

Ω = {(qn, qu)| qn ∈ {0} ∪ N; qu = 0, 1, . . . , K}, (1)

where N is the set of all positive integers. For each state (i, j) ∈ Ω, there is a probability
that a job is assigned to either the normal server or the upscale server, which results in
a state-dependent arrival rate. We denote the state-dependent arrival rate to the normal
server as λn(i, j), and denote the state-dependent arrival rate to the upscale server as
λu(i, j), for each state (i, j) ∈ Ω. Therefore, we can formulate the studied two-tier
queueing model as a state-dependent QBD process [27]. In Table 1, we summarize all
model parameters for the proposed two-tier queueing system with a finite buffer for the
upscale server.

Definition 3.1. The traffic load is defined as the fraction of the time in which server
is occupied. That is, the average occupancy of the normal server is determined as

ρn ,
λn
µn
, (2)

where λn is the effective arrival rate to the normal server. In addition, the average occu-
pancy of the upscale server is determined as

ρu ,
λu
µu
, (3)

where λu is the effective arrival rate to the upscale server.

Table 1. Notations for Model Parameters

Notation Description of model parameters
λ The average arrival rate of jobs to the computing platform.
µn The average service rate for the normal server.
µu The average service rate for the upscale server.
K The limited capacity of finite buffer for the upscale server.
qn(t) The number of jobs in service or waiting for the normal server at time t.
qu(t) The number of jobs in service or waiting for the upscale server at time t.
λn(i, j) The state-dependent arrival rate to the normal server at state (i, j) ∈ Ω.
λu(i, j) The state-dependent arrival rate to the upscale server at state (i, j) ∈ Ω.

3.2. A Computing Approach to Determine System Performance. The states of
the two-tier queueing system can be classified into three categories: the states represent
“all arriving jobs join the normal server”, the states represent “jobs would join either the
normal server or the upscale server”, and the states in region III are “all arriving jobs
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join the upscale server”. Based on the classification of the states, we can determine the
transition rate matrix Q as follows:

Q =



B0,0 C0,1

A B1,1 C1,2

A B2,2 C2,3

. . . . . . . . .
A BK,K CK,K+1

A B C
. . . . . . . . .


,

where all elements are (K + 1) × (K + 1) matrices. The elements of the infinitesimal
generator matrix Q are given according to the transition rate from the state (n, u) to the
next state (n′, u′).

In the infinitesimal generator matrix Q, we have the elements C0,1 = λ·I and A = µn ·I,
where I is the (K + 1)× (K + 1) identity matrix. Besides, we have the submatrices

C =


0 · · · 0 0
...

. . .
...

...
... · · · 0 0
0 · · · 0 λ

 ,
and

Ci,i+1 =



λn(i, 0)
. . .

λn(i, i− 1)
λ

. . .
λ


,

for i = 1, . . . , K. Meanwhile, we can also determine the submatrices

B0,0 =


−λ
µu −(λ+ µu)

. . . . . .
µu −(λ+ µu)

 ,

B =



−(µn + λ) λ 0 · · · · · · · · · 0

µu −(λ+ µu + µn) λ 0 · · · · · ·
...

0 µu −(λ+ µu + µn) λ 0 · · ·
...

...
. . .

. . .
. . .

. . .
. . .

...
... · · · 0 µu −(λ+ µu + µn) λ 0
... · · · · · · 0 µu −(λ+ µu + µn) λ

0 · · · · · · · · · 0 µu −(λ+ µu + µn)


,
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and submatrix Bi,i =

−(µn + λ) λu(i, 0) 0 · · · · · · · · · 0

µu −(λ+ µu + µn) λu(i, 1) 0 · · · · · ·
...

0 µu −(λ+ µu + µn) λu(i, 2) 0 · · ·
...

..

.
. . .

. . .
. . .

. . .
. . .

...
.
.. · · · 0 µu −(λ+ µu + µn) λu(i, i− 2) 0
... · · · · · · 0 µu −(λ+ µu + µn) λu(i, i− 1)
0 · · · · · · · · · 0 µu −(λ+ µu + µn)


,

for all i = 1, . . . , K.
Under the stability condition, we can determine the stationary probability vector

πi = [πi,0, πi,1, ..., πi,K ], (4)

where indices i = 0, 1, . . ., denote the steady states for the normal server. When i ≥ K,
the matrix geometric solution for such a QBD process can be obtained by the following
recurrence relation

πi+1 = πiR, (5)

where matrix R is the so-called rate matrix used in Matrix-Geometric Method [28, 29].
For 0 ≤ i ≤ K, the probability vector πi can be obtained by solving a set of equations.

From πQ = 0 and (5), the steady-state vectors π0, π1, . . ., and πK can be solved from
the boundary conditions and the normalization condition:

π0B0,0 + π1A = 0, (6)

π0C0,1 + π1B1,1 + π2A = 0, (7)

π1C1,2 + π2B2,2 + π3A = 0, (8)

...

πK−2CK−2,K−1 + πK−1BK−1,K−1 + πKA = 0, (9)

πK−1CK−1,K + πK(BK,K + RA) = 0, (10)

π01 + π11 + · · ·+ πK(I−R)−11 = 1, (11)

where 1 is the column vector of ones. After the stationary distribution is determined, we
can obtain the major system performance measures, i.e., the average queue length, the
average waiting time, and the effective arrival rate to each type of server.

Proposition 3.1. The average queue length of jobs waiting for the normal server can be
determined as

Ln =
∞∑
i=0

i · (πi · 1) =
∞∑
i=0

K∑
j=0

i · πi,j, (12)

and the average queue length of jobs waiting for the upscale server is determined as

Lu =
K∑
j=0

j · (
∞∑
i=0

πi,j) =
K∑
j=0

∞∑
i=0

j · πi,j, (13)

where 1 is the column vector of ones.

Besides, we can estimate the average ratio of arriving jobs assigned to each type of
server by means of the effective arrival rates as follows.
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Proposition 3.2. The effective arrival rate to the normal server can be determined as

λn =
∞∑
i=0

K∑
j=0

λn(i, j) · πi,j, (14)

and the effective arrival rate to the upscale server is determined as

λu =
∞∑
i=0

K∑
j=0

λu(i, j) · πi,j. (15)

According to Little’s formula [27], we can estimate the average waiting time for each
type of server by means of the following equation (16) and equation (17) .

Proposition 3.3. We compute the average waiting time for the normal server via

Wn =
Ln

λn
, (16)

where λn is the effective arrival rate to the normal server. Similarly, the average waiting
time for the upscale server can be determined as

Wu =
Lu

λu
, (17)

where λu is the effective arrival rate to the upscale server.

In summary, we implement the following algorithm to determine the system perfor-
mance of the proposed two-tier queueing system, such as the average queue length and
the average waiting time.

A Algorithm for Determining System Performance::
Input: The average arrival rate λ, average service rate µn for the normal server, and

average service rate µu for the upscale server .
Step 1.: We determine the transition rate matrix Q and its submatrices A, B, C,

Bi,i, and Ci,i+1, for all i = 1, . . . , K.
Step 2.: We estimate the rate matrix R through R2A + RB + C = 0.
Step 3.: We solve the system of linear equations R2A+RB+C = 0 and normalization

condition π01 + π11 + · · ·+ πK(I−R)−11 = 1.
Step 4.: We obtain the stationary distribution π0, π1, . . ., and πK .
Output: The average queue length Ln, Lu, the effective arrival rate λn, λu, and the

average waiting time Wn, Wu.

4. Numerical Results. In this section, we conduct a series of numerical experiments
to figure out the applicability of the proposed two-tier queueing model. We use the com-
puting language Matlab to compile the proposed computing method, and the numerical
experiments are conducted on the PC platform with Windows 10 Professional 64-bit with
the processor Intel (R) Core (TM) i7-6500U CPU@2.50GHz dual-core and 32 GB memory.

The parameter settings for the two-tier queueing model are given as follows. As an
illustrative example, we take the average service rate µn = 0.6 (jobs/hour) for the normal
server, and take the average service rate µu = 0.7 (jobs/hour) for the upscale server.
In our numerical experiments, three load scenarios are also taken into consideration to
compare the system performance. Those three traffic load scenarios include the heavy
load scenario when average arrival rate is λ = 1.0 (jobs/hour), the median load scenario
when average arrival rate is λ = 0.7 (jobs/hour), and the light load scenario when average
arrival rate is λ = 0.5 (jobs/hour).
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In Figures 2-5, we illustrate the numerical results obtained by presented matrix-geometric
method when we vary the finite buffer size K from 2 to 15. The red line represents a
heavier traffic load, and the green line indicates a lower traffic load. Meanwhile, the blue
curve represents the scenario when the traffic load is between them. With the stationary
distribution π = (π0,π1,π2, . . .), we can determine the expected number of jobs waiting
for the normal server, Ln, and the expected number of jobs waiting for the upscale server,
Lu. By means of equations (14) and (15), we also can compute the effective arrival rates
λn and λu for each type of server, individually. Besides, we can determine the average
waiting time for the normal server, Wn, and the average waiting time for the upscale
server, Wu, by using the formulas (16) and (17).

In Figure 2, it indicates the expected numbers of jobs waiting for each server, Ln and
Lu, individually. When we increase the buffer size K, it is found that the average queue
length Ln of the normal server is decreasing, while the average queue length Lu of the
upscale server is increasing. We also find that the marginal benefit of increasing the buffer
size would gradually decrease as it increases to a sufficient level.

In Figure 3, it illustrates the average ratio of arrivals to be assigned to each type of
server. Those effective arrival rates, λn and λu, are depicted under three traffic load
scenarios: heavy traffic load, median traffic load, and light traffic load. We find that it
relies more heavily on the normal server when the traffic load is lighter. But, when the
traffic load is severer, the reliance on the upscale server will increase.

In Figure 4, we show the impact of increasing the buffer capacity on the average waiting
time for each type of server, respectively. As the buffer size K increases from 2 to 15, it
shows a decreasing situation for the average waiting time Wn for the normal server, while
it shows an increasing situation for the average waiting time Wu of the upscale server.
When the buffer capacity increases to a sufficient level, the marginal benefit of improving
the average waiting time would gradually decrease.

In Figure 5, we find that the running time (CPU time) needed by the presented matrix-
geometric method would become more time consuming as the buffer size K grows large.
In the large-scale case with huge size K, it would result in a large number of boundary
states and a large number of phases of the QBD process, which would greatly increase the
computational complexity and may cause the ill-conditioned matrices of the traditional
iterative algorithm for the rate matrix.

5. Conclusions. In this paper, we carried out an operational management for job sched-
uling at a computer center to improve the service standard of computing platform. We
presented a queueing model based on a state-dependent QBD process, and developed a
computing method for evaluating the system performance of scheduling job at the com-
puting platform. Furthermore, we conducted a queueing analysis for assigning computing
jobs to heterogeneous computer system with a finite-buffer control. In the numerical ex-
periments, it illustrated that a proper buffer control could balance queuing efficiency and
the cost of increasing the buffer size. We developed a management scheme by assign-
ing those arriving jobs to appropriate type of servers under finite buffer control, which
achieved better system performance.

In the practical application, it shows that the proposed two-tier job scheduling system
makes full use of the overall resources of the computing platform, and performs better
job scheduling. By means of optimizing the operational and managerial processes, those
non-standard operations that would affect the overall performance of the system could be
avoided, which could be helpful in reducing the additional system overhead and resource
waste at the computer centers.
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Figure 2. The average queue size (Ln and Lu) versus the finite buffer size
K under three load scenarios.
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Figure 3. The effective arrival rate (λn and λu) versus the finite buffer
size K under three load scenarios.

Moreover, several suggestions on the management and operation of a computer center
at the colleges and universities are summarized as follows. First of all, it is essential to
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organize a professional management and operation team. A professional technical team is
needed at the computer center for software application development, hardware operation
and maintenance, especially in the expansion and development of software and application,
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the management and scheduling of resources, the optimization of calculation model and
method. Secondly, in order to improve the efficiency of the platform, we should introduce
the hot spots in the current research field into the campus, such as Exascale computing,
quantum computing, intelligent computing, machine learning, and so on. Finally, we can
carry out the training and lectures to help our users know well the computing platform,
which would save more time for operators and managers at the computer center.
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