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Abstract. We investigate image-to-image translation as a solution to icon-to-icon trans-
lation problems. Icon-to-icon translation aims to translate the input icon to appear like
the target domain’s icons and simultaneously preserve the original icon’s information
(e.g., application logo, text and background color). We present a novel approach to trans-
lating icons to the version with the target style intelligently. By observing many icons with
various styles, we propose a pixel-level weight matrix to calculating the weighted losses.
These losses guide the generator to focus on the critical regions of the icon. People can
clearly get the original icon’s information from the proposed method’s results, while the
existing state-of-the-art image-to-image translation methods may fail to do this.
Keywords: Icon-to-Icon translation, Image-to-Image translation, Icon synthesis

1. Introduction. Over the past decade, the Internet and the mobile Internet indus-
try has come a long way. Merely providing new functions that consumers need is not
enough to satisfy them nowadays. In recent years, there is an increasing need for per-
sonalization, which provides consumers with different products or services according to
their preferences. The personalization of the user interface is very important to Internet
users. It includes the personalization of icons, colors, backgrounds, etc. With the rapid
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development of personalized icons, icons with various styles have sprung up to meet the
diverse needs of users. As illustrated in Figure 1, various icons can be found in icon pack
applications from mobile application stores.

Cardicons2 MBEStyle

CircleRing Voxel

Yogurt COLOR

Figure 1. Personalized icons. Icons from datasets we collected from
icon pack applications in mobile application stores. The title upon the
icons refers to the icon pack that the icons come from.

Icons can quickly convey simple information to people, and leave a deeper impression
on people than words. However, it takes a lot of time for designers to design icons. To
make the icon with the style that some users prefer, the designer has to redesign the
original icon so that the new icon has the target style. In this paper, we present a method
that can help designers to redesign icons more effectively.

Unlike designing a new icon, the process of translating an icon to another style of-
ten preserves the original icon’s information (e.g., application logo, text and background
color). Generative adversarial networks (GANs) [1, 2] have achieved impressive results
in image synthesis. Recent work on image-to-image translation [3, 4], can generate an
image that indistinguishable from the target domain’s images based on an input image
and retain the original image’s content. We wonder whether there will be such a program:
We input some icons, select the icon style that we prefer, then click “translate”, the in-
put icons will be translated to the target style. We can use icons with the target style
quicker, and designers won’t do these lengthy and tedious tasks anymore. In this paper,
we present a method that can learn to translate icons intelligently. We have achieved
compelling results on icons with various styles. We focus on icon-to-icon translation. In
this setting, the input domain is icons with a consistent style, and the target domain is
icons with a different consistent style. The translated icons should have a similar style
to the target domain’s icons. People can clearly get the original icon’s information (e.g.,
application logo, text and background color) from the translated icon. Logo and texts in
a icon, help us get what the icon represents. Background color in a icon, is meaningful,
paired with the logo and texts.

Without the proper data, it’s difficult to apply machine learning to solve a problem.
Icons in existing icon datasets (e.g., Large Logo Dataset (LLD) [5]) don’t have a consistent
style. Therefore, we collected some icon datasets from icon pack applications in mobile
application stores. Each icon dataset contains hundreds or thousands of icons with a
consistent style.
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To the best of our knowledge, we can’t find any study about icon-to-icon translation.
Icon-to-icon translation is a specific image-to-image translation. In this setting, the trans-
lated icon keeps the original icon’s information (e.g., application logo, text and background
color). Therefore, we first evaluated existing state-of-the-art image-to-image translation
methods on the collected icon datasets. As shown in Figure 2, previous models can’t
achieve satisfying results. The translated icons have some flaws that make the icons can’t
be used directly. We denote the icon on row i column j as iconij. For icon12, icon13, icon14,
icon22, icon24, icon33, icon34, icon37, icon38, icon43, icon44, icon47 and icon48, icons aren’t
visually similar to the target domain’s icons. For icon13, icon15, icon16, icon17, icon18,
icon23, icon24, icon25, icon26, icon27, icon28, icon32, icon33, icon34, icon35, icon36, icon37,
icon38, icon42, icon44, icon45, icon46, icon47, icon48, icon52, icon53, icon54, icon55, icon56,
icon57, icon58, icon62, icon63, icon64, icon65, icon66, icon67 and icon68, the original icons’
information (e.g., application logo, text and background color) changed too much in the
translated icons. To sum up, the existing methods may not get compelling results on
icon-to-icon translation.

To address the problems above, we investigate the difference between icon-to-icon trans-
lation and image-to-image translation. It is enough that image-to-image translation’s
results look real, while icon-to-icon translation’s results should keep the original icon’s in-
formation (e.g., application logo, text and background color). After observing many icons
with various styles, we found that icons generally consist of three elements: the center
content, the background, and the white space. To preserve the original icon’s information,
the center content and the background color should be changed as little as possible, while
the white space is irrelevant. However, most previous image-to-image translation stud-
ies simply pay the same attention to each image’s pixel when calculating reconstruction
losses. We may not simply think that the reconstruction losses of the white space are as
important as the center region. Recent work U-GAT-IT [8] and NICE [9] pay different
attention to image’s pixels when calculating losses using an attention module based on
CAM [12]. However, as shown in Figure 2, they could not achieve satisfying results. The
CAM is a object classifier that trained to learn the weight of the k-th feature map for
the input domain. The CAM attention module pays more attention to the pixels that
crucial to judge objects in images. These pixels are different from the pixels of center
content and background color, so U-GAT-IT [8] and NICE [9] could not achieve satisfying
results. We introduce a pixel-level weight matrix to make the cycle consistency loss and
identity loss from the icon’s white space smaller. We conducted extensive experiments on
the collected icon datasets. We show that with the help of a pixel-level weight matrix,
the model (Pixel-level Weight Generative Adversarial Networks, PWGAN) can generate
notably better results compared to previous methods.

In this paper, we propose PWGAN to intelligently translate icons into versions with
target styles and save the information of the original icons. PWGAN can help designers
to redesign icons more effectively.

2. Related Work. Generative adversarial networks (GANs) The recent years
have witnessed notable advances of GANs [13–15] for image generation. The idea of
training generator and discriminator alternately to optimize adversarial loss in opposite
direction is the key to GANs’ success. This process enforces the generated images to
be indistinguishable from the target domain’s images. We employ an adversarial loss to
encourage the output to be visually similar to the target domain’s icons.

Image-to-image translation aims to learn the mapping from an input image do-
main to a target image domain. A milestone in paired image-to-image translation is
“pix2pix” [3, 16], which maps an image from the input domain to the output domain
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Figure 2. Results. We compare the method (PWGAN) with exist-
ing state-of-the-art methods( CycleGAN [6], CUT [7] and its faster and
lighter version FastCUT, U-GAT-IT [8], NICE [9], UNIT [10] and MU-
NIT [11] ). We denote the icon on row i column j as iconij. We
show successful cases above the dotted lines. From top to bottom, the
icons are from Cardicons2→MBEStyle task, CircleRing→Voxel task, and
Yogurt→COLOR task. The final rows show typical failure cases.

using a conditional GAN. Paired training data are needed in “pix2pix” to calculate the
reconstruction loss between the generated image and the corresponding image. However,
paired training data can be expensive to obtain. Recent works attempted to learn image
translation in an unpaired setting. In such cases, cycle-consistency [6, 17, 18] is a widely
used approach to preserve the “content” of the input image, which calculates reconstruc-
tion loss based on a learned inverse mapping from the target to the input. In addition,
UNIT [10] and MUNIT [11] propose to learn a shared “content” latent space instead.
Recently, U-GAT-IT [8] incorporates an attention module and a learnable normalization
into the translation model. Moreover, NICE-GAN [9] introduces a novel translation archi-
tecture, which reuses discriminators for encoding the images of the target domain. A re-
cent approach [7] applies contrastive representation learning to enable one-sided unpaired
translation. The method proposed builds on CycleGAN [6], which uses cycle-consistency
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to enforce the correspondence between the input and output. Unlike the prior works
above, we introduce a pixel-level weight matrix to calculate weighted cycle consistency
loss and weighted identity loss in the model’s objective.

Icon synthesis First attempt at icon synthesis was made in 2017 in the field of logo
synthesis. Sage et al. [5] built a dataset of 600k+ logos crawled from the web. They used
synthetic labels obtained through clustering to disentangle and stabilize GAN training
on multi-modal datasets like the LLD. High diversity of plausible logos can be generated
using their method. Recent work [19] trains a dual conditional generative adversarial
network to colorize contour images using a referenced icon, and the generated icons and the
referenced icon are similar in color style. An interesting work [20] translates preprocessed
photos to black-and-white icons and LLD-style [5] icons using image-to-image translation
models (e.g., CycleGAN [6]). Unlike the above works, our work focuses on icon-to-icon
translation. The biggest difference between icon-to-icon translation and previous icon
synthesis works is: The input icons have a consistent style and the target domain’s icons
have a consistent style on icon-to-icon translation.

3. Methods. Our goal is to translate the icons from input domain X to appear like the
icons from output domain Y . We are given training samples {xi}Ni=1 where xi ∈ X and
{yj}Mj=1 where yj ∈ Y . For simplicity, we will omit the subscript i and j below. We
denote the data distribution as x ∼ p(x) and y ∼ p(y). We adopt cycle-consistency to
enforce the correspondence between the input and the output by learning two mappings
G : X → Y and F : Y → X. Accordingly, the framework includes two discriminators
DX and DY , where DX distinguishes icons {x} from translated icons {F (y)}; Likewise,
DY discriminates between {y} and {G(x)}. We introduce a pixel-level weight matrix to
calculate weighted cycle consistency loss and weighted identity loss in the objective. The
new losses above guide the generator to focus on the critical regions of the icon.

3.1. Adversarial loss. We employ adversarial losses [1] on both G and F . For the
mapping G : X → Y and its discriminator DY , we express the objective as:

LGAN(G,DY , X, Y ) = Ey∼p(y)[logDY (y)]

+ Ex∼p(x)[log(1−DY (G(x)))]. (1)

G is encouraged to translate icons x to icons G(x) that appear like the icons from
domain Y , while DY distinguishes generated samples G(x) from real samples y. G tries
to minimize this loss, while D aims to maximize it, i.e., minG maxDY

LGAN(G,DY , X, Y ).
We apply a similar adversarial loss to the mapping F : Y → X and its discriminator DX

as well: i.e., minF maxDX
LGAN(F,DX , Y,X).

3.2. Pixel-level weight matrix. We want the generator to pay different attention to
different regions of the icon. So, we propose a pixel-level weight matrix to calculate the
weighted version of cycle consistency loss and identity loss. As shown in Figure 3, Figure 4
and Figure 5, we apply three types of center pixel-level weight matrices in the experiments.
We use a pixel-level weight matrix to calculate the weighted loss between icon x and icon
y as follows:

`weight(x, y) = mean(|x− y| ◦Mweight). (2)

We define a term, center rate, which is the ratio of the icon’s center content size to the
icon size. The prefix “center” refers to the center version of the matrices we proposed.
We adopt 192× 192 (the sizes of the icons collected are all 192× 192) pixel-level weight
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Figure 3. Square center pixel-level weight matrix. 16 × 16 square
center pixel-level weight matrix with a 0.5 center rate.
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Figure 4. Circle center pixel-level weight matrix. 16 × 16 circle
center pixel-level weight matrix with a 0.5 center rate.
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Figure 5. Diamond center pixel-level weight matrix. 16 × 16 dia-
mond center pixel-level weight matrix with a 0.5 center rate.
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matrices in the experiments. As illustrated in Figure 3, Figure 4 and Figure 5, the matrix
consists of two regions: the center region and the decay region. The value of the center
region is 1, as we think that each pixel in the center region has the same importance.
The value of the decay region will decay from 1 to 0 quadratically since icons are two-
dimensional. The further the pixel is away from the center region, the smaller the value
is.

3.3. Weighted cycle consistency loss. To preserve the input icon’s information (e.g.,
application logo, text and background color), we adopt cycle-consistency [6, 17, 18] con-
straint on the generator. For each icon x from domain X, the translation cycle should
have enough ability to translate x back to the input icon, i.e., x→ G(x)→ F (G(x)) ≈ x.
Likewise, for each icon y from domain Y , y → F (y) → G(F (y)) ≈ y should be satis-
fied. We introduce a pixel-level weight matrix to calculate weighted cycle consistency
loss, which guides the generator to focus on the critical regions of the icon. We express
the loss as:

Lweighted cyc(G,F ) = Ex∼p(x)[`weight(x, F (G(x)))]

+ Ey∼p(y)[`weight(G(F (y)), y)]. (3)

3.4. Weighted identity loss. To enforce the generator to retain color composition be-
tween the input and the output, we adopt identity loss [21]. Identity loss encourages the
generator to be an identity mapping when real icons are provided as the input to the
generator. We apply the weighted identity loss, which is more reasonable on icon-to-icon
translation. We express the objective as:

Lweighted id(G,F ) = Ey∼p(y)[`weight(G(y), y)]

+ Ex∼p(x)[`weight(x, F (x))]. (4)

3.5. Full objective. The full objective is:

L(G,F,DX , DY ) = LGAN(G,DY , X, Y )

+ LGAN(F,DX , Y,X)

+ λcLweighted cyc(G,F )

+ λiLweighted id(G,F ), (5)

where λc and λi control the importance of cycle consistency loss and identity loss. Our
goal is to solve:

G∗, F ∗ = arg min
G,F

max
DX ,DY

L(G,F,DX , DY ). (6)

We optimize this full objective in opposite direction alternately to train generator and
discriminator alternately. We train a better generator, then use it to train a better
discriminator. After we get a better discriminator, we use it to train a better generator.
This loop is a typical GAN training process.

4. Experiments.
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4.1. Implementation details. To the best of our knowledge, we can’t find any existing
icon-to-icon translation method, so we compare the method (PWGAN) with various state-
of-the-art image-to-image translation methods on Cardicons2→MBEStyle, CircleRing→Voxel
and Yogurt→COLOR tasks. Some typical results are shown in Figure 2. All the methods
are implemented using the author’s code. The icons’ sizes in the datasets are 192× 192,
so the input icons’ sizes on the experiments are 192 × 192. For CycleGAN [6], CUT [7]
and its faster and lighter version FastCUT, we use a learning rate of 0.0002 for both gen-
erator and discriminator during training in the experiments. The batch sizes on dataset
Cardicons2→MBEStyle, CircleRing→Voxel and Yogurt→COLOR are 8. For U-GAT-
IT [8], NICE [9], UNIT [10] and MUNIT [11], we use a learning rate of 0.0001 for both
generator and discriminator during training in the experiments. The batch size for U-
GAT-IT [8], NICE [9], UNIT [10] and MUNIT [11] are 1, 1, 8, and 8, respectively.

In the experiments of PWGAN, we follow the setting of CycleGAN [6], except that the
cycle consistency loss and the identity loss are replaced with the weighted version losses.
We use a learning rate of 0.0002 for both generator and discriminator during training in
the experiments, and batch sizes on the datasets are 8. As shown in Table 4, Table 5
and Table 6, we trained PWGAN with different matrices and center rates. We found
PWGAN with square matrix and 0.618 center rate gets better results than other cases,
the results of PWGAN are from this case in Figure 2, Table 3 and Table 7.

4.2. Baselines. CycleGAN [6] This method learns generator G : X → Y and F : Y →
X using adversarial losses. It uses ‖x− F (G(x))‖1 as cycle-consistency loss to encourage
x→ G(x)→ F (G(x)) ≈ x.
CUT [7] Taesung et al. [7] uses an adversarial loss to train a translation from X to Y .

They apply contrastive representation learning to enforce content correspondence between
an input image and its translated image. FastCUT can be thought as a faster and lighter
version of CycleGAN, it’s simplified from CUT.

U-GAT-IT [8] Unsupervised image-to-image translation model incorporates an atten-
tion module and a learnable normalization. This attention module is based on CAM [12].

NICE [9] Using the framework of U-GAT-IT [8], Runfa et al. [9] reuse discriminators
for encoding the images of the target domain to regularize the original overfitting model.

UNIT [10] Like CycleGAN [6], Liu et al. [10] share a content latent space between
generator G : X → Y and F : Y → X to encourage content correspondence between an
input image and its translated image.

MUNIT [11] Using the framework of UNIT [10], this method extends unsupervised
image-to-image translation to the multimodal case.

4.3. Dataset. We evaluated the performance of each method on the datasets collected
from icon pack applications. There are 2695 icons in the Cardicons2 [22] icon set, 709 icons
in the MBEStyle [23] icon set, 5827 icons in the CircleRing [24] icon set, 4884 icons in the
Voxel [25] icon set, 1170 icons in the Yogurt [26] icon set, 1510 icons in the COLOR [27]
icon set. We use 80% of the data for training, 10% for validating, and 10% for testing.

4.4. Quantitative evaluation. The translated icons should have a similar style to the
target domain’s icons. There is a widely-used Fréchet Inception Distance (FID) [28] metric
that might measure the completion of this goal. FID estimates the distribution of real
and generated images in the feature space of the Inception network [29] and computes
the Fréchet distance between them. FIDs of the methods are shown in Table 1. Lower is
better.

People can clearly get the original icon’s information (e.g., application logo, text and
background color) from the translated icon. To the best of our knowledge, we can’t
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Table 1. FIDs for the methods. Fréchet Inception Dis-
tance (FID) for PWGAN and existing methods. C→M refers to
Cardicons2→MBEStyle task, C→V refers to CircleRing→Voxel task, Y→C
refers to Yogurt→COLOR task.

Method C→M C→V Y→C

PWGAN 112.29 73.28 113.01
CycleGAN 150.47 52.65 122.17
CUT 99.32 150.48 137.49
FastCUT 150.11 163.24 158.19
U-GAT-IT 75.23 106.51 107.13
NICE 111.27 163.64 107.21
UNIT 126.91 126.74 189.28
MUNIT 94.26 87.76 155.52

average value 114.98 115.54 136.25

find any quantitative indicator that can measure this goal. Therefore, we design a circle
weighted quadratic loss to estimate the completion of this goal. We express the loss as:

`circle(x, y) = mean((x− y) ◦ (x− y) ◦Mcircle). (7)

x denotes a input icon, y denotes its translated icon, Mcircle is a 192× 192 circle center
pixel-level weight matrix with 0.5 center rate. We use circle rather than square or diamond
matrix with 0.5 center rate, because logo, text in icons often locate in the center region of
this matrix. Square and diamond matrices usually cover more background color area in
icons than circle matrix. This makes the background color difference between x and y has
a improper big influence than logo and text difference. Therefore, we use circle matrix to
calculate the loss. We use quadratic loss to penalize big change between x and y. The
methods’ circle weighted quadratic losses are shown in Table 2. Lower is better.

Table 2. Circle weighted quadratic losses for the methods. Circle
weighted quadratic losses for PWGAN and existing methods. C→M refers
to Cardicons2→MBEStyle task, C→V refers to CircleRing→Voxel task,
Y→C refers to Yogurt→COLOR task.

Method C→M C→V Y→C

PWGAN 3140.81 2521.62 1128.01
CycleGAN 2934.95 6807.01 1308.38
CUT 4269.31 4470.34 3262.54
FastCUT 4886.39 4472.35 5073.87
U-GAT-IT 5003.28 7295.34 1476.40
NICE 3520.67 6949.09 1386.36
UNIT 4048.08 5341.62 2474.04
MUNIT 6360.17 5670.48 5104.40

average value 4270.46 5440.98 2651.75

To comprehensively evaluate the methods, we standardize their FIDs and circle weighted
quadratic losses then sum them up to calculate icon-to-icon translation indices. We define
the index as:
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iicon-to-icon =
FID− FID

FID
+
`circle − `circle

`circle
. (8)

FID denotes average FIDs in Table 1, `circle denotes average circle weighted quadratic
losses in Table 2. Every task has its corresponding FID and `circle. Icon-to-icon translation
indices are shown in Table 3. Lower is better. PWGAN has better results on all the tasks.
On quantitative evaluation, PWGAN with pixel-level weight matrix performs better than
the existing methods.

Table 3. Quantitative results. Icon-to-icon translation indices for PW-
GAN and existing methods. C→M refers to Cardicons2→MBEStyle task,
C→V refers to CircleRing→Voxel task, Y→C refers to Yogurt→COLOR
task.

Method C→M C→V Y→C

PWGAN -0.29 -0.90 -0.75
CycleGAN 0.00 -0.29 -0.61
CUT -0.14 0.12 0.24
FastCUT 0.45 0.23 1.07
U-GAT-IT -0.17 0.26 -0.66
NICE -0.21 0.69 -0.69
UNIT 0.05 0.08 0.32
MUNIT 0.31 -0.20 1.07

As illustrated in Table 4, Table 5 and Table 6, we trained PWGAN with different ma-
trices and center rates. The models with circle and square matrices consistently perform
better than the existing methods, while the models with diamond matrices sometimes
don’t. Circle and square matrices are more reasonable than diamond matrices on icon-
to-icon translation. By manually comparing the above cases’ results, we found PWGAN
with square matrix and 0.618 center rate gets better results than other cases on all the
tasks. However, the icon-to-icon translation indices of PWGAN with square matrix and
0.618 center rate aren’t better than some PWGAN models’ indices. The designs of circle
weighted quadratic loss and icon-to-icon translation index have possibility of improve-
ment. Icon-to-icon translation index might measure icon-to-icon translation’s quality in
a way, but can’t measure it perfectly.

4.5. Qualitative evaluation. To evaluate the quality of translated icons, we carry out
a user study. We recruit 167 volunteers for the user study. The participants include 67
elementary school students between the ages of 11 and 13, 14 students between the ages
of 18 and 21, 37 workers and students between the ages of 22 and 31, 1 teacher between
the ages of 32 and 45, and 48 middle-aged people between the ages of 46 and 58. For each
translation task, we provide 10 icons from the target domain for the participants. We give
the original icon first, then the participants follow the rule (the translated icon appears
like the target domain’s icons and simultaneously preserves the original icon’s information
(e.g., application logo, text and background color)) to select the best icon among the
icons generated from different methods including the proposed method. As illustrated
in Figure 6 and Table 7, most participants prefer the icons translated by PWGAN. As
shown in Figure 2, the icons translated by PWGAN appear like the target domain’s icons
and simultaneously preserve the original icon’s information (e.g., application logo, text



Icon-to-Icon Translation using Pixel-Level Weight Adversarial Networks 157

Table 4. Quantitative results for PWGAN on
Cardicons2→MBEStyle task. Icon-to-icon translation indices for PW-
GAN with different matrices and center rates on Cardicons2→MBEStyle
task. Lower is better.

center rate circle diamond square

0.1 -0.26 -0.10 -0.22
0.2 -0.51 -0.38 -0.21
0.3 -0.22 -0.26 -0.24
0.4 -0.27 0.44 -0.40
0.5 -0.37 -0.28 -0.26
0.6 -0.33 -0.22 -0.48
0.618 -0.31 -0.12 -0.29
0.7 -0.24 -0.33 -0.23
0.8 -0.37 -0.13 -0.41
0.9 -0.51 -0.03 -0.40

Table 5. Quantitative results for PWGAN on CircleRing→Voxel
task. Icon-to-icon translation indices for PWGAN with different matrices
and center rates on CircleRing→Voxel task. Lower is better.

center rate circle diamond square

0.1 -0.33 -0.10 -1.09
0.2 -0.46 0.57 -1.01
0.3 -0.30 0.18 -0.67
0.4 -0.48 0.18 -1.20
0.5 -0.31 -0.10 -0.32
0.6 -1.17 -0.40 -1.14
0.618 -1.18 -0.18 -0.90
0.7 -0.44 -0.08 -1.16
0.8 -0.62 -0.35 -0.45
0.9 -0.83 0.30 -1.24

Table 6. Quantitative results for PWGAN on Yogurt→COLOR
task. Icon-to-icon translation indices for PWGAN with different matrices
and center rates on Yogurt→COLOR task. Lower is better.

center rate circle diamond square

0.1 -0.73 -0.56 -0.81
0.2 -0.70 -0.56 -0.72
0.3 -0.72 -0.76 -0.76
0.4 -0.79 -0.71 -0.75
0.5 -0.71 -0.51 -0.71
0.6 -0.82 -0.35 -0.82
0.618 -0.77 -0.36 -0.75
0.7 -0.76 -0.87 -0.70
0.8 -0.77 -0.62 -0.69
0.9 -0.78 -0.77 -0.81
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and background color). Through the results of qualitative evaluation, we show the crucial
role that the pixel-level weight matrix plays in achieving compelling results.
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Figure 6. Qualitative results graph. The length of the bar indicates
the percentage of preference on the corresponding translation task. None
of the participants prefer the icons generated by UNIT and MUNIT on the
tasks.

Table 7. Qualitative results table. The percentage of pref-
erence on the corresponding translation task. C→M refers to
Cardicons2→MBEStyle task, C→V refers to CircleRing→Voxel task, Y→C
refers to Yogurt→COLOR task. None of the participants prefer the icons
generated by UNIT and MUNIT on the tasks.

Method C→M C→V Y→C

PWGAN 76.83 83.17 86.53
CycleGAN 5.51 10.60 7.84
CUT 2.69 1.20 1.02
FastCUT 1.86 1.80 1.14
U-GAT-IT 7.78 1.44 1.56
NICE 5.33 1.80 1.92

5. Limitations and Discussion. Although PWGAN can achieve compelling results in
many tasks, the results are far from uniformly practical. When the color distribution of
icons is complex, PWGAN may gets unsatisfying results. Figure 2 shows several typical
failure cases. For icon71, we fail to extend color to the right edge , when the input icon’s
color distribution is complex. For icon81, PWGAN is unable to recognize the accurate
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area that should become higher than the background, when the icon’s background consists
of areas with various colors.

In this paper, we introduce icon-to-icon translation index to measure icon-to-icon trans-
lation’s quality. However, it’s far from perfect. A better quantitative index for icon-to-icon
translation’s quality, will become an important part in the future works of icon-to-icon
translation. As PWGAN use a pixel-level weight matrix, by applying another task-specific
weight matrix, PWGAN may be helpful for other image translations (e.g., face transla-
tion) where key elements often appear in a certain region.
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[12] B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for discrimina-
tive localization,” in IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929,
2016.

[13] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional
generative adversarial networks,” in International Conference on Learning Representations, pp. 1–16,
2016.

[14] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,” in Interna-
tional Conference on Machine Learning, pp. 214–223, 2017.



160 Y.M. Pan, K.B. Lin and C.L. Chen

[15] C. Chen, C. Lin, Y. Liu, J. Liao, M. Yeh, Y. Chung, and C. Hsu, “Applying image processing
technology to automatically detect and adjust paper benchmark for printing machine,” Journal of
Information Hiding and Multimedia Signal Processing, vol. 12, no. 2, pp. 56–64, 2021.

[16] K. Wang, F. Li, C.-M. Chen, M. M. Hassan, J. Long, and N. Kumar, “Interpreting adversarial exam-
ples and robustness for deep learning-based auto-driving systems,” IEEE Transactions on Intelligent
Transportation Systems, pp. 1–10, 2021.

[17] Z. Yi, H. R. Zhang, P. Tan, and M. Gong, “Dualgan: Unsupervised dual learning for image-to-image
translation,” in IEEE International Conference on Computer Vision, pp. 2868–2876, 2017.

[18] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning to discover cross-domain relations with
generative adversarial networks,” in International Conference on Machine Learning, pp. 1857–1865,
2017.

[19] T.-H. Sun, C.-H. Lai, S.-K. Wong, and Y.-S. Wang, “Adversarial colorization of icons based on
contour and color conditions,” in ACM International Conference on Multimedia, pp. 683–691, 2019.

[20] T. Karamatsu, G. Benitez-Garcia, K. Yanai, and S. Uchida, “Iconify: Converting photographs into
icons,” in Proceedings of the 2020 Joint Workshop on Multimedia Artworks Analysis and Attractive-
ness Computing in Multimedia, pp. 7–12, 2020.

[21] Y. Taigman, A. Polyak, and L. Wolf, “Unsupervised cross-domain image generation,” in International
Conference on Learning Representations, pp. 1–15, 2017.

[22] CookDev, “Cardicons2.” https://www.coolapk.com/apk/cookdev.iconpack.ii. Last accessed
June 29, 2020.

[23] Meolunr, “Mbe style.” https://www.coolapk.com/apk/me.iacn.mbestyle. Last accessed June 29,
2020.

[24] GomoTheGom, “Circle ring - free icon pack.” https://play.google.com/store/apps/details?

id=com.panotogomo.iconpack.circle.ring. Last accessed June 29, 2020.
[25] B. Norgelas-Dzimidas, “Voxel – flat style icon pack.” https://play.google.com/store/apps/

details?id=com.benx9.palmtree. Last accessed June 29, 2020.
[26] modetime, “Yogurt.” https://www.coolapk.com/apk/com.modetime.yogurt. Last accessed June

29, 2020.
[27] LittleGA, “Color.” https://www.coolapk.com/apk/com.ga.iconpack.color. Last accessed June

29, 2020.
[28] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by a two

time-scale update rule converge to a local nash equilibrium,” in Advances in Neural Information
Processing Systems, pp. 6626–6637, 2017.

[29] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture
for computer vision,” in IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–
2826, 2016.

https://www.coolapk.com/apk/cookdev.iconpack.ii
https://www.coolapk.com/apk/me.iacn.mbestyle
https://play.google.com/store/apps/details?id=com.panotogomo.iconpack.circle.ring
https://play.google.com/store/apps/details?id=com.panotogomo.iconpack.circle.ring
https://play.google.com/store/apps/details?id=com.benx9.palmtree
https://play.google.com/store/apps/details?id=com.benx9.palmtree
https://www.coolapk.com/apk/com.modetime.yogurt
https://www.coolapk.com/apk/com.ga.iconpack.color

	1. Introduction
	2. Related Work
	3. Methods
	3.1. Adversarial loss
	3.2. Pixel-level weight matrix
	3.3. Weighted cycle consistency loss
	3.4. Weighted identity loss
	3.5. Full objective

	4. Experiments
	4.1. Implementation details
	4.2. Baselines
	4.3. Dataset
	4.4. Quantitative evaluation
	4.5. Qualitative evaluation

	5. Limitations and Discussion
	Acknowledgment
	REFERENCES

