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ABSTRACT. Differential evolution (DE) is an effective global evolutionary optimization
algorithm using to solve global optimization problems mainly in a continuous domain.
But with the increase enlarge of problems’ dimensions, the computational performance
of DE don’t satisfy the need. In order to further improve the performance of the al-
gorithm, this paper propose A NEC-based parallel differential evolution algorithm with
MKL/CUDA. Firstly, we analyzes the design of parallel computation of DE which can
easily be executed in Math Kernel Library (MKL) and Compute Unified Device Architec-
ture (CUDA). Then the essence of the exponential crossover operator is described and we
point out that it cannot be used for better parallel computation. Later, we propose a New
Ezponential Crossover (NEC) operator that can be executed parallelly with MKL/CUDA.
The simulation results validate the superiority of our parallel DE with MKL/CUDA,when
tackling the optimization problem with large number of dimensions or decision variables.
Keywords:Parallel differential evolution algorithm, Matrx calculation, High perfor-
mance
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1. Introduction. Evolutionary algorithm has important applications in many fields [1-
4]. Among them, Differential evolution (DE) is simple and useful. DE is similar to the
Genetic Algorithm (GA) and able to address optimization problems more efficiently and
precisely [5, 6]. Since DE was proposed by Price and Storn in 1995 with several papers
[7-9], it has attracted a lot of people to use and do further researches because of its simple
realization, wide application, and good optimization results [10, 11].

Most researchers pay more attention to reforming DE in order to make it solve diffi-
cult problems better. But as for some large-scale optimization problems, although the
evaluation of individuals is the bottleneck of the computational performance most of the
time, we still found that if we use CPU/GPU parallel technologies in DE, we can get a
dramatic increase in the performance.

In DE, each chromosome is an array containing a list of real numbers. This simple and
useful structure makes it possible to calculate parallelly by matrix calculation techniques
with the help of Math Kernel Library (MKL) or Compute Unified Device Architecture
(CUDA). The former one performs well in matrix calculation with CPU while the other
one can speed up the code with Graphics Processing Unit (GPU).

Until now there are many achievements in this field, for example, DE with General
Purpose GPU (GPGPU), is a parallel version of DE executing in GPU, introduced by
de Veronese and Krohling [12], Zhu [13], and Zhu and Li [14]. Cortes et.al [15] analyzed
the influence of parameters on speedup and the quality of solutions of DE on a GPGPU,
showing that DE on a GPGPU is not only running faster but also has a good optimization
result. Recently, Meselhi et. al. designed a fast differential evolution for big optimization
[16], which shows a big increase in the computational performance.

However, these parallel calculation achievements can only perform well in the DE algo-
rithm with binomial crossover. They don’t do well in some other versions of DE such as
the DE algorithm with exponential crossover, which uses the exponential crossover (exp)
instead of the uniform (binomial) crossover in recombination. The work of Tanabe [17]
showed that the exp crossover can perform better in some optimization problems where
the adjacent variables have some dependencies. Hence, it is still useful in DE. However,
in this context, it will show that the exp crossover cannot be calculated parallelly enough
as the uniform (binomial) crossover so that when using parallel calculation the former one
runs much slower than the latter.

This paper designed the parallel DE with matrix calculation which can easily be exe-
cuted in Math Kernel Library (MKL) and Compute Unified Device Architecture (CUDA),
at the same time, we design a new exponential crossover operator,the extended experi-
ments show that our algorithm has better performance. The rest of the paper is organized
as follows. Section 2 shows several parallel-computational algorithms in a different part
of DE. In section 3, it will uncover the essence of exponential crossover and changed it
with the help of the probability theory so that it can be faster as well as be able to speed
up on MKL/GPU. In section 4, we will compare the performances of DE, DE on MKL
(MKL-DE), and DE with CUDA (CUDA-DE).

2. Parallel Differential Algorithm. The differential evolutionary algorithm processes
the population with /N individuals. Each individual owns a chromosome which is an n-
dimension vector x; , made of real numbers. 7 is the index number of the individual in
the population, g indicates the generation to which a vector belongs. z, is a matrix that
stores all the z; , in the population. After initialization, base vector selection, differential
mutation, recombination, and selection, a new generation is created and after several
iterations, the solutions of the population can get better and better. The pseudocode of
DE is shown in Algorithm 1.
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Algorithm 1 Differential Evolution (DE).

1: Set parameters C,, ' and N, and iteration counter g <— 0
2: Initialize population P, , = (z;,),i=0,1, ,N —1

3. fit < evaluate(z,)

4: while Stop Criteria is False do

5 for i = 0 to pop_size-1 do

6 Select a index number: rq

7 v; 4 < differential mutation(F, z; 4, ro)

8

9

;4 < recombination(Cr, v; 4, T; )
: fit" <+ evaluate(u; )
10: if fit’ < fit; then

11: Tig+1l S Uig
12: fit; «+ fit'
13: else

14: Tig+l < Tig
15: end if

16: end for

17: end while

In Algorithm 2, the loop between line 5 and line 14 can be calculated parallelly. Suppose
we denote a parallel calculation task as a ”job”, meaning that the device we used can
do all the jobs parallelly. Hence, each iteration of the loop between line 5 and line 16
can be allocated to a job. In addition, in line 7, line 8, and line 12, we need to loop all
the elements of the chromosome vector, since each loop is independent. However, it is
not good enough to set sub-jobs in a parallel calculation job: As we can’t control the
running time of line 10 (evaluation), it’s not good to allocate each loop from line 5 to
line 16 to a single job for a thread to do by including a time-consuming evaluation task
in it. It’s necessary to change the algorithm flow design of DE to a new one where the
procedure of line 10 is separated so that other procedures of it can be calculated parallelly
on MKL/CUDA. The pseudocode of the parallel DE framework can be seen in Algorithm
2.

Algorithm 2 Parallel Differential Evolution framework.

1: Set parameters C,, ' and N, and iteration counter g <— 0
2: Initialize population chromosome matrix z,

3. fit < evaluate(z,)

4. while Stop Criteria is False do

5: shuffle the order of the individuals

6: ro < base_index_selection(N,)

7 mask < crossover(Cr, N, D)

8  uy < copy(x,)

9: ug[mask] < differential mutation(F, z,, mask, ro)
10: fit' <« evaluate(ug)

11: idx < where(fit' < fit)

12: Tgi1 < copy(zy)

13: Ty lide, ] < ugylidz, ]

14: fit[idx] + fit’ [idx]
15: end while
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Algorithm 3 Random Base Index Selection.
Input: N,.
Output: An array_like rq.

1: 79 <= Np-floor(rand(0,1,size=N,))

In Algorithm 2, rg in line 6 is a vector that stores the indices of individuals chosen by
the selection method. The base vectors in DE are equal to z4[rg,:]. 7o can be created
parallelly. In line 7, mask is a 0-1 matrix storing the message whether which element
of the u, matrix needs to be changed its value to the mutation result or not (1 means
yes while 0 means no). It’s easy to see that the order between the crossover and the
mutation is exchanged, which can decrease the running time but get the same result as
the traditional DE.The DE algorithm with binomial crossover can be designed according
to Algorithm 2. This framework can be used in many different versions of DE. For
example, as to the DE algorithm with binomial crossover, we can use this framework
parallelly. Except line 10 (evaluation), all other codes from line 5 to line 14 can be
executed parallelly by matrix calculation with the help of MKL/CUDA, which means that
in many underlying operating procedures, for example, how many sub-threads are used
in the parallel calculation, is setting to a suitable state by MKL/CUDA automatically.
There are many kinds of base index selection in DE, some can be seen in Algorithm 3, 4,
and 5 The basic parallel mutation of "DE/*/1/bin” can be seen in Algorithm 6, and the
parallel uniform (binomial) crossover can be seen in Algorithm 7.

Algorithm 4 Random Offset Base Index Selection.
Input: N,,.
Output: An array_like rg.

L idr +[0,1,-, N, — 1]

2: ry < ceil((N, — 1)-rand(0,1))

3: 1o < (idx + r4) mod N,

Algorithm 5 Permutation Base Index Selection.

Input: N,,.

Output: An array_like rg.
1 idz < [0,1,, N, — 1]
2: 1o < shuffle(idx)

The three selections above can all be easily calculated on MKL/CUDA.

In traditional DE, the crossover is executed after mutation. After the crossover is done,
quite many elements of v; ;, which cannot be given to u; , are wasted. So the mask helps
to speed up DE.

The Algorithm 7 implements the uniform (binomial) crossover, the formula is as follows:

N , 1 L
g [ I TOD o i
Z?J’y’

7 is the index number which values in 0,1,--- , D — 1. the mask is a 0-1 matrix that
marks whether the elements of u, matrix which are need to be crossed with v, matrix or

not.

The algorithms above can easily be done in MKL/CUDA, because most procedures of
them are mainly matrix calculation. In section 4 we will show the acceleration under

MKL/CUDA.
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Algorithm 6 Basic Parallel Differential Mutation.

Input: F,z,, mask,r.

Output: An array_like results.

: Ny, Lind < the size of z,

I8! <— ro + (N, — 1)-ceil(rand(0,1,size=N,)) mod N,

ry <— 11+ (N, — 1)-ceil(rand(0,1,size=N,)) mod N,

results <— (z4[r0,:])[mask] + F - ((z4[rl,:])[mask] — (x,4[r2,:])[mask])

Algorithm 7 Parallel Uniform (Binomial) Crossover (MKL/CUDA-BIN).

Input: Cr € [0,1], N,, D.

Output: mask.

: mask < an N, X D matrix in which all elements are 0
Jrand randmt(D size=(N,))

idr < [0,1,.., N, — 1]

mask[idz, jrana] < 1

R < rand(0,1,size=(N,, D))

mask[R < Cr| + 1

3. New Exponential Crossover.

3.1. The Essence of the Exponential Crossover. The exponential crossover in Dif-
ferential Evolution is similar to 1 or 2 point crossover in the Genetic Algorithm (GA) [8],
which is widely used in the DE algorithm with exponential crossover. Its implementation
is shown in Algorithm 8. In each generation g, a mutation vector v;, created from the
parent chromosome vector x;, by applying some mutation strategies. After that, the
mutation vector v; 4 is crossed with z; 4 in order to create trial vector ;4 by applying the
exponential crossover. Cr € [0, 1] is the crossover rate, j.unq is a decision variable index
randomly selected from [0, D — 1].
The Altorithm 6 implements the differential mutation in the ”DE/*/1/bin”, the formula
is as follows:
U; < Tpo + F- (.’L’rl — I’TQ) (31)

Algorithm 8 Exponential Crossover.

Input: z,4,v,,Cr € [0,1]
Output: u,
1: Np, D < the shape of z,

2: for i + [0,1, ,N, —1] do

3 Ujg < Tig

4 j is randomly selected from [0,D-1], L =0
9: do

6 WUijg <= Vijg

7 j4+ (j+1) mod D

8: L+ L+1

9: while rand[0,1);Cr and L < D

10: end for

However, the exponential crossover is seldom used in parallel DE practices. We can
easily find the reason. It’s clear that if we allocate each execution of the exponential
crossover of each individual as a parallel job, that each job needs to loop the chromosome
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vector to check whether u; 4 is needed to be crossed. This procedure cannot run parallelly.
As to the uniform (binomial) crossover, the process of checking whether bit of chromosome
is needed to be crossed or not is independent. Thus, the latter is more suitable for parallel
calculation. Figure 1 shows the runtime comparison between parallel exponential crossover
(p-exp) and parallel uniform (binomial) crossover (p-bin). The exponential crossover has a

Cr=0.2 Cr=0.4
0.15 A
— p-exp — P-&xp
0.10 A . .
o p-bin £ 0.10 - p-bin
£ £
= 0.051  0.05 A
0 25 50 75 100 0 25 50 75 100
Dimension Number Dimension Number
Cr=0.7 Cr=0.9
0.24 — p-exp //
© 0.10 = | p-bin
£ £
S 0.05 4 — p-exp 5 0.1
p-bin

0 25 50 75 100 0 25 50 75 100
Dimension Number Dimension Number

FIGURE 1. Running Time Comparison between p-exp and p-bin in N, = 1000

congenital advantage that when C'r is relatively small and the dimension of w; 4 is large, it
doesn’t need to traverse all bit of u; , to cross, because the loop will be probability stopped
on the half-way. So we can see in Figure 1 that when Cr = 0.2 and Cr = 0.4, as the
dimension of the chromosome vector is getting larger, the p-exp has a higher performance
than p-bin. However, when Cr is getting larger, p-exp is slower than p-bin. That is
because each parallel job of p-exp has more work to do: it needs to traverse the bits of
u; 4 to check whether it is needed to cross.

In some related work, the L of each v; 4 can be calculated before the crossover, so that
remain procedures of the exp crossover can be calculated parallelly at a higher speed.
That can be seen in [18]. However, when calculating the L, they still use a loop same to
the traditional exp crossover, so that these improvements are still unsuitable for parallel
calculation.

If we reconsider the exponential crossover, we can see that the L, which is equal to
the length of crossed bits in w; 4, is subject to geometric distribution, not the exponential
distribution. But as the geometric distribution has some relationship with the exponential
distribution, it’s unnecessary to change the name of the exponential crossover. Instead,
we can use the probability theory to redesign the exponential crossover in order to make
it faster.

According to Algorithm 8, we can get

L~G(1-Cr)
Where G denotes the geometric distribution, meaning that

P{L=n}=Cr""'(1-Cr),n>1 (3.2)
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What we use here is the property that
Gn)=P{L<n}=1-) (1-Cr)Cr'=1-Cr" (3.3)

i>n

Now we need to generate a random number that is subject to the geometric distribution.
Denote X as an exponentially distributed random variable with parameter A, so we have
L = [X], where [ ] is the ceil (or smallest integer) function. L is a geometrically
distributed random variable with parameter p = 1 — e™. p is the parameter of the
geometric distribution. In the exponential crossover, p is equal to 1 — Cr. Thus, we
obtain A = —InCr. If we denote Fx(z) as the distribution function of the exponential
distribution, we can get

Fx(x)=1-Cr" (3.4)
According to the inversion method [19] and equation 3.4, we can get
Uy = Fx(x) (3.5)

where U is a random number in (0,1). Is clear that U = 1 — U is also a uniform
distribution random number in (0,1). Thus, we can get a random sampling real number
x which is exponentially distributed.

In (U)
xr =
In (Cr)
So, the L in the exponential crossover can be sampled randomly by the following equa-
tion instead of traversing elements of the chromosome vector.

3.2. New Exponential Crossover (NEC). In the new exponential crossover, since
Cr € [0,1], it is necessary to duel with the three special cases: Cr =0, Cr = 1, and L
cannot be bigger than the dimension number D of the u; ;. Thus, the equation to generate
L is as follows.

(3.6)

1,Cr =0
L=4 min([2Y],D),Cre(0,1) (3.8)
D.Cr=1

After generating L, we can know which bits of u;, are needed to be crossed directly.
So we can redesign the exponential crossover. Algorithm 9 shows the new design of the
exponential crossover.

Figure 2 shows the frequency of L in the new exponential crossover (NEC) and the
traditional exponential crossover (exp) in 1000000 times experiments with D = 10. We
can see that we can get similar results as the traditional exponential crossover by using
NEC.

Figure 3 and 4 show the higher speed of NEC in 100 experiments with different C'r.

Comparing the traditional exponential crossover and NEC, the latter calculates the
total crossed length L at first so that when looping u; 4, it only needs to compare the
crossed length [ with L, which makes it much faster than the traditional exponential
CTOSSOVer.

Moreover, the procedure of generating all L of all individuals in DE can be also executed
parallelly, so that we can make full use of MKL/CUDA to speed up the procedure of the
new exponential crossover. Firstly, the column vector Ls, that stores all the L of the u; g4,
t=0,1,2, ,N, are sampled parallelly by applying equation 3.8. Then, with the help of
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Algorithm 9 New Exponential Crossover (NEC).

Input: z,(the current individual), v,(mutation), Cr(probability of variation)e [0, 1]
Output: u,(experimental individuals)

1: N, D < the shape of z,

2: for i « [0,1, ,N,— 1] do

3: Uj g <— Tig
4:  j is randomly selected from [0,D-1], 1 =0
5: calculate L by equation 3.8
6: do
T Uijg €= Vijg
8: j+ (j+1) mod D
9: l+—1+1
10: while [ < L
11: end for
Cr=0.1 Cr=0.3
> 750000 - I p-nec > 600000 - I p-nec
c  exp c  exp
$ 500000 2 400000
] ]
£ 250000 A & 200000 A
0 T T T 0 T T T
0 5 10 0 5 10
L L
Cr=0.7 Cr=0.9
300000 A
- B p-nec - 400000 1 p-nec
(9] (9]
S 200000 - - exp = - exp
> & 200000 -
2 100000 - o
[V [V
0- 0-
0 5 10 0 5 10
L L

F1GURE 2. The frequencies of L between nec and exp

the Ls, we can create a matrix mask parallelly which denotes whether every bit of all the
u; 4 of all chromosome vectors need to be crossed or not. Finally, we can do the cross of
every bit of the chromosomes parallelly on MKL/CUDA according to the matrix mask. It
is worth noting that the new exponential crossover on MKL/CUDA (MKL/CUDA-NEC)
only returns a signal matrix mask, which is similar to Algorithm 7, that is because in
parallel differential evolution on MKL/CUDA (see Algorithm 2), the mutation is executed
after the crossover. With the help of the mask, the mutation only needs to mutate the
elements where the element of the mark is equal to 1. Algorithm 10 is the pseudocode of
the parallel new exponential crossover (p-nec).

Comparing MKL/CUDA-nec to p-exp we mentioned above, we can see that all the pro-
cedures of the former one are the matrix calculation, which can be easily run thoroughly
parallelly with the help of MKL/CUDA. Thus, it runs much faster than p-exp. Figure 5,
6, and 7 will show the runtime comparison among CUDA-nec (using CUDA to calculate
NEC), MKL-nec (using MKL to calculate NEC), and p-exp when the population size N,
is 100, 1000 and 5000 in 100 repeat experiments. The D (dimension of u; ) is set from 2
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FIGURE 3. Running Time Comparison between nec and exp in N, = 1000.
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FIGURE 4. Running Time Comparison between nec and exp in D = 100.

to 5000. We can see from these pictures that when N, is small, MKL-NEC is faster than
the others, but when N, is large and the dimension number of the chromosome is getting
larger and larger, CUDA-NEC can execute faster. That is because in big optimization,
the runtime of data’s transport between the memory device and the GPU is no longer the
bottleneck, thus, we get a higher speedup by using GPU to calculate.

Table 1 shows more experiment results. Each experiment are done in Cr=0.2, 0.4,
0.6, 0.8 and 1.0 for 100 times then records the total runtime. We can see that when the
dimension of the decision variable (D) and the population size (IV,) is relatively small, the
new exponential crossover on MKL has a higher performance. But when D and N, are
relatively large, it’s better to use CUDA-NEC as well as CUDA-bin. Moreover, no matter
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Algorithm 10 Parallel Version of New Exponential Crossover (MKL/CUDA-NEC).

Input: Cr € [0,1], N,, D.

Output: mask.

: Jrand < randint(D, size=(N,))

create a column vector Ls by applying equation 3.8 parallelly
Seq < repmat([0, 1, , D — 1], size=(N,,1))

J < repmat(Jrana,size=(1,D))

j' < repmat(Ls,size=(1,D))

mask < (j <= Seq) XOR (j/ < Seq)

Cr=0.2 Cr=0.4
0.44 — cuda-nec 0.4 4 — cuda-nec
o mkl-nec .7 v mkl-nec
() / [J)
£024 p-exp €024 p_exp
+ / ‘."‘. + /—“'.‘..
0.0 L= , , 0.0 Lz , ,
0 2000 4000 0 2000 4000
Dimension Number Dimension Number
Cr=0.7 Cr=0.9
0.4 4 —— cuda-nec —— cuda-nec
0.4 A
v mkl-nec ..~ n mkl-nec .--*
() re ()
g 02 i REEEEE p_exp g 02 | o p_exp ‘_/___/—/
0.0 12 , , 0.0 1y , ,
0 2000 4000 0 2000 4000
Dimension Number Dimension Number

FiGURE 5. Running Time Comparison among CUDA-nec, MKL-nec, and
p-exp when N, = 100

MKL is used or not, when D and N, are getting larger, the uniform (binomial) crossover
costs more time than the new exponential crossover. That is because, in the uniform
(binomial) crossover, we need to create an N, x D matrix in which elements are random
number. As to the new exponential crossover, with the help of equation 3.8, we only need
to create a random column vector which length is N,. But if we use CUDA to speed up
by GPU when the computation scale is large, the runtime gap between CUDA-nec and
CUDA-bin is not so significant.

4. Performance Evaluation of DE based on MKL/CUDA. Our DE programs
are implemented in Python. The MKL is implemented by Numpy-MKL and the GPU
environment is set up in Cupy [20] with CUDA 10.0. In order to overcome the performance
deficiency of Python, the key codes are implemented in Cython, which is the C-Extensions
for Python. There are mainly three different versions of DE in this experiment: no-parallel
DE, DE on MKL (MKL-DE), and DE in CUDA (CUDA-DE). In addition, as to the DE,
we arrange two sub-versions: "DE/rand/1/bin” and "DE/rand/1/L”. It is worth to
note that the crossover of "DE /rand/1/L” is the parallel version of the new exponential
crossover mentioned in Algorithm 10. All of them are running on an Intel® i5-9600K,
16GB memory, and a common NVIDIA GeForce™ GTX 760 GPU.



Z.B. Pan, L. Yang, Z.X. Xu and D.Y. Wang

124
Cr=0.2 Cr=0.4
4 { —— cuda-nec 4 4 — cuda-nec
0 —~—=- mkl-nec a 0 -=- mkl-nec .
@ o)
£ad p-exp £ p-exp L
0_ IJ - T T 0_ Ir T T
0 2000 4000 0 2000 4000
Dimension Number Dimension Number
Cr=0.7 Cr=0.9
4{ — cuda-nec 44 — cuda-nec .7
° ——- mkl-nec . ° —-=- mkl-nec
() () .
£a] p-exp £ p-exp o
0+ 01y

0 2000 4000

0 2000 4000
Dimension Number

Dimension Number

F1GURE 6. Running Time Comparison among CUDA-nec, MKL-nec, and
p-exp when N, = 1000
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F1GURE 7. Running Time Comparison among CUDA-nec, MKL-nec, and
p-exp when N, = 5000.

In this experiment, we focus our attention on three well-known benchmark functions:
Ackley, Griewank and Rosenbrock [21]:
e Ackley function—multimodal, separable,

D
—0.02 % > z? % > cos2nx;

f(z) =—20e =t — e =t +20+e

8

z; € [—30,30], 2% = (0,0,..,0), f (z*) = 0.
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TABLE 1. Running times’ comparison of several DE Crossovers.

D Np exp nec bin MKL CUDA MKL CUDA
-nec -nec  -bin -bin
10 100 0.05 0.03 0.06 0.02 1.76 [0.02 6.99
10 1000 0.44 0.12 0.51 [0.05 1.18 0.07 0.64
10 10000 4.34 1.17 499 [0.31 134 0.53 0.94
100 100 0.11 0.08 0.23 [0.03 1.16 0.05 0.66
100 1000 1.09 0.61 218 [0.12 1.23 0.32 0.64
100 10000 10.86 6.15 22.57 10.98 1.11 4.18 1.36
1000 100 0.75 0.57 1.9 [0.13 0.66 0.32 0.56
1000 1000 7.53 5.44 19.16 [0.73 1.07 3.98 1.00
1000 10000 74.77 54.52 192.46 9.16 | 4.31 41.76 4.56
10000 100 7.1 546 18.67 0.99 148 4.1 | 0.97
10000 1000 70.82 53.58 187.6 7.97 4.43 41.49 & 3.91
10000 10000 710.4 538.05 1868.47 77.821 33.26 421.17 39.14

e Griewank function—multimodal, nonseparable,
D 372 D T
f(ac):z ! —Hcos(—j,)—i-l
£~ 4000 44 Vi
z; € [—400,400],z* = (0,0,.,0), f (2*) = 0.

e Rosenbrock function—multimodal, separable,

D—1
2
f(z) = Z [100(95? —Tj4) +(1- xj)Z]
j=1
x; € [-5.12,5.12] ,2* = (1,1, ,1), f (z*) = 0.

The parameters setting of DEs in the experiment can be seen in Table 2, where the
F and Cr are referred to K. Price and R. Storn’s work [21]. The dimension D of these
three benchmark functions and the population size N, are set to different values in order

to compare the calculational performance in different computational scales. The results
can be seen in the tables range from Table 3 to Table 5.

TABLE 2. Parameters Setting

Function D Np F Cr MAX GEN
Ackley 1000 500 0.5 0.2 30000
Griewank 500 300 0.25 0.45 20000
Rosenbrock 50 100 0.65 0.95 10000

Figure 5, Figure 6 and Figure 7 are the comparison diagrams of algorithm running time
when the population is 100, 1000, 5000 respectively. Table 1 is the running times’comparison
of several DE Crossovers. Table 3 is the comparison of variant DEs in 1000-D Ackley with
500 individuals and 30000 generations. Table 4 is the comparison of variant DEs in 500-
D Griewank with 300 individuals and 20000 generations. Table 5 is the comparison of
variant DEs in 50-D Rosenbrock with 100 individuals and 10000 generations.

From the results, we can see that the DE (see Algorithm 2) on MKL/CUDA is much
faster than traditional DE (see Algorithm 1). And between the DE on MKL (MKL-DE)
and the DE in CUDA (CUDA-DE), when the dimension of the variable is relatively small,
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TABLE 3. Comparison of variant DEs in 1000-D Ackley with 500 individ-
uals and 30000 generations

Algorithms best value best gen time/s speedup
DE/rand/1/L 2.32E-05 30000 2742.93(£105) -
MKL-DE/rand/1/L 2.09E-05 29997 2314.79(£52) 1.18
CUDA-DE/rand/1/L  2.62E-05 29991  323.97(+5)  8.47
rand/1/bin 2.15E-04 29998 3323.53(493) -
MKL-DE/rand/1/bin  2.84E-04 29951 2784.57(+98) 1.19
CUDA-DE/rand/1/bin 2.28E-04 29983 321.45(+11) 10.34

TABLE 4. Comparison of variant DEs in 500-D Griewank with 300 individ-
uals and 20000 generations

Algorithms best valuebest gen  time/s  speedup
DE/rand/1/L 8.88E-16 18366 563.84(484) -
MKL-DE/rand/1/L 3.71E-16 19855 475.81(+45) 1.19
CUDA-DE/rand/1/L  1.73E-16 19936 149.03(+5) 3.78
rand/1/bin 2.22E-16 8125 732.84(£114) -
MKL-DE/rand/1/bin  2.22E-16 6291 524.01(£95) 1.40
CUDA-DE/rand/1/bin 2.22E-16 6041  143.95(+8)  5.09

TABLE 5. Comparison of variant DEs in 50-D Rosenbrock with 100 indi-
viduals and 10000 generations

Algorithms bestValue best_gen time/s speedup
DE/rand/1/L 2.04E-07 9991 15.43(+2) -
MKL-DE/rand/1/L. 4.28E-07 9989 9.96(+1) 1.55

CUDA-DE/rand/1/L.  1.16E-07 9996 58.92(£3) 0.26
rand/1/bin 3.71E-10 10000 19.13(+2) -
MKL-DE/rand/1/bin 2.17E-10 9998 10.01(+1) 1.91
CUDA-DE/rand/1/bin 9.93E-10 10000 56.72(+4) 0.34

for example, D = 50, MKL-DE is the fastest. While D is relatively larger, for example,
D = 500 or D = 1000, and the population size N, is large, CUDA-DE is fastest. That
is because Algorithm 2 is mainly matrix calculations, which can be executed very fast on
MKL/CUDA. And when the matrix scale is quite large, the CUDA can do the calculation
much faster by using GPU to accelerate.

5. Conclusions and Future Work. This paper firstly presents an available parallel dif-
ferential evolution framework which is suitable to be built on MKL/CUDA. The procedure
of this parallel DE is mainly matrix calculation so that with the help of the MKL/CUDA,
the DE program can be run in a high speed even parallelly if possible. Moreover, it does
not need to worry about the parameters of the core process of parallel computing, such as
the number of CPU cores, GPU cores, threads, etc. These parameters are automatically
and appropriately set in MKL / CUDA.

Later, we analyzed the disadvantage of the exponential crossover of DE, which is in-
efficient and isn’t suitable for MKL/CUDA to calculate totally parallelly. Hence, a new
exponential crossover is presented in Algorithm 9, which can run faster. Moreover, a
parallel version of the new exponential crossover is proposed in 10, which is all the matrix
calculation so that it can be executed in a high speed with the help of MKL/CUDA.
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From the experimental results presented in Section 3, we can see that the computational
performance of the parallel version of the new exponential crossover catches up with the
parallel binomial (uniform) crossover on MKL/CUDA.

The experimental results presented in Section 4 shows the higher performance of the
parallel DE on MKL/CUDA. Especially when the dimension of the decision variable of
the optimization problem is quite large, the DE on CUDA has a higher acceleration ratio.

Since differential evolution is a stochastic optimization evolution algorithm that is in-
herently parallel and it is similar to many other evolutionary algorithms, the whole area
of evolutionary computation may also get benefit from the MKL/CUDA. In the future,
we will make more effort to speed up more evolutionary algorithms.
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