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Abstract. Sparse unmixing aims to find a set of endmembers from a known spectral li-
brary that can optimally model mixed pixels taking the fractional abundance as the weight,
which is widely applied to hyperspectral image interpretation. It is generally an ill-posed
inverse problem and sparse regularization is conducive to obtaining a unique solution.
In recent years, spatial information has been regarded as important prior knowledge for
unmixing and the exploration of structured information has greatly improved the per-
formance of sparse unmixing. However, most spatial regularization strategies assume
that the abundance vectors of neighboring pixels are straightforward smoothness, while
ignoring the possible sharp changes between the abundance vectors. To overcome this
drawback, we propose an improved spatial context based sparse unmixing algorithm to
smooth the estimated abundance map while preserving the edges in the map. Specifically,
the bilateral filter is incorporated into the traditional TV regularization to further en-
hance piecewise smooth transitions in estimated fractional abundances, and the weight
based on spatial context information is integrated into the classic `1 norm regularizer to
induce the abundance vectors of neighboring pixels to be correlated. We conduct two sets
of simulated data and a set of real data experiments to verify the performance of the pro-
posed algorithm. Experimental results show that our algorithm achieves higher accuracy
on abundance estimation than several advanced spatial regularization sparse unmixing
algorithms, due to better preservation of spatial texture and edge information.

Keywords: Hyperspectral image, Sparse unmixing, Spatial weight, Bilateral filter,
Total variation(TV).

1. Introduction. Hyperspectral imaging technology can collect fine spectral informa-
tion and rich spatial information simultaneously, which provides high spectral resolution
data for practical applications such as mineral exploration, agricultural monitoring, and
target detection [1]. However, the spatial resolution of hyperspectral images is insufficient.
When the ground object distribution is complex in the scene, there are many mixed pixels
present in the image [2]. For better image interpretation, we decompose the mixed pixels
into proportional combinations of materials, where each material has pure spectral sig-
nature, called endmember, and this fractional proportion is called abundance [3]. With
the increase of available spectral libraries, a series of hyperspectral unmixing methods
based on sparse regression have been proposed [4]. Sparse unmixing finds the endmem-
bers involved in modeling the image from a priori spectral library instead of a special
endmember extraction process, and the abundance estimation becomes the main task of
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sparse unmixing [5]. The abundance estimation based on a large spectral library and an
observed hyperspectral images is generally an ill-posed inverse problem, which can bene-
fit from sparse regularization in obtaining a unique solution. Some regularization terms,
such as `1 norm, `p(0 < p < 1) norm and `2,1 mixed norm, serve for the sparsity induction
of fractional abundances successively [5–8]. Although sparse-induced unmixing methods
have achieved the expected results in abundance estimation, the sparsity measures used in
these methods are not enough for the actual sparse degree of fractional abundances, and
the correlation between the abundance vectors brought about by the spatial distribution
of pixels in the image is ignored.

The weighted `1 norm minimization strategy is proven to effectively enhance the sparsity
of the solution, which outperforms the original `1 norm [9]. The double reweighted sparse
unmixing (DRSU) algorithm designs two weights to promote the row sparsity of the
abundance matrix and the sparsity of the fractional abundances with regards to each
endmember respectively [10]. The spectral-spatial weighted sparse unmixing (S2WSU)
algorithm modifies the weights in the spatial domain in DRSU, and the new spatial
weights are computed from the abundance values of neighboring pixels in each iteration,
which enhances the sparsity of the fractional abundances while improving the correlation
between the abundance vectors in the neighborhood [11]. The weighted sparse strategy
has the immense potential in improving sparse unmixing performance.

In recent years, spatial information has been regarded as important prior knowledge for
unmixing and the exploration of structured information has greatly improved the perfor-
mance of sparse unmixing [12–15]. The sparse unmixing via variable splitting augmented
Lagrangian and total variation (SUnSAL-TV) algorithm, as a pioneering work on inte-
grating spatial context information in sparse unmixing, includes the nonisotropic total
variation (TV) term to the sparse-induced unmixing model [16]. The TV term promotes
neighboring pixels to have similar abundance vectors, which improves the constraints on
the ill-posed problem of abundance estimation. Since the TV regularization term makes
full use of the spatial homogeneity of the image, it is often included in the sparse unmix-
ing model together with other regularization terms along with other regularization terms.
For example, the double reweighted sparse unmixing and total variation (DRSU-TV)
algorithm integrates the TV term to a double weighted `1 norm sparse regression formu-
lation [17]. The superpixel-based reweighted low-rank and total variation (SUSRLR-TV)
algorithm combines the TV term with the low-rank constraint on the abundance vectors
in the same superpixel block [18]. However, the abovementioned sparse unmixing model
including TV spatial regularization may produce oversmooth abundance maps and lead
to staircase effects, since the sparsity in the gradient domain is strictly constrained and
the sharp edges in the image are not well preserved.

To overcome this drawback, we propose an improved spatial context based sparse un-
mixing algorithm to smooth the estimated abundance map while preserving the edges in
the map. The proposed spatial weighted sparse unmixing with bilateral filter based TV
regularization (BTVSWSU) algorithm incorporates the bilateral filter into traditional TV
regularization to improve piecewise smooth transitions in estimated fractional abundance
maps, and integrates the weight based on spatial context information into the classic `1
norm regularizer to induce the abundance vectors of neighboring pixels to be correlated.
The optimization problem is solved by the alternating direction method of multipliers
(ADMM) [19]. We conduct two sets of simulated data and a set of real data experiments
to verify the performance of the proposed algorithm. Experimental results show that
our algorithm achieves higher accuracy on abundance estimation than several advanced
spatial regularization sparse unmixing algorithms, due to better preservation of spatial
texture and edge information.
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The rest of this paper is organized as follows. Section 2 briefly reviews sparse unmixing
and bilateral filtering. Section 3 presents the proposed spatial weighted sparse unmixing
with bilateral filter based total variation. The results of simulated and real data experi-
ments are described in section 4. Section 5 draws conclusions from the paper and gives
future research prospects.

2. Related Works.

2.1. Sparse unmixing. Let Y ∈ RL×n be an observed hyperspectral image composed
of n pixels ,with L bands. Let A ∈ RL×m be an overcomplete spectral library containing
m materials. Based on the linear mixture model (LMM), the hyperspectral image can be
modeled as:

Y = AX + N (1)

where X ∈ Rm×n denotes the abundance matrix, and N ∈ RL×n is noise and model error.
Following literature [5], we execute the abundance nonnegative constraint (ANC)(i.e.,
X ≥ 0) but not the abundance sum-to-one constraint (ASC)(i.e., 1Tx = 1).

Since the actual endmembers present in a given scene are much fewer than the materials
in the library A, the abundance matrix X corresponding to A is sparse. Therefore, the
unmixing problem can be converted to a sparse regression problem, the goal of which is
to find the optimal subset of entries in the spectral library that can model the image,
under the sparse constraint. The constrained optimization problem is formulated as:

min
X

1

2
||Y −AX||2F + λ||X||0 s.t. X ≥ 0 (2)

where ||Y − AX||2F denotes the data fidelity item, || · ||F denotes the Frobenius norm,
‖X‖0 denotes the number of zeros in X, and λ is a nonnegative regularization parameter.
The problem (2) is an NP (non-deterministic polynomial) problem, which is hard to solve.
The `0 norm can be replaced by the `1 norm under certain conditions [20,21]. Then, the
following convex optimization problem is obtained:

min
X

1

2
||Y −AX||2F + λ||X||1,1 s.t. X ≥ 0 (3)

where ||X||1,1 =
∑n

j=1 ||xj||1 and xj denotes the jth column of X. The problem (3) has

been solved by the SUnSAL algorithm. Nevertheless, the `1 norm in problem (3) suggests
that each pixel in hyperspectral images is treated as an independent component. In fact,
the correlation between the observed spectra of each pixel in the image, which can be
mapped to the similarity of abundance vectors, is closely related to the spatial distribution
of the pixels. Therefore, spatial information is highly valued in sparse unmixing tasks.

For the piecewise smoothness of the abundance map, the SUnSAL-TV algorithm in-
cludes a vector TV term in (2), which exploits spatial context information [16]. The
resulting optimization problem is formulated as follows:

min
X

1

2
||Y −AX||2F + λ||X||1,1 + λTV TV(X) s.t. X ≥ 0 (4)

where
TV(X) ≡

∑
{i,j}∈ε

||xi − xj||1, (5)

denotes the nonisotropic TV in vector form, ε denotes the set of neighbors on the horizon-
tal and vertical directions, and λTV ≥ 0 is a regularization parameter. The SUnSAL-TV
algorithm focuses on a certain aspect of spatial structure characteristics, that is, spatial
homogeneity, but does not take into account the sharp changes in fractional abundances
at the edges, which leads to the staircase effect.
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2.2. Bilateral filter. Bilateral filter (BF) is a well-known technique that can smooth the
image while preserving the edges, thus it has been rapidly developed in image processing
applications [22–24]. The bilateral filter replaces each pixel with the weighted average of
pixels close to it in space and in range, where the spatial Gaussian weight depends on the
spatial distance between two pixels and the range Gaussian weight is associated with the
differences between the values of two pixels [25], defined as:

BF(I)p =
1

Wp

∑
qεS

Gσs(‖p− q‖)Gσr(|Ip − Iq|)Iq (6)

where p denotes the center pixel, q denotes any neighboring pixel of p in the spacial
domain s, I denotes the input image, Ip and Iq denote the value of p and q, respectively,
‖p− q‖ calculates the Euclidean distance between p and q, Wp denotes the normalization
factor, calculated as:

Wp =
∑
qεS

Gσs(‖p− q‖)Gσr(|Ip − Iq|) (7)

where

Gσ(x) =
1

2πσ2
exp(− x2

2σ2
), (8)

denotes the 2D Gaussian kernel and σ is a parameter defining the neighborhood size.
Specifically, Gσs is the spatial Gaussian weight that penalizes distant pixels in the spatial
domain s, the farther the distance, the smaller the weight, and Gσr is the range Gaussian
weight that penalizes pixels with significant differences, the greater the difference, the
smaller the weight. As a nonlinear technique, bilateral filter multiplies the two weights,
so only the nearby similar pixels affect the result, and the result further impact on the
central pixel. In other words, if either of the two weights is close to zero, smoothing will
not occur. The pixels at the edges are close in space, but obviously have different values,
thus they are well preserved due to the rang Gaussian weight.

To sum up, the bilateral filter smoothes the image by weighted average of the pixels
in a local area, but limited by the combination of spatial filter and range filter, the edge
pixels in the image will not be smoothed.

3. The Proposed BTVSWSU Algorithm. Inspired by [11] and [26], we propose an
improved spatial context based sparse unmixing model to alleviate the oversmooth phe-
nomenon and staircase effect caused by TV regularization that imposes too strict con-
straints on spatial context information. The proposed method introduces the spatial
weights into the sparse regularization term and the bilateral filter into the TV spatial
regularization term, called spatial weighted sparse unmixing with bilateral filter based
total variation regularization (BTVSWSU). The model is formulated as follows:

min
X

1

2
||Y −AX||2F + λ‖Wspa �X‖1,1 + λbfTV(BF(X)) s.t. X ≥ 0 (9)

where � is an operator that denotes the Hadamard product, i.e., element-wise product
of two matrixes. The spatial weight matrix Wspa ∈ Rm×n is computed according to the
abundance vectors of neighboring pixels [11], defined as:

wspa,ij =
1

fh∈N (j)(xih) + ε
(10)

where wspa,ij denotes the element of the ith row and jth column in Wspa, N (j) denotes the
neighborhood set of the pixel corresponding to the jth column vector of the abundance
matrix X, f(·) is a function for exploring spatial context information, which can be
constructed in various ways, such as linear or nonlinear and local and nonlocal [27–32], ε >
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0 is a small constant to avoid singularities. In our work, function f(·) row-wise calculates
the weighted average of the fractional abundances corresponding to the neighboring pixels,
and xih denotes the ith value(band) in the abundance vector corresponding to any pixel
in N (j), which is defined as follows:

f(xij) =

∑
h∈N (j) d(pj, ph)xih∑
h∈N (j) d(pj, ph)

(11)

where pj denotes the center pixel corresponding to the fractional abundance xij, ph de-
notes any pixel in the N (j), xih is the ith value in the abundance vector of pixel ph,
and d(pj, ph) denotes the Euclidean distance between pixel pj and pixel ph, The spatial
weight matrix Wspa is updated iteratively. When the fractional abundances of neighbor-
ing pixels are large, the spatial weight is small. Therefore, the abundance matrix will
be guided to be sparse by the weight in the iterations. Note that it will not eliminate
small differences between abundance vectors of neighboring pixels, thereby improving the
oversmooth phenomenon of the estimated abundance maps.

In addition, the integration of the bilateral filter into the TV term can effectively
alleviate the staircase effect [26]. In the model (9), TV regularization is implemented on
the result of bilateral filtering the abundance matrix X, but not directly on X. λbf ≥ 0
is the regularization parameter for the bilateral filter based TV.

The proposed BTVSWSU model simultaneously enforced the spatial weighted sparse
constraint and the bilateral filter based TV regularizer in the process of abundance estima-
tion. The above multiple constraint strategy is designed from the structural characteristics
of the spatial distribution of pixels, which effectively utilizes spatial context information
and can mitigate the negative effects of oversmooth phenomenon and staircase effect
caused by the TV regularization.

We solve the optimization model (9) in the ADMM framework. In order to accelerate
the convergence of the algorithm, we adopt the inner and outer loops solution, the space
weight matrix Wspa is updated in the outer loop, and the fractional abundances are solved
by ADMM in the inner loop.

Let H be the linear operators calculating the differences between the horizontal and
vertical components of the abundance matrix X. The original problem will be split into
several subproblems by introducing auxiliary matrix variables U, V1, V2, V3, V4, V5,
V6. Therefore, the objective function is rewritten as follows:

min
U,V1,V2,V3,V4,V5,V6

1

2
‖Y −V1‖2F + λ‖Wspa �V2‖1,1 + λbf‖V5‖1,1 + ιR+(V6)

s.t. V1 = AU,V2 = U,V3 = U,V4 = BF(V3),V5 = HV4,V6 = U
(12)

where U = X, ιR+(X) =
∑n

i=1 ιR+(xi) is an indicator function that ιR+(xi) is zero if
xi ≥ 0, and +∞ otherwise. Let KV3 linearly replace BF(V3) and define

G=


A
I
I
0
0
I

, B=


-I 0 0 0 0 0
0 -I 0 0 0 0
0 0 -I 0 0 0
0 0 K -I 0 0
0 0 0 H -I 0
0 0 0 0 0 -I,

, V=


V1

V2

V3

V4

V5

V6

,

g(V) =
1

2
‖Y −V1‖2F + λ‖Wspa �V2‖1,1 + λbf‖V5‖1,1 + ιR+(V6) (13)
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The objective function (12) can be represented in a compact form:

min
U,V

g(V) s.t. GU + BV = 0 (14)

And the augmented Lagrangian for (14) is:

L(U,V,D) = g(V) +
µ

2
‖GU + BV −D‖2F (15)

where µ > 0 is the penalty parameter, D = (D1,D2,D3,D4,D5,D6) is the Lagrange
multipliers. In each iteration, the ADMM minimizes L(U,V,D) with respect to U and
V, and updates D, as follows:

U(k+1) = arg min
U

L(U,V(k),D(k))

V(k+1) = arg min
V

L(U(k+1),V,D(k))

D(k+1) = D(k) −GU(k+1) −BV(k+1)

(16)

By solving the subproblems in (16), we obtain the proposed BTVSWSU algorithm, as
shown in Algorithm 1, where soft(·, τ) denotes the soft-threshold function y 7→ sign(y)max{|y|−
τ, 0}.

Algorithm 1 Pseudocode of the BTVSWSU algorithm

1: Initialization:
2: set k, t = 0, choose µ, λ, λbf , ε > 0,U(0),V

(0)
i ,D

(0)
i , for i = 1, . . . , 6

3: Repeat:

4: Update W
(t)
spa using (10) and (11)

5: Repeat:

6: U(k+1) ← (ATA + 3I)−1(AT(V
(k)
1 + D

(k)
1 ) + V

(k)
2 + D

(k)
2 + V

(k)
3 + D

(k)
3 + V

(k)
6 + D

(k)
6 )

7: V
(k+1)
1 ← 1

1+µ [Y + µ(AU(k+1) −D
(k)
1 )]

8: V
(k+1)
2 ← soft(U(k+1) −D

(k)
2 , λµW

(t)
spa)

9: V
(k+1)
3 ← 1

2(V
(k)
4 + D

(k)
4 ) + 1

2(U(k+1) −D
(k)
3 )

10: V
(k+1)
4 ← (I + HTH)−1(BF(V

(k+1)
3 )−D

(k)
4 + HTV

(k)
5 + HTD

(k)
5 )

11: V
(k+1)
5 ← soft(HV

(k+1)
4 −D

(k)
5 ,

λbf
µ )

12: V
(k+1)
6 ← max(U(k+1) −D

(k)
6 , 0)

13: Update Lagrange multipliers:

14: D
(k+1)
1 ← D

(k)
1 −AU(k+1) + V

(k+1)
1

15: D
(k+1)
2 ← D

(k)
2 −U(k+1) + V

(k+1)
2

16: D
(k+1)
3 ← D

(k)
3 −U(k+1) + V

(k+1)
3

17: D
(k+1)
4 ← D

(k)
4 −BF(V

(k+1)
3 ) + V

(k+1)
4

18: D
(k+1)
5 ← D

(k)
5 −HV

(k+1)
4 + V

(k+1)
5

19: D
(k+1)
6 ← D

(k)
6 −U(k+1) + V

(k+1)
6

20: Update: k ← k + 1
21: U(t+1) ← U(k)

22: D
(t+1)
2 ← D

(k)
2

23: Update: t← t+ 1
24: until some stopping criterion is satisfied.

Note that the proposed BTVSWSU algorithm stops when the maximum number of
iterations is reached or the residual ||GU(t) + BV(t)||F meets the threshold (Usually a
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small positive value, such as 1e−5). Moreover, the inner loop and out loop are empirically
set to 5 and 60 iterations, respectively, which guarantees the convergence of the proposed
algorithm.

4. Experiment and Analysis.

4.1. Experiment on simulated hyperspectral data. In this section, we perform the
proposed BTVSWSU algorithm on two simulated hyperspectral data sets to illustrate its
unmixing performance. Four advanced sparse unmixing algorithms, namely SUnSAL [5],
CLSUnSAL [7], SUnSAL-TV [16] and SUnSAL-BF-TV [26], are performed on the same
simulated data. There are two spectral libraries used in the experiments, which are
selected from the USGS splib06 library1. The spectral library A1 ∈ R224×240 is comprised
of 240 spectral signatures with 224 bands uniformly covering the range from 0.4µm to
2.5µm. The spectral library A2 ∈ R221×222 contains m = 222 spectral signatures with 221
bands. Two sets of simulated data are generated by the endmembers selected from the
above spectral library and the abundance maps satisfying ANC and ASC.
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Figure 1. True abundance map of nine endmembers in DC1.
(a)endmember1, (b)endmember2, (c)endmember3, (d)endmember4,
(e)endmember5, (f)endmember6, (g)endmember7, (h)endmember8,
(i)endmember9.

• Simulated Data Cube 1 (DC1): It is generated by nine endmember from the library
A1 and contains 100 × 100 pixels. The abundance maps used in this data set are
piecewise smooth, as shown in Figure 1. The data is subsequently contaminated by

1http://speclab.cr.usgs.gov/spectral.lib06.
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Figure 2. True abundance map of nine endmembers in DC2.
(a)endmember1, (b)endmember2, (c)endmember3, (d)endmember4,
(e)endmember5, (f)endmember6, (g)endmember7, (h)endmember8,
(i)endmember9.

i.i.d. Gaussian noise with four levels of the signal-to-noise (SNR) ratio:20, 30, 40
and 50dB.
• Simulated Data Cube 2 (DC2): It is generated by nine endmember from the library

A2 and contains 100×100 pixels. The abundance maps used in this data are created
by fractals that imitate the spatial patterns of nature [33,34], as shown in Figure 2.
In the same vein, the data is subsequently contaminated by i.i.d. Gaussian noise
with SNR=20, 30, 40 and 50dB.

Two performance discriminators are adopted to quantitatively evaluate the quality of
the results obtained by different algorithms in simulated data experiment. The signal to
reconstruction error (SRE(dB)) is defined as:

SRE(dB) = 10 · log10(E(||x||22)/E(||x− x̂||22)), (17)

where x denotes the actural abundance, x̂ denoted the estimated abundance and E(·)
denotes the expectation function. Furthermore, the probability of success ps, defined as
ps ≡ P (‖x̂−x‖2/‖x‖2 ≤ threshold), is another indicator for quantitative evaluation. The
results can be considered as successful, when ‖x̂−x‖2/‖x‖2 ≤ 3.16 (5dB) [5]. The higher
the SRE(dB) or ps, the better the unmixing performance.

Two sets of simulated data are unmixed by the proposed BTVSWSU algorithm and
the comparison algorithms. SRE(dB) and ps values of the results are shown in Tables 1
and 2, respectively. The optimal parameters are list in the parentheses. It can be seen
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Table 1. SRE(dB) and ps values of the results obtained by different algo-
rithms on DC1 (the optimal parameters for the reported results are listed
in parentheses).

Algorithm
SNR=20dB SNR=30dB SNR=40dB SNR=50dB

SRE(dB) ps SRE(dB) ps SRE(dB) ps SRE(dB) ps

SUnSAL
4.1978 0.5561 8.4831 0.7979 15.1817 0.9907 23.0236 1

(λ = 2e-1) (λ = 2e-2) (λ = 5e-3) (λ = 1e-3)

CLSUnSAL
3.4040 0.4692 6.5520 0.7265 11.4404 0.9693 20.4946 1

(λ = 2.3) (λ = 4e-1) (λ = 2e-2) (λ = 8e-3)

SUnSAL-TV
6.3542 0.6625 11.4698 0.9475 17.7609 0.9998 26.0960 1

(λ = 2e-2; λTV = 2e-2) (λ = 1e-2; λTV = 4e-3) (λ = 5e-3; λTV = 1e-3) (λ = 2e-3; λTV = 2e-4)

SUnSAL-BF-TV
7.3712 0.7505 14.6634 0.9662 19.8747 0.9927 28.5930 1

(λ = 2e-3; λbf = 2e-2) (λ = 5e-4; λbf = 4e-3) (λ = 2e-4; λbf = 2e-3) (λ = 6e-5; λbf = 6e-4)

BTVSWSU
8.7233 0.8357 17.1927 0.9865 27.0796 1 38.3879 1

(λ = 2e-3; λbf = 9e-3) (λ = 4e-4; λbf = 2e-3) (λ = 9e-5; λbf = 1e-4) (λ = 2e-5; λbf = 8e-6)

Table 2. SRE(dB) and ps values of the results obtained by different algo-
rithms on DC2 (the optimal parameters for the reported results are listed
in parentheses).

Algorithm
SNR=20dB SNR=30dB SNR=40dB SNR=50dB

SRE(dB) ps SRE(dB) ps SRE(dB) ps SRE(dB) ps

SUnSAL
4.4049 0.5956 10.1453 0.9087 17.7791 0.9966 26.1174 1

(λ = 1e-1) (λ = 1e-2) (λ = 3e-3) (λ = 9e-4)

CLSUnSAL
2.8263 0.3635 7.1121 0.7078 11.4179 0.8963 13.4230 0.9400

(λ = 8e-1) (λ = 3e-1) (λ = 8e-3) (λ = 6e-3)

SUnSAL-TV
7.3829 0.7912 14.8342 0.9974 23.1805 0.9999 30.7843 1

(λ = 1e-2; λTV = 1e-2) (λ = 3e-3; λTV = 4e-3) (λ = 1e-3; λTV = 1e-3) (λ = 9e-4; λTV = 3e-4)

SUnSAL-BF-TV
16.0312 0.9945 23.0448 0.9997 31.0235 1 39.9956 1

(λ = 6e-3; λbf = 3e-2) (λ = 5e-4; λbf = 5e-3) (λ = 2e-4; λbf = 1e-3) (λ = 5e-5; λbf = 2e-4)

BTVSWSU
18.2817 0.9950 25.9149 0.9998 34.8198 1 42.7504 1

(λ = 3e-3; λbf = 2e-2) (λ = 4e-4; λbf = 2e-3) (λ = 1e-4; λbf = 3e-4) (λ = 4e-5; λbf = 5e-6)

from Tables 1 and 2 that the proposed BTVSWSU algorithm has the highest SRE(dB)
in all cases, and retains higher ps in the case of high noise. Compared with SUnSAL-TV
algorithm, the performance of SUnSAL-BF-TV algorithm is significantly improved due to
the involvement of bilateral filter. The BTVSWSU algorithm shows greater advantages
than SUnSAL-BF-TV, which verifies the effect of spatial weights.

To further illustrate the effectiveness of the proposed BTVSWSU algorithm, we take the
results obtained by performing each algorithm on DC1 with SNR=30dB as an example for
visual exhibition and comparison. Figure 3 shows the actual abundance and the resulting
estimated abundances, and only 100 randomly selected pixels are displayed for better
visual effects. The lines indicate the endmembers which are selected from the spectral
library to participate in modeling the hyperspectral image. It can be seen from Figure 3
that the number of endmembers found by the SUnSAL-BF-TV and BTVSWSU algorithms
is consistent with the number of actual endmembers, while the abundance map obtained
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Figure 3. The true abundance and estimated abundances obtained by
performing BTVSWSU and comparison algorithms on DC1 with
SNR=30dB.
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Figure 4. Abundance maps of endmember1 obtained by performing
BTVSWSU and comparison algorithms on DC1 with SNR=30dB. Differ-
ences between the actual abundance and estimated abundances obtained by
performing each algorithm on DC1 with SNR=30dB. (a) Differences pro-
duced by SUnSAL, (b)Differences produced by CLSUnSAL, (c)Differences
produced by SUnSAL-TV, (d)Differences produced by SUnSAL-BF-TV,
(e)Differences produced by BTVSWSU.

by the BTVSWSU algorithm is cleaner in the original zeros region with less noise. It can
be inferred that the combination of spatial weighted sparse regularization and bilateral
filter based TV regularization improves the ability to identify endmembers.

In order to confirm that the proposed BTVSWSU algorithm is effective in overcoming
the oversmooth and staircase effect, we show the abundance maps of the first endmembers
in DC1 and DC2 obtained by different algorithms when SNR=30dB. The abundance maps
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Figure 5. Abundance maps of endmember1 obtained by performing
BTVSWSU and comparison algorithms on DC2 with SNR=30dB. Differ-
ences between the actual abundance and estimated abundances obtained by
performing each algorithm on DC2 with SNR=30dB. (a) Differences pro-
duced by SUnSAL, (b)Differences produced by CLSUnSAL, (c)Differences
produced by SUnSAL-TV, (d)Differences produced by SUnSAL-BF-TV,
(e)Differences produced by BTVSWSU.

of other endmembers have similar characteristics, so they are not shown. For visually in-
tuitive comparison, Figures 4 and 5 show the estimated abundance maps of endmember1
from DC1 and DC2 and the difference maps between the actual abundance and the re-
sults. It can be clearly seen from the difference maps that the results obtained by our
algorithm are closest to the actual abundance maps and the results obtained by SUnSAL
and CLSUnSAL are less accurate. In particular, the staircase effect at the edges of the
abundance maps obtained by SUnSAL-BF-TV and BTVSWSU algorithms is obviously
mitigated compared with the SUnSAL-TV algorithm. The BTVSWSU algorithm solves
the issue of oversmooth better than the SUnSAL-BF-TV algorithm, the resulting abun-
dance maps are more accurate in detail. The proposed BTVSWSU algorithm makes full
use of spatial context information in hyperspectral images, and improves the unmixing
performance significantly.

Figure 6. USGS map showing the location of different minerals in the
Cuprite mining district in Nevada.



904 F. Li

Alunite Buddingtonite Chalcedony

50 100 150 200 250 300 350

50

100

150

200

250

300

350 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

50 100 150 200 250 300 350

50

100

150

200

250

300

350 0

0.05

0.1

0.15

0.2

0.25

50 100 150 200 250 300 350

50

100

150

200

250

300

350 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

SUnSAL SUnSAL SUnSAL

50 100 150 200 250 300 350

50

100

150

200

250

300

350 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

50 100 150 200 250 300 350

50

100

150

200

250

300

350 0

0.05

0.1

0.15

0.2

50 100 150 200 250 300 350

50

100

150

200

250

300

350 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

CLSUnSAL CLSUnSAL CLSUnSAL

50 100 150 200 250 300 350

50

100

150

200

250

300

350 0

0.05

0.1

0.15

0.2

0.25

0.3

50 100 150 200 250 300 350

50

100

150

200

250

300

350 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

50 100 150 200 250 300 350

50

100

150

200

250

300

350 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

SUnSAL-TV SUnSAL-TV SUnSAL-TV

50 100 150 200 250 300 350

50

100

150

200

250

300

350 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

50 100 150 200 250 300 350

50

100

150

200

250

300

350 0

0.05

0.1

0.15

0.2

0.25

50 100 150 200 250 300 350

50

100

150

200

250

300

350 0

0.1

0.2

0.3

0.4

0.5

SUnSAL-BF-TV SUnSAL-BF-TV SUnSAL-BF-TV

50 100 150 200 250 300 350

50

100

150

200

250

300

350 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

50 100 150 200 250 300 350

50

100

150

200

250

300

350 0

0.05

0.1

0.15

0.2

50 100 150 200 250 300 350

50

100

150

200

250

300

350 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

BTVSWSU BTVSWSU BTVSWSU

Figure 7. Fractional abundances obtained by the BTVSWSU and com-
parison algorithms on the subset of Cuprite scene.



An Improved Spatial Context Based Sparse Unmixing of Hyperspectral Image 905

4.2. Experiment on real hyperspectral data. The famous Airborne Visible Infrared
Imaging Spectrometer (AVIRIS) Cuprite data set2, as a common benchmark for the val-
idation of hyperspectral unmixing algorithms, is used in the real data experiment to test
the performance of the proposed BTVSWSU algorithm. The portion of the Cuprite data,
i.e., the subset of the scene with 350×350 pixels, is used in our experiment. The real data
has 224 spectral bands covering the wavelength range from 0.4 µm to 2.5 µm. The bands
1-2, 105-115, 150-170 and 223-224 are removed from the data due to the water absorp-
tion and low SNR. The spectral library A1 used in the simulated experiment is also used
for the real data experiment after removing corresponding bands. That is, the library
A1 ∈ R188×240 is used to unmix the Cuprite data. The classification map of the minerals
located in Cuprite mining district 3 in Nevada is produced by USGS using Tricorder 3.3
software 4 [35], as shown in Figure 6. The USGS map provides a good reference for the
qualitative assessment of the abundance maps obtained by different unmixing algorithms.

Figure 7 shows the abundance maps of three typical minerals (Alunite, Buddingtonite
and Chalcedony) obtained by the BTVSWSU and comparison algorithms. The regu-
larization parameters for SUnSAL and CLSUnSAL algorithms were empirically set to
λ = 2e-3, λ = 2e-2, respectively, while the parameters for SUnSAL-TV, SUnSAL-BF-TV
and BTVSWSU algorithms were set to (λ = 2e-3, λTV = 2e-3), (λ = 5e-4, λbf = 4e-3)
and (λ = 4e-4, λbf = 2e-3), respectively. In addition, we set σs = 18 and σr = 0.005
for the bilateral filter the same as simulated experiments. It can be seen from Figure 7
that all algorithms can interpret the Cuprite data well and obtain reasonable results,
where the locations with high fractional abundances indicate the existence of the typical
minerals. Nevertheless, some abundance maps (e.g., Buddingtonite) estimated by SUn-
SAL, CLSUnSAL and SUnSAL-TV is vague due to the noise interference. The results
obtained by SUnSAL-TV show that the edge area in the map is oversmooth. Compared to
SUnSAL-BF-TV, the fractional abundances estimated by the BTVSWSU algorithm are
generally higher or comparable in the regions which are classified as respective minerals.
From a qualitatively viewpoint, the improved spatial context information based sparse
unmixing algorithm offers great potential on accurate abundance estimation, which effec-
tively overcomes the inherent shortcomings of the traditional spatial regularization sparse
unmixing, such as oversmooth and staircase effect.

5. Conclusions and Future Work. In this paper, an improved spatial context infor-
mation based sparse unmixing algorithm is proposed, which introduces spatial weighs into
the sparse regularizer and integrates the bilateral filter into the TV spatial regularization
term. The spatial weight is constructed based on the abundance vectors of neighboring
pixels, which guides abundance matrix to be sparse in the iterations and retains small
differences in fractional abundances. The bilateral filter acts on the abundance matrix be-
fore performing TV regularization, which smoothes the abundance map while preserving
the edges in the map. The proposed BTVSWSU algorithm exploits the spatial structural
information by multiple constraints, which effectively alleviates the oversmooth phenom-
enon and staircase effect. Experimental results show that the proposed BTVSWSU al-
gorithm consistently achieves better performance than several state-of-the-art algorithms
in unmixing both simulated and real hyperspectral data. In the future, we will study
hyperspectral unmixing formed as the third-order tensor, and develop the bilateral filter
for 3D data.

2http://aviris.jpl.nasa.gov/html/aviris.freedata.html.
3http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um map.gif.
4http://speclab.cr.usgs.gov/PAPER/tetracorder.
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