
Journal of Network Intelligence ©2022 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 7, Number 1, February 2022

GSGC:An Improved Path Planning Optimization
Method Using Guided Sampling and Gradual

Cutting

Zhi-Ming Cai*

School of Electronic, Electrical Engineering and Physics
Fujian University of Technology

No.33 Xuefu South Road, Fuzhou, 350118, China
caizm@163.com

Jian Lu

School of Electronic, Electrical Engineering and Physics
Fujian University of Technology

No.33 Xuefu South Road, Fuzhou, 350118, China
573843470@qq.com

Yu-Feng Ling

School of Electronic, Electrical Engineering and Physics
Fujian University of Technology

No.33 Xuefu South Road, Fuzhou, 350118, China
1504662829@qq.com

Tian-Jian Li

National Demonstration Center for Experimental Electronic Information and Electrical Technology Education
Fujian University of Technology

No.33 Xuefu South Road, Fuzhou, 350118, China
ltj@fjut.edu.cn

Lin Xu

STEM
University of South Australia

Mawson Lakes Campus, Adelaide, 5095, Australia
xuyly032@mymail.unisa.edu.au

Received September 2021; revised January 2022
(Corresponding Author: caizm@163.com)

84



GSGC:An Improved Path Planning Optimization Method 85

Abstract. Path planning of mobile robot has become a research hotspot in the fields
of automatic control, computer and artificial intelligence. The sampling-based method is
one of the most popular methods for path planning, among which BIT*(Batch Informed
Trees), a variant of RRT, is a typical one. However, it has to traverse the space to
find the first path, and will generate some redundant points which bringing a lot of re-
dundant angles. As BIT* is not optimal and the convergence is not fast enough, a new
sampling-based method, GSGC, is proposed to overcome these shortcomings in this paper.
It adds an alterable guided sampling function to increase sampling efficiency. To remove
redundant points, a gradual cutting function is presented to reduce the length of path and
improve processing efficiency. During pruning, the elliptical area is shrunk to reduce the
sampling space which improves the performance. The experimental results show that the
GSGC can spend less time to get an optimal solution with faster convergence than BIT*
and RRT*.
Keywords: Path Planning, Guided Sampling, Gradual Cutting, Optimization Algo-
rithm

1. INTRODUCTION. In recent years, the path planning problem of mobile robot has
attracted many experts to study [1, 2, 3, 4, 5]. The path planning of mobile robot aims to
plan a collision-free path from the initial point to the goal point satisfying the constraints
of the robot in the working environment with obstacles [6]. Path planning is divided into
two aspects: local search and global search.

There are two typical local search methods: DWA (Dynamic Window Approach) and
APF(Artificial Potential Field) [7]. The DWA considers robot motion performance, sam-
ples multiple sets of velocities in the velocity space and uses trajectory evaluation function
to get the optimal solution. The APF, proposed by Khatib, gives mobile robot a join force
which is composed of an attractive force of the goal point and a repulsive force of obstacle
areas. Nevertheless, they are both easy to fall into the local minimum problem [8].

The algorithms of global search mainly include graph-based methods, metaheuristic
algorithms and sampling-based methods [9]. Some graph-based methods, such as Dijk-
stra’s algorithm [10] and A* [11], are based on greedy strategy to get the optimal solution
and use dynamic programming [12] to precisely solve discrete approximation of the prob-
lem. Compared with A*, the Dijkstra’s algorithm has no directionality so that it is
low efficient [13]. The metaheuristic algorithms, which are based on swarm intelligence
heuristic method and natural phenomenon heuristic method, are also an important branch
of path planning. They can solve various optimization problems effectively without us-
ing mathematical formulas [14]. There are some classic metaheuristic algorithms, such as
PSO(Particle Swarm Optimization) [15], GA(Genetic Algorithm) [16] and DE(Differential
Evolution) [17]. A new algorithm, CSO(Cat Swarm Optimization) [18], imitates the be-
haviors of cats to improve PSO. It uses Seeking Mode and Tracing Mode to make PSO
globally optimal. Shih et al. proposed Hybrid GA(Hybrid-Genetic Algorithm) [19] to
improve GA. They developed an EEF(Exponential Effective Function) as a fitness func-
tion to solve the GPP(Glider Path-planning Problem). Dao et al. were inspired by the
pollination of bees and proposed an algorithm to get a minimization plan [20]. Compared
with the above, the DE algorithm is powerful and easy to implement [21]. QUATRE-
EAR [22] is an enhanced structure of DE with less control parameters which greatly
accelerates computing speed. Zhang et al. proposed a short-term traffic flow prediction
algorithm, QGA-LVQ [23], to forecast the changes of traffic flow in urban networks, which
was applied in smart city management. Song et al. proposed the Phasmatodea popula-
tion evolution algorithm (PPE) to deal with optimization problems in the N-dimensional
decision space [24], which had the potential to tackle complex path planning.



86 Z.M. Cai, J. Lu, Y.F. Ling, T.J. Li, and L. Xu

Others, known as informed algorithms, such as A* and IAFMT*( Informed Anytime
Fast Marching Tree) [25], use heuristic to estimate the cost of the solution and have been
widely studied. The sampling-based methods, which have the properties of probabilistic
completeness and asymptotic optimality, can find the solution if there exists a feasible
path. And they especially perform well in high-dimensional space. The typical repre-
sentatives are PRM(Probabilistic Roadmaps) [26] and RRT(Rapidly-exploring Random
Trees) [27]. In the early 1990s, Overmars et al. proposed a multiple query algorithm,
PRM. It uses random points to construct a roadmap in the free space of a given map and
connect them with each other. As PRM requires prior knowledge of the environment which
is not always known in advance in real world, it does not always work well. The RRT, a
landmark algorithm [28], is proposed as a single query algorithm which constructs a tree
from the start point and explores the space by growing the tree using random points. It
has better efficiency than PRM. Subsequently, many algorithms are proposed to improve
RRT. RRT-connect [29], which a double tree is added to RRT, uses a greedy heuristic to
speed up connection between vertexes. It builds two trees simultaneously, one from start
point, and the other from goal point. Since neither RRT nor RRT-connect considers the
cost of the solution found, neither of them is optimal. Karaman et al. proposed RRT* [30]
which adopts the ChooseParent and Rewire procedures as an optimization model to find
an optimal path. Yi et al. proposed Homotopy variant algorithm, HARRT*(Homotopy
Aware RRT*) [31], which is on the basis of B-RRT*(Bidirectional RRT*) [32]. The algo-
rithm uses artificial interference to plan the path from one topological space to another.
However, when the number of nodes is too large, the memory consumption and calcu-
lation amount of the algorithm will increase exponentially [33]. Nasir et al. proposed
RRT*-Smart [34] which applies intelligent sampling and path optimization function to
improve the problem of slow convergence of RRT*. Another RRT# is proposed by Ar-
slan et al. [35] The nodes with low weight in the random tree are selected through global
reprogramming and the local shortest path segments are generated as part of the global
path. The pure exploration is the main reason for the slow convergence rate of RRT* [36].
Therefore, the APF is advised to solve this problem. The algorithm, P-RRT*, which the
APF is added to RRT* [37], gives a direction for samples generation.

Subsequently, the concept of graph search is introduced into the sample-based planner
in some algorithms. The Anytime RRTs applies heuristics to improve the search by bias-
ing sampling [38]. Inspired from above, the SBA* (Sampling-based A*) [39] is designed by
improving RRT* with A*. The sampling heuristic method of node rejection has attracted
a lot of attention. Informed RRT* [40] which inspired by node rejection uses the informa-
tion of the current solution to create an elliptical area to constrain the sampling space and
improve the performance significantly than RRT* [41]. Informed RRT*-connect [42] uses
the concept of Informed RRT* and RRT-Connect to build double trees to offer low-cost
solutions with fewer iterations. BIT*(Batch Informed Trees*) [43] handles samples with
batches and uses the evaluation function to sort vertexes and edges. Though it can find a
better solution than Informed RRT*, there are still some problems in BIT*. One is BIT*
has to traverse the entire space which takes more time when finding the first path. And
sometimes, it will generate a lot of bending angles. As a result, the BIT* is not optimal
and the convergence is not fast enough.

This paper proposes an improved algorithm, GSGC (Guided Sampling and Gradual
Cutting), for robot path planning. The algorithm introduces guided sampling, gradual
cutting function and tunable parameters of the ellipse area. The attractive potential field
is used to let the goal point guide the direction of the new sampling in the tree model.
The GSGC can find the first path with fewer iterations and find the path quickly in the



GSGC:An Improved Path Planning Optimization Method 87

complex environment. Meanwhile, it can quickly converge to the optimal state, especially
in high dimensions.

The rest of this article is organized as follows. Section II gives some problem definitions;
Section III introduces some prerequisites of the algorithm and describes the process of the
algorithm; Section IV proves some properties; Section V presents the simulation results;
Section VI makes a summary and explains the future work.

2. PROBLEM DEFINITIONS. To explain the principle of the algorithm, some def-
initions are given similarly to [30]: Let X ⊆ Rn be the configuration space of the path
planning problem, where n ∈ N , n ≥ 2 . Let Xobs ⊂ X be the obstacle area, and
Xfree = X\Xobs represent the obstacle-free area. Let xinit ∈ Xfree be the initial point,
xgoal ∈ Xfree be the goal point, σ : [0, 1]→ X be a sequence of states, called a path.

A path planning is to find a feasible path satisfying σ : [0, 1] → X, if and only if
σ(0) = xinit and σ(1) = xgoal. The problem is described as follows.

Problem 1(Feasible Planning). For a problem of path planning, if a feasible path can
be found, there is feasible planning, or reports failure.

Problem 2(Optimal Planning). The optimal planning is to find a path with minimal
cost.

Problem 3(Fast Planning). The fast planning is to find a feasible path with the
minimal time.

A discrete set of points in the X can be seen as an implicit graph. A probabilistic
model called RGG (random geometric graph) is used to describe the properties of the
graph when these points are randomly sampled. The relative geometric positions of
vertexes determine the edges between vertexes in an RGG. Sampling-based methods can
be regarded as algorithms to build an implicit RGG model and explicit tree [44].

3. GUIDED SAMPLING AND GRADUAL CUTTING(GSGC).

3.1. Overview of the proposed algorithm. In this paper, we define an RGG model
with edges using random samples including the initial point and goal point in the free
space. The parameter, r, in the RGG model is chosen to reduce the complexity of the
graph and keep asymptotic optimality [45]. A heuristic is used to build an explicit tree
from the initial point to goal point (Figure 1(a)). The edges in the explicit tree are
collision-free. When the feasible path is found or no longer expanded, it will conclude a
batch (Figure 1(b)). Subsequently, more samples are added to construct a denser RGG
model, which will get a better solution than that has been found. Next, the style of
LPA* [46] is used to update the explicit tree(Figure 1(c)). The tree model stops growing
when there are no better solutions, no more collision-free edges, or reaches maximum
iterations (Figure 1(d)).

In Figure 1, the initial point is shown as green, while the goal point is red. The gray
lines and dots in the ellipse area contain better solutions. The feasible path is shown as
a red line in the current state. (a) shows the first batch of samples that the GSGC deals
with. (b) shows the first feasible path that the GSGC has found. Then in the ellipse area,
the GSGC begins to deal with the next batch of samples and finds the better feasible
path in the current state as shown in (c) and (d).

3.2. Preliminaries. Let the function g′(x) represent the admissible estimate of cost-to-
come between the initial point xinit and the current point x ∈ X. Let the function h′(x)
represent the admissible estimate of cost-to-go between the current point x and the goal
point xgoal. The function f ′(x) denotes an estimate of the movement cost of the path
from the initial point xinit through the current point x to the goal point xgoal , namely the



88 Z.M. Cai, J. Lu, Y.F. Ling, T.J. Li, and L. Xu

(a) (b)

(c) (d)

Figure 1. The major process of GSGC.

sum of g′(x) and h′(x). A subset of vertexes which can improve the current best solution
cost, cbest, is given as follows

Xf ′ = {x ∈ X | f ′(x) ≤ cbest} (1)

The explicit tree model is defined as T = (V,E). V ⊂ Xfree are vertexes in the tree
model, and E = {(v, w)} are edges that connect two points v, w ∈ V in the tree model.

The function gT (x) represents the actual cost-to-come between the initial vertex and
the current state vertex x ∈ X in the current tree model T . We suppose that a vertex
not in the current tree or unreachable has a cost of infinity.

Any state vertex satisfies the formula as follows

g′(x) ≤ g(x) ≤ gT (x) (2)

where g(x) is actual optimal cost of the current x ∈ X.
The function c′(x, y) and c(x, y) represent the estimate of the cost and the actual cost

of the edge between the state vertexes x, y ∈ X, respectively. If the edge intersects the
obstacle, it has a cost of infinity.

So any x, y ∈ X satisfies the following formula

c′(x, y) ≤ c(x, y) ≤ ∞ (3)

However, it is expensive to calculate c(x, y), because it needs differential constraints,
collision detection and so on.



GSGC:An Improved Path Planning Optimization Method 89

1randx

1newx

1p
k

goalx

2p
k

2newx

2randx

Figure 2. The diagram of guided sampling.

3.3. Procedure of the proposed algorithm. The proposed algorithm, GSGC, is pre-
sented in Algorithm 1-3. It is similar to BIT* as presented in [43], with the updated lines
5,6,34 in Algorithm 1 and the addition of Algorithm 2-3. For simplicity, the proposed
algorithm selects the model of an r − disc RGG. The purpose of the algorithm is to find
a feasible path connecting the goal point from a single initial point, and the path can
converge to the optimal state.

The algorithm adopts the basic structure of BIT*. It improves the method of sampling,
reduces the sampling area and cuts the path to get better performance of planner. It sets
a tunable parameter to reduce the sampling area (Algorithm 1; Line 5) and introduces
guided sampling function (Algorithm 1, Line 6; Algorithm 2) to change the method of
sampling to get more efficient. It can also improve the performance of getting the first so-
lution. When the algorithm stops, GradualCutting() function will remove the redundant
vertexes to improve the final solution (Algorithm 1, Lines 34; Algorithm 3).

3.3.1. Initialization. At first, the initial point xinit and the goal point xgoal are put into
the set of points V and the set of unconnected samples Xsample respectively (Algorithm
1, Line 1 ). The tree model is grown from xinit to xgoal by an orderly queue of edges QE

in RGG model. These edges are composed of a vertexes expansion queue QV . The edges
queue QE, and vertexes queue QV are initialized (Algorithm 1, Line 2 ).

3.3.2. Guided sampling. To improve sampling efficiency, a guided sampling function,
GuidSample(), is constructed. The new sample points are generated by GuidSample()
function. The detailed procedure is presented in Algorithm 2.

In the algorithm, we introduce the attractive potential field [7] for sampling. New
sample points are generated randomly. Only the points in the ellipse, eclip, will be
selected and the search direction is guided by the function DirectGuid(). Therefore, it
can avoid traversing the entire ellipse. We set and increase attractive parameter, kp, when
the obstacle is far from the current position so that the current point can approach the
goal quickly. If the obstacle is close, the attractive parameter is reduced. The algorithm
can guide the new sample points to move toward the goal, as shown in Figure 2.
RandGrow(x) is random growth function for generating new sample point

xrand = RandGrow(x) (4)

We introduce the attractive potential field, defined as

U =
1

2
· kp · ‖xrand − xgoal‖2 (5)



90 Z.M. Cai, J. Lu, Y.F. Ling, T.J. Li, and L. Xu

Algorithm 1 : GSGC(xinit ∈ Xfree,xgoal ∈ Xfree)

1: V ← {xinit} ;E ← ∅;Xsamples ← {xgoal};
2: QE ← ∅;QV ← ∅; r ←∞;
3: repeat
4: if QE ≡ ∅; and QV ≡ ∅; then
5: Prune(gT (xgoal));

6: Xsamples
+← GuidSample (xgoal ,m);

7: Vold ← V ;
8: QV ← V ;
9: r ← radius (|V |+ |Xsamples|);

10: end if
11: while BestqueueCost(QV ) ≤ BestqueueCost(QE) do
12: ExpandV ertex(Bestinqueue(QV ));
13: end while
14: (vm, xm)← BestInqueue(QE);

15: QE
−← {(vm, xm)};

16: if gT (vm) + c′ (vm, xm) + h′ (xm)<gT (xgoal) then
17: if g′ (vm) + c (vm, xm) + h′ (xm)<gT (xgoal) then
18: if gT (vm) + c (vm, xm)<gT (xm) then
19: if xm ∈ V then

20: E
−← {(v, xm) ∈ E};

21: else
22: Xsamples

−← {xm};
23: V

+← {xm} ;QV
+← {xm};

24: end if
25: end if
26: end if
27: E

+← {vm, xm};
28: QE

−← {(v, xm) ∈ QE | gT (v) + c′ (v, xm) ≥ gT (xm)};
29: else
30: QE ← ∅;QV ← ∅;
31: end if
32: until STOP;
33: T = (V,E);
34: return T ′ ← GradualCutting(T );

subject to the constraint

kp =

{
kp1 if (‖xobs − xrand‖) ≤ d
kp2 if (‖xobs − xrand‖) > d

(6)

where kpi(i = 1, 2) are attractive parameters, which are selected according a threshold
value, d, the distance between the current position and the nearest obstacle (Algorithm
2, Line 5). The ‖.‖ is the distance between two points.

The gradient of U is kp · (xrand − xgoal), which is the fastest direction to the goal for
xrand. Therefore, we define a direction guidance function of vertex x as follows

DirectGuid(x) = λ · kp · (xrand − xgoal) (7)

where λ is random step size.



GSGC:An Improved Path Planning Optimization Method 91

Algorithm 2 : GuidSample(xgoal,m)

1: K = 1;
2: while K ≤ m do
3: xrand ← RandGrow(x);
4: if PointInEllipse(xrand, eclip) then
5: d← dis(xrand, xobs);

6: ~Fatt ← DirectGuid (xrand, xgoal, d);

7: xnew ← xrand + ~Fatt;
8: K = K + 1;
9: end if

10: end while

minc
initx goalx2

min
2 ccbest 

bestc



Figure 3. The ellipse area.

The new vertex is generated as follows

xnew = xrand +DirectGuid(x) (8)

So far, m new sampling points are generated in a batch. The ellipse is defined in
Prune() function, which is detailed as follows.

3.3.3. Building of Ellipse in Pruning. A new batch (Algorithm 1, Lines 4-10) begins when
the queues are empty. During pruning, the configuration space is limited to an ellipse
area to improve performance obviously [40]. The ellipse is built as shown in Figure 3.

The xinit and xgoal are focal points of ellipse. In this paper, a tunable parameter, γ, is
added to reduce ellipse area. The major axis of ellipse is defined as

2a =
cbest
γ

(9)

where γ = 2kp, kp is attractive parameter.
The minor axis of ellipse is defined as

2b =
√
c2best − c2min (10)

where cmin is the distance between xinit and xgoal.

3.3.4. Edge selection and processing. The major procedure of edge selection is similar to
BIT*. When the movement cost of vertexes and edges are obtained, they will be sorted
in ascending order and added to the QV and QE respectively. While the estimated cost
of the best vertex in the queue QV is less than the estimated cost of the best edge in the
queue QE, the vertex will be expanded into the edge queue. The best edge in the queue,
(vm, xm), is removed for processing. Then the edge processing compares the cost and
judges whether the edge (vm, xm) is optimal or not. If it does, it needs further processing



92 Z.M. Cai, J. Lu, Y.F. Ling, T.J. Li, and L. Xu

for xm and the edge to xm. If xm is in the tree model, it needs to remove the edge to xm.
Otherwise, it requires moving xm from Xsamples to QV and QE for expansion.

The process will stop if there are no better solutions, no more collision-free edges or
reach maximum iterations. Otherwise, repeat the process above until the algorithm stops.
(Algorithm 1, Line 32).

3.3.5. Gradual Cutting (Algorithm 1, Line 33-34; Algorithm 3). The process above often
generates a lot of bending angles, which brings redundant vertexes in the path. Therefore,
we design Algorithm 3 to remove the redundant vertexes and get an optimal solution.

Algorithm 3 : GradualCutting()

1: i = 1;
2: while i ≤ num(V ) do
3: j = num(V ) ;
4: while j ≥ i do
5: if obstacle.intersects(xi, xj) true then
6: j = j − 1;
7: else
8: for each k = i+ 1 to j − 1 do
9: if xk /∈ QRM then

10: QRM
+← xk;

11: end if
12: end for
13: end if
14: i = j;
15: end while
16: end while
17: E = reconnect(V );
18: T = (V,E);
19: return T ;

The gradual cutting operation starts forward from the first vertex, denoted as xi, and
backward from the last vertex, denoted as xj, to check whether the line between the two
vertexes collides with the obstacles or not, as shown in Figure 4. If a collision occurs, the
vertex xj is retained and scans next one xj−1, then set xi = xj−1, as shown in Figure 4(a).
If there is no collision, the vertex xj is retained and all the vertexes between xi+1 and xj−1
will be cut and moved to a set, QRM (Algorithm 3, Line 10), then set xi = xj, as shown
in Figure 4(b). The operation will be repeated till all the vertexes in V are traversed.
Finally the remaining vertexes will be reconnected and put to tree model T .(Algorithm
3, Lines 17-18). After gradual cutting, redundant vertexes in the path can be effectively
removed. It can reduce the length of path and improve processing efficiency.

4. ANALYSIS. In this section, we will prove some properties of the algorithm GSGC.
Definition 1(Probabilistic Completeness) Suppose there are a set of parameters xinit,

xgoal and xobs. For any path planning algorithm which has a feasible solution, we can say
the algorithm has the property of probabilistic completeness if n samples satisfy:

lim
n→∞

P
({
V algorithm
n ∩ xgoal

}
6= ∅
)

= 1 (11)

It means the algorithm can return the graph includes a path from xinit to xgoal without
xobs.



GSGC:An Improved Path Planning Optimization Method 93

ix

jx

1jx 

(a) Collision detection

ix

jx

1jx 

(b) After gradual cutting

Figure 4. The gradual cutting process of path.

Theorem 1(Probabilistic Completeness of GSGC). For GSGC which has feasible so-
lution, if it has n samples satisfying limn→∞ P

({
V GSGC
n ∩ xgoal

}
6= ∅
)

= 1 in current
solution, there must exist a feasible path that connects the xinit and xgoal given enough
time and iterations.

Proof: The RRT* has been proved to have the property of probabilistic completeness
by Karaman et al. [30] This property is inherited by BIT* which is based on RRT* and
Gammell et al. have proved that [43]. In the sample points selection, GSGC adds a guide
strategy that changes the way of generation, but it keeps the connectivity of the tree like
RRT* and BIT*. So GSGC also has the property of probabilistic completeness.

Definition 2(Asymptotically Optimality) Given a set of parameters xinit, xgoal and
xobs. For any path planning algorithm which has a feasible solution, if the algorithm
returns a minimum movement cost of the solution with n samples satisfying:

P
(

lim
n→∞

sup calgorithmbest = c∗
)

= 1 (12)

where calgorithmbest represents the movement cost of the best solution found by the algorithm,
c∗ is the movement cost of the optimal solution, we say the algorithm has the property of
asymptotic optimality.

Theorem 2(Asymptotically Optimality of GSGC). For the GSGC which has a feasible
solution, if it has n samples satisfying

(
limn→∞ sup cGSGC

best = c∗
)

= 1, namely the algorithm
GSGC will always find a feasible path approximating the optimal solution from xinit to
xgoal.

Proof: Karaman et al. have proved in their work that the RRT* can converge asymp-
totically to the optimal feasible solution in n random distribution samples. In the process
of RRT*, it handles each sample independently and considers all the edges that less than
length r. The BIT* handles samples with batches, however it processes the edges same
to RRT*. The GSGC follows the same process as the BIT*. So the GSGC also has the
property of asymptotically optimality.

5. EXPERIMENT. The experiments were carried out in the simulated scenarios on a
laptop with 8 GB of RAM and an Intel i5-9300H processor. The GSGC was compared
with the BIT* and RRT* using evaluation benchmarks: length of path, run time, the
effectiveness of gradual cutting and the convergence of iteration. The simulation platform
is PyCharm with python 3.8. We used three different types of maps to simulate the
real environment in Figure 5. Figure 5(a) is a narrow passage. Figure 5(b) is a simple
environment. Figure 5(c) is a complex environment.

To keep the experiments consistent, the simulation parameters were set same for the
three algorithms. The size of map is 240*240. The kp1 is 0.6 and kp2 is 6. The three



94 Z.M. Cai, J. Lu, Y.F. Ling, T.J. Li, and L. Xu

(a) MAP1: The single narrow
passage

(b) MAP2: The simple envi-
ronment

(c) MAP3: The complex envi-
ronment

Figure 5. The different types of map in the experiments.

Table 1. The time cost and path length when passing narrow passages in
Figure 6.

MAP Algorithm time(s) pathlength

GSGC 8.17 165.21
MAP1 BIT* 10.4 167.27

RRT* 25.32 235.35

GSGC 4.81 88.21
MAP2 BIT* 8.45 91.39

RRT* 23.49 119.48

GSGC 7.87 63.59
MAP3 BIT* 10.06 65.54

RRT* 34.21 93.06

algorithms have identical initial points and goal points. For each experiment, we randomly
selected 10 groups of points, and the experimental results were averaged.

5.1. Fundamental performance. The time cost and path length are two basic indexes
in path planning for a robot. The better performance means using less time to find a
shorter path. We considered some specific scenarios. The first one is the narrow area,
which is difficult for a robot to pass. There are narrow passages in the three maps. The
second one is the robot starting from the inside of the environment. The third one is the
robot crossing the entire environment. The results were shown in Table 1-3 and Figure
6-8. The GSGC spent the shortest time to find the goal point with the shortest length of
path among the three algorithms.

5.2. The effectiveness of gradual cutting. Generally, path planning tends to generate
redundant points so that it will not be optimal. The GSGC adds a gradual cutting function
to obtain local optimization. It can remove the redundant points efficiently and reduce
bending angles. The experiments showed that the GSGC achieved local optimization since
it has the least number of bending angles compared with BIT* and RRT* , as shown in
Figure 9-10.

5.3. The convergence of iteration. As BIT* has a higher likelihood to find a better
solution and converge faster towards the optimum than RRT* [43], we only carried out



GSGC:An Improved Path Planning Optimization Method 95

(a) GSGC (b) BIT* (c) RRT*

(d) GSGC (e) BIT* (f) RRT*

(g) GSGC (h) BIT* (i) RRT*

Figure 6. The experiments that robot passing narrow passages in different
environments.

Table 2. The experimental results that the robot starting from the inside
of the environments in Figure 7.

MAP Algorithm time(s) pathlength

GSGC 14.33 150.56
MAP2 BIT* 16.8 154.87

RRT* 45.99 174.84

GSGC 19.53 183.81
MAP3 BIT* 23.45 185.73

RRT* 56.87 220.27



96 Z.M. Cai, J. Lu, Y.F. Ling, T.J. Li, and L. Xu

(a) GSGC (b) BIT* (c) RRT*

(d) GSGC (e) BIT* (f) RRT*

Figure 7. The experiments that the robot starting from the inside of the environments.

Table 3. The experimental results that the robot crossing the entire en-
vironments in Figure 8.

MAP Algorithm time(s) pathlength

GSGC 30.2 255.6
MAP2 BIT* 60.33 257.32

RRT* 82.85 343.2

GSGC 45.63 270.38
MAP3 BIT* 65.21 272.07

RRT* 75.26 387.56

the comparisons between ours, GSGC, and BIT* in this section. We selected four kinds
of scenarios of MAP2 and MAP3 to compare the convergence of GSGC and BIT* in
Figure 7-8. As shown in Figure 11-12, the convergence curve represents the path length
versus iteration times.We can see that the GSGC converges faster than BIT* and obtains
the optimal path with less iterations. We also can find that BIT* is more unstable than
GSGC since the convergence curves of BIT* fluctuate during iteration. Therefore, GSGC
has faster and more stable convergence performance than BIT*.

6. CONCLUSION. This paper presents a new path planner, GSGC, that introduces
the attractive potential field to guide the new sample points to move toward the goal. The
sampling ellipse area is shrunken according to the attractive parameters, which improves
the path searching performance. Ultimately, the gradual cutting is used for trimming
the redundant vertexes in the path. As demonstrated on simulated experiments, GSGC
achieves the shortest path with least time cost, compared with BIT* and RRT*. After



GSGC:An Improved Path Planning Optimization Method 97

(a) GSGC (b) BIT* (c) RRT*

(d) GSGC (e) BIT* (f) RRT*

Figure 8. The experiments that the robot crossing the entire environments.

(a) GSGC (b) BIT* (c) RRT*

Figure 9. The turning at corners in MAP1.

(a) GSGC (b) BIT* (c) RRT*

Figure 10. The turning at corners in MAP2.



98 Z.M. Cai, J. Lu, Y.F. Ling, T.J. Li, and L. Xu

 

(a)

 

(b)

Figure 11. The convergence curve: (a)The process of iteration in Figure
7 (a), (b); (b)The process of iteration in Figure 7 (d), (e).

 

(a)

 

(b)

Figure 12. The convergence curve: (a)The process of iteration in Figure
8 (a),(b); (b)The process of iteration in Figure 8 (d),(e).

gradual cutting, the path is further optimized. In the aspect of convergence of iteration,
GSGC converges faster and more stably than BIT* which outperforms RRT*. Although
the GSGC is an effective improvement, it also has some limitations. The GSGC has not
been applied to a real robot, so it lacks consideration of kinematics constraints of robots.
In the future, we will test the algorithm in robots and work more to improve it.

Acknowledgment. This work is partially supported by the Start-up Research Project
under the Grant[GY-Z21064] of Fujian University of Technology, the New Engineering
Research Project (Construction of Electronic and Electrical Practice Education System
and Practice Platform Oriented to New Engineering) of Fujian University of Technology,
the Research Project of Education&Teaching Reform of Fujian Province under the Grant
[FBJG20190145] and the Research Project of Experimental Teaching Reform of Fujian
University of Technology under the Grant [SJ2018002]. The authors also gratefully ac-
knowledge the helpful comments and suggestions of the reviewers, which have improved
the presentation.

REFERENCES

[1] R. Fareh, M. Baziyad, T. Rabie and M. Bettayeb, Enhancing path quality of real-time path planning
algorithms for mobile robots: A sequential linear paths approach, IEEE Access, vol.8, pp.167090-
167104, 2020.



GSGC:An Improved Path Planning Optimization Method 99

[2] I Sung B Choi and P Nielsen, On the training of a neural network for online path planning with
offline path planning algorithms, International Journal of Information Management, vol.57, Article
ID 102142, 9 pages, 2021.

[3] Y. Q. Huang , Z. K. Li, Y. Jiang and L. Cheng, Cooperative path planning for multiple mobile
robots via HAFSA and an expansion logic strategy, Applied Sciences, vol.57, no.4, pp.1-10, 2019.

[4] R. Sandström, A. Bregger, B. Smith, S. Thomas and N. M. Amato, Topological nearest-neighbor
filtering for sampling-based planners, 2018 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp.3053-3060, 2018.

[5] P. C. Song, J. S. Pan and S. C. Chu, A Parallel Compact Cuckoo Search Algorithm for Three-
Dimensional Path Planning, Applied Soft Computing, vol.94, Article ID 106443, 2020.

[6] E. I. Al Khatib, M. A. K. Jaradat and M. F. Abdel-Hafez, Low-cost reduced navigation system for
mobile robot in indoor/outdoor environments, IEEE Access, vol.8, pp.25014-25026, 2020.

[7] O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, The International
Journal of Robotics Research, vol.5, pp.90-98, 1986.

[8] Y. Koren and J. Borenstein, Potential field methods and their inherent limitations for mobile robot
navigation, 1991 IEEE International Conference on Robotics and Automation, pp.1398-1404, 1991.

[9] I. B Jeong, S. J. Lee and J. H. Kim, Quick-RRT*: Triangular inequality-based implementation
of RRT* with improved initial solution and convergence rate, Expert Systems with Applications,
vol.123, pp.82-90, 2019.

[10] I. Sung, B. Choi and P. Nielsen, On the training of a neural network for online path planning with
offline path planning algorithms, International Journal of Information Management, vol.57, Article
ID102142, 9 pages, 2021.

[11] P. E. Hart, N. J. Nilsson, and B. Raphael, A formal basis for the heuristic determination of minimum
cost paths, IEEE Transactions of Systems Science and Cybernetics, vol.4, pp.100-107, 1968.

[12] C. S. Sallaberger, G. M. T. D’Eleuterio, Optimal robotic path planning using dynamic programming
and randomization, Acta Astronautica, vol.35, pp.143-156, 1995.

[13] Y. Ma and N. N. Wu, Research on Seismic Site Emergency Rescue Traffic Path Analysis System
Based on Public Image Information, Journal of Information Hiding and Multimedia Signal Process-
ing, vol.9, pp.577-585, 2018.

[14] Q. W. Chai, S. C. Chu, J. S. Pan, and W. M. Zheng, Applying Adaptive and Self Assessment Fish
Migration Optimization on Localization of Wireless Sensor Network on 3-D Te rrain Journal of
Information Hiding and Multimedia Signal Processing, Vol.11, No.2, pp.90-102, 2020.

[15] J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings of ICNN’95 - International
Conference on Neural Networks, vol.4, pp.1942-1948, 1995.

[16] J. H. Holland (eds.), Adaptation in Natural and Artificial Systems, MIT Press, Cambridge, MA,
USA,1992.

[17] K. Price, R. M. Storn, and J. A. Lampinen (eds.), Differential Evolution: a Practical Approach to
Global Optimization, Springer, Berlin-Heidelberg, Germany, 2007.

[18] J. S. Pan, P. W. Tsai, and S. C. Chu, Cat swarm optimization, 9th Pacific Rim International
Conference on Artificial Intelligence, pp.854-858, 2006.

[19] C. C. Shih, M. F. Horng, T. S. Pan, J. S. Pan, and C. Y. Chen, A genetic-based effective approach to
path-planning of autonomous underwater glider with upstream-current avoidance in variable oceans,
Soft Computing, vol.21, no.18, pp.5369-5386, 2016.

[20] T. K. Dao, J. S. Pan, T. S. Pan, and T. T. Nguyen, Optimal path planning for motion robots based
on bees pollen optimization algorithm, Journal of Information and Telecommunication, vol.1, no.4,
pp.351-366, 2017.

[21] J. S. Pan, N. X. Liu, S. C. Chu, A hybrid differential evolution algorithm and its application in
unmanned combat aerial vehicle path planning, IEEE Access, vol.8, pp.17691-17712, 2020.https:
//doi.org/10.1109/ACCESS.2020.2968119

[22] Z. Y. Meng and J. S. Pan, QUasi-Affine TRansformation Evolution with External ARchive
(QUATRE-EAR): an enhanced structure for differential evolution, Knowledge-Based Systems,
vol.155, pp.35-53, 2018.

[23] F. Q. Zhang, T. Y. Wu, Y. O. Wang, R. Xiong, G. Y. Ding, P. Mei, and L. Y. Liu , Application of
Quantum Genetic Optimization of LVQ Neural Network in Smart City Traffic Network Prediction,
IEEE Access, vol.8, pp.104555-104564, 2020.

[24] P. C. Song, S. C. Chu, J. S. Pan, and H. M. Yang, Simplified Phasmatodea population evolution
algorithm for optimization, Complex & Intelligent Systems, pp.1-19, 2021.https://doi.org/10.
1007/s40747-021-00402-0

https://doi.org/10.1109/ACCESS.2020.2968119
https://doi.org/10.1109/ACCESS.2020.2968119
https://doi.org/10.1007/s40747-021-00402-0
https://doi.org/10.1007/s40747-021-00402-0


100 Z.M. Cai, J. Lu, Y.F. Ling, T.J. Li, and L. Xu

[25] X. Jing, K. C. Song, D. F. Zhang, H. W. Dong, Y. H,Yan and Q. G. Meng, Informed Anytime
Fast Marching Tree for Asymptotically Optimal Motion Planning, IEEE Transactions on Industrial
Electronics, vol.68, no.6, pp.5068-5077, 2021.

[26] N. M. Amato and Y. Wu, A randomized roadmap method for path and manipulation planning, 1996
IEEE International Conference on Robotics Automation, pp.113-120, 1996.

[27] S. M. LaValle and J. J. Kuffner, Randomized kinodynamic planning, 1999 IEEE International Con-
ference on Robotics and Automation, pp.473-479, 1999.

[28] R. Mashayekhi, M.Y.I. Idris, M.H. Anisi, and I. Ahmedy, Hybrid rrt: A semi-dual-tree rrt-based
motion planner, IEEE Access, vol.8, pp.18658-18668, 2020.

[29] J. J. Kuffner and S. M. LaValle, RRT-connect: An efficient approach to single-query path planning,
2000 IEEE International Conference on Robotics and Automation, pp.995-1001, 2000.

[30] S. Karaman and E. Frazzoli, Sampling-based algorithms for optimal motion planning, The Interna-
tional Journal of Robotics Research, vol.30, no.7, pp.846-894, 2011.

[31] D. Yi, M. A. Goodrich, and K. D. Seppi, Homotopy-aware RRT*: Toward human-robot topolog-
ical path-planning, 2016 11th ACM/IEEE International Conference on Human-Robot Interaction,
pp.279-286, 2016.

[32] B. Akgun and M. Stilman, Sampling heuristics for optimal motion planning in high dimensions, 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.2640-2645, 2011.

[33] O. Adiyatov and H.A. Varol, Rapidly-exploring random tree based memory efficient motion planning,
2013 IEEE International Conference on Mechatronics and Automation, pp.354-359, 2013.

[34] F. Islam, J. Nasir, U. Malik, Y. Ayaz, and O. Hasan, RRT*-SMART: A rapid convergence implemen-
tation of RRT, 2012 IEEE International Conference on Mechatronics and Automation, pp.1651-1656,
2012.

[35] O. Arslan and P. Tsiotras, Use of relaxation methods in sampling-based algorithms for optimal
motion planning, 2013 IEEE International Conference on Robotics and Automation, pp.2421-2428,
2013.

[36] Y. J. Li, W. Wu, Y. Gao,D. L Wang, and Z. Fan, PQ-RRT*: An improved path planning algorithm
for mobile robots, Expert Systems with Applications, vol.152, Article ID 113425, 2020.

[37] A. H. Qureshi and Y. Ayaz, Potential functions based sampling heuristic for optimal path planning,
Autonomous Robots, vol.40,no.6,pp.1079-1093, 2016.

[38] D. Ferguson and A. Stentz, Anytime rrts, 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp.5369-5375, 2006.

[39] S. M. Persson and I. Sharf, Sampling-based A* algorithm for robot path-planning, The International
Journal of Robotics Research, vol.33, no.13, pp.1683-1708, 2014.

[40] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, Informed RRT*: Optimal incremental path plan-
ning focused through an admissible ellipsoidal heuristic, 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp.2997-3004, 2014.

[41] B.K. Patle, Ganesh Babu L, Anish Pandey, D.R.K. Parhi, and A. Jagadeesh, A review: On path
planning strategies for navigation of mobile robot, Defence Technology, vol.15, no.4, pp.582-606,
2019.

[42] R. Mashayekhi, M. Y. I. Idris, M. H. Anisi, I. Ahmedy, and I. Ali, Informed RRT*-connect: An
asymptotically optimal single-query path planning method, IEEE Access, vol.8, pp.19842-19852,
2020.

[43] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, Batch informed trees (BIT*): Sampling-based
optimal planning via the heuristically guided search of implicit random geometric graphs, 2015 IEEE
International Conference on Robotics and Automation, pp.3067-3074, 2015.

[44] J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, Informed sampling for asymptotically optimal
path planning, IEEE Transactions on Robotics, vol.34,no.4,pp.966-984, 2018.

[45] L. Janson, E. Schmerling, A. Clark, and M. Pavone, Fast marching tree: A fast marching sampling-
based method for optimal motion planning in many dimensions, The International Journal of Ro-
botics Research, vol.34, no.7, pp.883-921, 2015.

[46] S. Koenig, M. Likhachev, and D. Furcy, Lifelong planning A*, Artificial Intelligence, vol.155, no.1,
pp.93-146, 2004.


	1. INTRODUCTION
	2. PROBLEM DEFINITIONS
	3. GUIDED SAMPLING AND GRADUAL CUTTING(GSGC)
	3.1. Overview of the proposed algorithm
	3.2. Preliminaries
	3.3. Procedure of the proposed algorithm

	4. ANALYSIS
	5. EXPERIMENT 
	5.1. Fundamental performance
	5.2. The effectiveness of gradual cutting
	5.3. The convergence of iteration

	6. CONCLUSION
	Acknowledgment
	REFERENCES

