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Abstract. Transfer learning is a deep learning method. It transforms knowledge in
the source domain and feeds it to the target domain to improve the performance of the
target domain model. The conditional adversarial domain adaption method is one of a
number of transfer learning methods. It uses Resnet as the feature extraction network;
however, Resnet can only determine the relationship between local features, and so its
feature extraction accuracy is limited. To overcome this problem, a self-attention layer
has been designed in order to determine the relationship among all features. This layer is
added between the fourth layer and fifth layer of Resnet. Besides, a cross-entropy function
is introduced into loss function, and a sigmoid layer is designed and used as the out layer
in conditional adversarial domain adaption. These produce gradient disappearance in
the deep network, and influence the discriminator training effect. To solve that problem,
a least squares function is used as to design the loss function. The new type of loss
function does not require the sigmoid function. Using theoretical analysis, we explain
how this new loss function can be used to solve the gradient disappearance problem, thus
rendering the network structure more stable. We compare our proposed method with
other datasets, including Joint Adaptation Networks, adversarial domain adaptation,
conditional adversarial domain adaption, Resnet-50, domain-adversarial neural network
on imageCLEF-DA, Office-Home, and Office-31. Our simulation results show that the
proposed conditional adversarial domain adaption based on self-attention method has the
fastest convergence speed and highest accuracy the among different datasets.
Keywords:Deep Learning; Computer Vision; Transfer learning; Adversarial network

1. Introduction. Deep learning can accomplish different machine learning tasks by con-
structing a deep neural network. It has huge development potential in autonomous driv-
ing [1, 2], image caption [3], object detection [4] and solar irradiance prediction [5]. In
deep learning problems, it assumes that the data distributions of the training set and
test set are the same. However, in reality there are some differences between these data
distributions, resulting in differences in model performance between the training set and
test set. In order to solve this problem, transfer learning as a new learning framework
has been proposed [6]. Domain adaptation is one such transfer learning method, which
involves a labeled dataset (source domain) and a different yet related, unlabeled dataset
(target domain). The source domain and target domain have the same feature spaces and
category space, but different feature distributions [7].

The Domain adaptation method includes four classifications. The first classification is
class criterion, which uses label information as a guide to transfer the knowledge from
source domain to target domain [8–10]. The second classification is statistic criterion,
which defines the target and source domain statistical distributions by using some stan-
dard alignment methods, such as MMD, CORAL, KL divergence [11–14]. The third
classification is architecture criterion, which improves the methods ability of transferring
features by adjusting the deep network structure [15, 16]. The fourth classification is ad-
versary network module, a technique which adds generative adversarial networks (GANs)
containing the discriminative network and generative network into the domain adaption
network. The generative network continues to learn the data features of the target domain
and source domain, thus preventing the discriminator from distinguishing the features of
the two domains. This makes the generated features more representatives, and reduces
error. Compared with the generation adversarial networks, the domain adaptation di-
rectly uses the data in the target domain as the generated samples to avoid generating
samples. Therefore, the purpose of the generator has been changed. It is no longer used
to generate samples but to extract feature.
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Generative adversarial network (GAN) has developed rapidly in recent years. It has
been successfully applied in many fields. Adversarial domain adaptation is one of its suc-
cessful applications. It belongs to the fourth category of domain adaption classification.
This is the one that we focus on. There are a number of methods that belong to this
category. The domain-adversarial neural network (DANN) is perhaps the first in which
generative adversarial networks have been incorporated into domain adaption [17]. It
proposes the basic structure of domain adaptation including feature extractor, category
predictor and domain discriminator. It adds a domain discriminate network after feature
extraction in order to determine whether the data comes from the source domain or the
target domain. In recent years, most adversarial domain adaptations are modeled ac-
cording to this network architecture. The idea of using adversarial for domain adaptation
is widely used. It is more like a framework for the domain adaption domain, where the
researchers are constantly adding various networks with directional functions to accom-
plish specialized tasks. Adversarial discriminative domain adaptation (ADDA) comprises
a common framework for domain adaptive methods using discriminators [18]. It consists
of a discriminative model, untie weight sharing, and GAN loss function. Based on DANN,
the ADDA broadens the scope of adversarial domain adaption network architecture, and
is not limited to one structure. Researchers can construct different models in the adver-
sarial domain adaption according to collocation methods such as whether to use Weight
Share and which loss function is selected. Developing on the DANN method, Long, et al.
proposed the conditional adversarial domain adaption (CDAN) method [19] by replac-
ing the generative adversarial networks in DANN with conditional generative adversarial
networks, and by adding features and labels in the network. The label information can
be used to align features. However, with both DANN and CDAN methods the target
domain label space is only a subset of the source domain label space; in an effort to solve
this problem, Cao et al. [20] proposed the selection adversarial network (SAN) method,
one which designs domain discriminators (the number of source domain labels). Each dis-
criminator has a weight, which helps to prevent those categories that are not in the target
domain from participating in the transfer. Similar methods include Wasserstein distance
guided representation learning [21], cycle-consistent adversarial domain adaptation [22]
and Unsupervised image-to-image translation networks [23].

The mainly contributions of our manuscript have two points: 1) the conditional adver-
sarial domain adaptation method only considers feature relationships between the current
pixel and pixels closer to the current pixel, which failures to capture the remote pixel in-
formation relationship. It affects classification accuracy of conditional adversarial domain
adaptation method. To solve the problem, we design a self-attention layer and add it be-
tween the fourth layer and fifth layer of Resnet-50 network to determine the relationship
among all features. Compared with original conditional adversarial domain adaptation
method, it can effectively extract feature relationships between the current pixel and all
other pixels, which improve the classification accuracy. 2) The conditional adversarial do-
main adaptation method uses cross-entropy function as loss function and sigmoid layer as
the output layer and ignores the problem caused by distance between the decision bound-
ary and the extracted features, which easily generates gradient disappearance in the deep
network and influences the discriminator performance. To solve the problem, we use least
squares function as the loss function to solve the gradient disappearance problem. It has
the advantages of preventing gradient dissipation, increasing feature sharing and short-
ening the distance between extracted features and decision boundary. Compared with
the original conditional adversarial domain adaptation method, our proposed method has
better performance in accuracy and convergence speed.
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2. Conditional adversarial domain adaption. In conditional adversarial domain adap-
tation [19], when the data features form a very complex structure, domain adaption based
on an adversarial network cannot capture the multi-modal data structure. This results in
negative transfer and a large margin of error. Ganin first introduced the idea of confronta-
tion into domain adaption, and proposed the DANN method [17], which in turn consists
of source classifier, feature extractor and domain discriminator. In proposing conditional
adversarial domain adaptation, they pointed out that the DANN method only focuses
on the overall distribution of data characteristics and ignores the correlation between the
classes, at the expense of accuracy. With conditional adversarial domain adaptation, the
features and classes could be adaptively adjusted together.

The loss function of conditional adversarial domain adaptation is as follows:

min
G
ε(G)− λε(D,G) (1)

min
D

ε(D,G) (2)

where G expresses the source classifier, D expresses the domain discriminator and λ is
a hyper-parameter between the two objectives. The ε (G) and ε (D,G) are expressed as
followings:

ε (G) = E(xsi ,y
s
i )∼DsL(G(xsi ), y

s
i ) (3)

ε (D,G) = −Exsi∼Ds log [D (f si , g
s
i )]− Extj∼DT log

[
1−D

(
f tj , g

t
j

)]
(4)

where xsi ∼ Ds is the data of source domain, xtj ∼ DT is the data of target domain, L(., .)
expresses cross-entropy loss function. f = F (x) represents features, g = G(x) represents
labels generated from source classifier G. The function f ⊗ g represents the multilinear
map. The conditional adversarial domain adaptation (CDAN) method merely introduces
features and labels to the network via multilinear mapping. However, one disadvantage of
the multilinear map is dimensional explosion. In deep learning, the dimensions of features
and labels are always large, and gradient explosions will be unavoidable when features and
labels are multiplied via tensors. To reduce computational complexity, CDAN method
introduces the following conditioning strategy that is shown in the following:

T (h) =

{
T⊗(f, g) = f ⊗ g df × dg ≤ 4096
T�(f, g) = 1√

d
(Rff)� (Rgg) otherwise (5)

where df and dg are the dimensions of feature vector f and label vector g, respectively.
d is multilinear map of dimension. Rf and Rg are random matrices sampled from the
features and labels, and � represent element-wise produce.

Besides, the conditional adversarial domain adaptation method also introduce entropy
to the network. The entropy can be expressed as followings:

H(g) = −
C∑
c=1

gc log gc

w(H(g)) = 1 + exp(−H(g)
(6)

where gc is probability that an example is predicted to class c, and C is a classed number.
The entropy condition finally added to the network is:

ω(H(g)) = 1 + exp(−H(g)) (7)

Finally, the conditional adversarial domain adaptation loss function is defined:

min
G
E(xsi ,ysi )∼Ds

L (G (xsi ) , y
s
i ) + λExsi∼Dsω (H (gsi )) log [D (T (hsi ))] +

λExtj∼Dtω
(
H
(
gtj
))

log
[
D
(
T
(
htj
))] (8)
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max
D

Exsi∼Dsω (H (gsi )) log [D (T (hsi ))] + Extj∼Dtω
(
H
(
gtj
))

log
[
D
(
T
(
htj
))]

(9)

The frameworks of conditional adversarial domain adaptation are shown in Figure 1 and
Figure 2.

Figure 1. Network structure of CDAN in low-dimensional scenario

       (b) 

Figure 2. Network structure of CDAN high-dimensional scenario

3. Our proposed method.

3.1. Design of self-attention layer. Conditional adversarial domain adaptation em-
ploys Resnet as its feature extraction network. It uses only the relationship of local
features to update extracted features in Resnet, an approach which can undermine fea-
ture extraction accuracy. To overcome this problem, we design a self-attention neural
network that uses the relationship between all features to update extracted features, and
feeds those into the Resent network via conditional adversarial domain adaptation. The
operation of self-attention neural networks can be written as:

γi,j =
f(xi, xj)
N∑
j=1

f(xi, xj)

(10)

where xi is the ith component of the feature matrix x that is the output of one Resnet
network layer, xj is the jth component of the feature matrix, and N is the number of
all components of the feature matrix. As shown in Eq.(12), γi,j is not only affected by
xi but also by xj. The equation shows the correlation between feature components xi
and xj.The Self-attention operation is different from that of the fully-connected network
layer and convolutional network layer. The fully-connected network layer uses the learned
weight to calculate the mapping between output and input. The convolutional layer is a
weighted sum of eigenvalues in a local neighborhood.
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The self-attention module can be seen as a special form of the non-local embedded
Gaussian version, in that f (xi, xj) can be expressed as:

f(xi, xj) = eθ(xi)
Tφ(xj) (11)

where
θ (xi) = Wθ × xi (12)

φ(xj) = Wϕ × xj (13)

where Wθ and Wϕ represent the convolution, whereby each convolution kernel size is
1 × 1 and the number of channels is one eight of input channel,θ (xi) , ϕ (xj) are two
feature spaces obtained by the convolution operation in order to reduce complexity. This
is realized by reducing the parameters and channels of each convolution kernel.

Therefore, based on Eq. (13) to Eq. (15), Eq. (11) is expressed as:

γi,j =
exp[θ(xi)

Tφ(xj)]
N∑
j=1

exp[θ(xi)Tφ(xj)]

=
exp[(Wxi)

T (Wxj)]
N∑
j=1

exp[(Wxi)T (Wxj)]

= softmax(xTi W
TWxj) (14)

where γi,j is a self-attention map. Based on Eq. (16), the output of our proposed attention
layer is:

oi =
N∑

j=1,j 6=i

γi,jh(xj)=
N∑

j=1,j 6=i

softmax(xTi W
T
θ Wφxj)h(xj) (15)

where h(xj) = Whxj, Wh is also convolution that the size of convolution kernel and
number of channel are the same with Wθ and Wϕ.

Finally, it combines self-attention layer output o and input feature x to get the output
feature:

yi = Wooi + xi (16)

where W0 is 1 × 1 convolution. The number of channels for W0 is two times that of
channels for Wh. yi is the output feature of Resnet network. We add the proposed self-
attention layer between the fourth layer and fifth layer of the Resnet network, which is
shown in Figure 3. In Figure 3, the leftmost and rightmost networks are the fourth layer
and fifth layer of the Resnet network, respectively. The Resnet network is used to extract
feature in conditional adversarial domain adaptation method. The middle networks are
our proposed networks in Figure 3. The xi is the output feature of the fourth layer. The
first convolution is used to reduce the number of channels in order to reduce compute
complexity. The γi,j obtained by using Eq. (16) is the output of the first convolution
with sigmoid active function. The second convolution is used to increase the number of
channels in order to restore the image channel number so that it can be better connected
to the next layer. The input of the self-attention layer comprises the output features
of the fourth layer of Resnet, and the output of self-attention layer comprises the input
features of the fifth layer of Resnet.

3.2. Proposed loss function. In the loss function of Conditional adversarial domain
adaptation, it uses cross-entropy function as nonlinear function, and a sigmoid layer as
the last layer in the discriminator. With the cross-entropy loss function, with the increase
of iteration number, the gradient of function will approach zero, by which point the
gradient cannot be updated to the network, and the model will not perform well. Another
problem is that some of the features obtained by cross entropy are correctly classified,
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Figure 3. Self-attention layer

but they are far away from the decision boundary (which is a boundary that can correctly
classify samples). The function of the decision boundary is to distinguish between the
features of the source domain and those of the target domain; this simplifies the process
of determining which domain they come from. However, this discriminator is affected by
two problems: gradient disappearance, and collapse mode [24].

To solve those problems, we propose using the least squares function as the loss function
in adversarial domain adaption, and deleting the sigmoid layer in the discriminator. The
least squares-based loss function will shorten and improve the feature component classifi-
cation process, albeit further away from the decision boundary, so that the whole feature
component is closer to the boundary than before (i.e. after the features are processed,
their distribution is more difficult to distinguish in terms of the domains from which they
originate, thus the extracted feature quality is improved). The least squares loss function
of our proposed method consists of three terms. The first one is expressed as follows:

ε(G) =
1

2
E(xsi ,y

s
i )∼DsD(G(xsi ), y

s
i )

2 (17)

Where xsi is the source data, ysi is its corresponding label, G() is the source classifier, D()
is the discriminator, ε (G) is the source domain loss function used to measure the source
classifier performance. f si is the feature representation of the source domain, and gsi is the
classifier prediction obtained by source classifier G().

The second term is expressed as follows:

γ (D) = −1

2
Exsi∼Dsω (H (gsi )) (D (f si , g

s
i )− b)

2 − 1

2
Extj∼Dt

ω
(
H
(
gtj
)) (

D
(
f tj , g

t
j

)
− a
)2
(18)

where f tj is the feature representation of the target domain obtained by feature extractor

Ḡ, and gtj is the classifier prediction obtained by target classifier G(); b is label of the target
domain, and a is label of the source domain, H() is standard entropy, and ω(x) = 1 + e−x

expresses Entropy-aware weight. The last term is expressed as follows:

γ
(
Ḡ
)

=− 1

2
E(xtj∼Dt)

(
D
(
f tj , g

t
j

)
− c
)2 − 1

2
E(xsi∼Ds) (D (f si , g

s
i )− c)

2 (19)

where Ḡ is the feature extractor, c is the value that domain discriminator D believes to
extract features from source domain; and ε (D), γ (D) and γ

(
Ḡ
)

are used to measure the
classifier, discriminator and feature extractor performances, respectively.
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Based on the above three terms, our proposed least squares loss function is expressed
as follows:

min
G
ε(G)− λ[γ(D) + γ(G)] (20)

min
G

min
D

[γ(D) + γ(G)] (21)

where λ is a hyper-parameter that is used to establish a tradeoff between domain adversary
and source risk. The network of our proposed method is illustrated in the Figure 4.

 

Figure 4. Module architecture of our proposed method

In the following, we will prove the reason why the least squares loss function can avoid
the phenomenon of gradient disappearance from the theoretical level. In the conditional
adversarial domain adaptation, optimization of the loss function in generative adversarial
networks is based on Jensen-Shannon divergence [24]:

2JS(xsi ∼ Ds||xtj ∼ Dt)− 2 log 2 (22)

when the distribution of xsi ∼ Ds is close to xtj ∼ Dt, the Jensen-Shannon divergence
is close to zero and the gradient will disappear. This can undermine network stability
performance. By optimizing our proposed loss function, this problem can be eliminated.

Firstly, we take a derivative with respect to D in order to obtain the optimal discrimi-
nator D∗, which is expressed as follows:

D∗(x) =
b(xsi ∼ Ds) + a(xtj ∼ Dt)

(xsi ∼ Ds) + (xtj ∼ Dt)
(23)

Secondly, we introduce Eq. (25) into Eq. (21) and make the following deductions:

2γ
(
Ḡ
)

= −E(xtj∼Dt)
(
D
(
f tj , g

t
j

)
− c
)2 − E(xsi∼Ds) (D (f si , g

s
i )− c)

2

= −E(xtj∼Dt)

[(
b(xsi∼Ds)+a(xtj∼Dt)
(xsi∼Ds)+(xtj∼Dt)

− c
)2
]
− E(xsi∼Ds)

[(
b(xsi∼Ds)+a(xtj∼Dt)
(xsi∼Ds)+(xtj∼Dt)

− c
)2
]

= −
∫
χ

(
xtj ∼ Dt

)( (b−c)(xsi∼Ds)+(a−c)(xtj∼Dt)
(xsi∼Ds)+(xtj∼Dt)

)2

dx−
∫
χ

(xsi ∼ Ds)

(
(b−c)(xsi∼Ds)+(a−c)(xtj∼Dt)

(xsi∼Ds)+(xtj∼Dt)

)2

dx

= −
∫
χ

((b−c)(xsi∼Ds)+(a−c)(xtj∼Dt))
2

(xsi∼Ds)+(xtj∼Dt)
dx

= −
∫
χ

(b−c)([(xsi∼Ds)+(xtj∼Dt)]−(b−a)(xtj∼Dt))
2

(xsi∼Ds)+(xtj∼Dt)
dx

(24)
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Finally, we set a = −1, b = 1 and c = 0, and simplify Eq. (26) as follows:

2γ
(
Ḡ
)
Z = −

∫
χ

(
2
(
xtj ∼ Dt

)
−
[
(xsi ∼ Ds) +

(
xtj ∼ Dt

)])2
(xsi ∼ Ds) +

(
xtj ∼ Dt

) dx

= χ2
pearson

(
(xsi ∼ Ds) +

(
xtj ∼ Dt

)
||2
(
xtj ∼ Dt

)) (25)

As shown in Eq. (27), the process of minimizing the target function involves minimizing
the Pearson χ2 divergence between (xsi ∼ Ds) +

(
xtj ∼ Dt

)
and 2

(
xtj ∼ Dt

)
. The Pearson

χ2 has no gradient disappearance problem [24]; therefore, our proposed loss function
should not be affected by the gradient disappearance problem.

4. Experimental results and analysis. We test the performances of our proposed
method and other five methods that are Resnet-50 method [25], Deep Adaptation Network
(DAN) method [10], Joint Adaptation Networks (JAN) method [13], Domain-Adversarial
Neural Network (DANN) method [17], Conditional Adversarial Domain Adaption (CDAN)
method [19] on three different datasets(Office-Home dataset, Office-31 dataset and ImageCLEF-
DA dataset). Office-31 dataset is a benchmark dataset that is commonly used in domain
adaptation. Office-31 consists of 31 classes and 4652 images. It consist of three domains
that are DSLR(D),Webcam(W) and Amazon(A). These domains complete the following
tasks: D to W task, W to D task, D to A task, A to D task, W to A task and A to W task.
ImageCLEF-DA dataset is made up of 12 classes and three datasets: Pascal VOC 2012
(P),ILSVRC 2012 (I) and caltech-256 (C). Therefore, it has six tasks that are P to I task,
P to C task, I to P task, I to C task, C to I task and C to P task. The The Office-Home
dataset is a complex dataset that includes 65 classes and 15500 images. It consist of four
datasets that are Product images (P), Clip Art (C), real-word images (R) and Artistic
images (A). The four datasets are more different between each other than Office-Home
dataset and Office-31 dataset. Therefore, It is large challenge for current methods. It has
12 tasks that are P to C task, P to R task, P to A task, C to R task, C to A task, R to
A task, A to R task, A to C task, A to P task, R to C task, R to P task and C to P task.
The basic network adopted for all tasks is Resnet-50, and all experiments are carried out
using pytorch.

For our experiment, we adopt the same protocols that are used in conditional adversarial
domain adaptation, and the pre-train network is finetuned using ImageNet. The source
domain data have been labeled, and that of the target domain do not have been labeled.
The classification accuracy results are generated in five random experiments. For the
loss function, the transfer loss and classifier loss are of equal importance. We adopt
importance-weighted cross-validation to select hyper-parameters. In our experiment the
mini-SGD is identical to the conditional adversarial domain adaptation ( batch-size = 32,
momentum = 0.9,learning rate = 0.001, weight decay = 0.0005). Our operating system
is Ubuntu and the GPU is NVIDIA GTX 2080Ti.The basic network used is ResNet-50,
and the deep learning framework is PyTorch.

4.1. Comparison of accuracy. The accuracy results for our proposed method and those
of other domain adaption methods(CDAN method, JAN method, DAN method, DANN
method and Resnet-50 method) on the Office-31 dataset are shown in Table I. For A to W
task, D to W task, A to D task, D to A task and W to A task, our proposed method still
has the highest accuracy. For W to D task, the accuracy of our proposed method is 100%,
and that of CDAN method is also 100%. They have the same accuracy. It also can be
seen that the average accuracies are 89.0%, 86.6%, 76.1%, 82.2%, 84.3% and 80.4% for our
proposed method, CDAN method, Resnet-50 method, DANN method, JAN method and
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DAN method,respectively. This means that our proposed method has the best accuracy
performance on the Office-31 dataset.

The accuracy results for our proposed method and other methods(CDAN method,
JAN method, DAN method, DANN method and Resnet-50 method) on the imageCLEF-
DA dataset are shown in Table 2. For all six tasks, our proposed method still has the
highest accuracy and average accuracy, followed by CDAN method. Compared with
CDAN method,the accuracies of our proposed method are 0.1%, 0.9%, 1.0%, 1.3%, 1.6%
and 1.7% higher than that of CDAN for I to C task, P to C task, P to I task, C to P task,
I to P task AND C to I task, respectively. The average accuracies of our proposed method
and CDAN method are 88.2% and 87.1%, respectively. Therefore, the above results show
that our proposed method has the best performance in accuracy on imageCLEF-DA
dataset.

Table 1. Accuracy (%) on office-31 dataset.

Method W to A W to D A to W A to D D to W D to A Avg

Proposed method 73.1 100.0 95.2 94.1 98.6 73.0 89.0
CDAN 68.0 100.0 93.1 89.8 98.2 70.1 86.6
Resnet-50 60.7 99.3 68.4 68.9 96.7 62.5 76.1
DANN 67.4 99.1 82.0 79.7 96.9 68.2 82.2
JAN 70.0 99.8 85.4 84.7 97.4 68.6 84.3
DAN 62.8 99.6 80.5 78.6 97.1 63.6 80.4

Table 2. Accuracy (%) on ImageCLEF-DA dataset.

Method C to P C to I I to P I to C P to C P to I Avg

Proposed method 75.8 92.2 78.3 97.1 91.6 94.4 88.2
CDAN 74.5 90.5 76.7 97.0 90.6 93.5 87.1
Resnet-50 65.5 78.0 74.8 91.5 83.9 91.2 80.7
DANN 74.3 87.0 75.0 96.2 86.0 91.5 85.0
JAN 74.2 89.5 76.8 94.7 88.0 91.7 85.8
DAN 69.2 86.3 74.5 92.8 82.2 89.8 82.5

The accuracy results on the the Office-Home dataset for different methods(CDAN
method, JAN method, DAN method, DANN method and Resnet-50 method) are shown
in Table 3. For all tasks, our proposed method still has the highest accuracy and average
accuracy, followed by CDAN method. Compared with CDAN method,the accuracies of
our proposed method are 3.0%, 3.3%, 1.9%, 5.0%, 6.5%, 4%, 4.4% ,5.7%, 2.5%, 4.8%,
2.7% and 2.2% higher than that of CDAN for A to C task, A to P task, A to R task,
C to A task, C to P task, C to R task, P to A task, P to C task, P to R task, R to
A task, R to C task and R to P task, respectively. Besides, the average accuracies of
our proposed method and CDAN method are 67.6% and 63.8%, respectively. the average
accuracy of our proposed method is 3.8% higher than that of CDAN method. Therefore,
the above results show that our proposed method has the best performance in accuracy
on imageCLEF-DA dataset. On the Office-31 dataset and image-CLEF-DA dataset, the
average accuracy of the proposed method is 89.0% and 88.2%, which are 2.4% and 1.1%
higher than that of CDAN method, respectively. The reason for this is that the Office-
Home dataset is the most complex of the three datasets: in the Office-Home dataset there
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is a large difference between the three domains, and the categories have less in common,
so there is room for improvement.

Table 3. Accuracy (%) on Office-Home dataset

JAN DAN ResNet-50 DANN CDAN Proposed method

A to P 61.2 57.0 50.0 59.3 69.3 72.6
A to C 45.9 43.6 34.9 45.6 49.0 52.0
A to R 68.9 67.9 58.0 70.1 74.5 76.4
C to A 50.4 45.8 37.4 47.0 54.4 59.4
C to P 59.7 56.5 41.9 58.5 66.0 72.5
C to R 61.0 60.4 46.2 60.9 68.4 72.4
P to A 45.8 44.0 38.5 46.1 55.6 60.0
P to C 43.4 43.6 31.2 43.7 48.3 54.0
P to R 70.3 67.7 60.4 68.5 75.9 78.4
R to P 76.8 74.3 59.9 76.8 80.5 82.7
R to C 52.4 51.5 41.2 51.8 55.4 58.1
R to A 63.9 63.1 53.9 63.2 68.4 73.2

Avg 58.3 56.3 46.1 57.6 63.8 67.6

4.2. Comparison of convergence speed. The Figure 5 shows the convergence speeds
of conditional adversarial domain adaption method(CDAN), Resnet-50, domain-adversarial
neural network(DANN) and our proposed method for A to W task. The proposed method
convergences at 3999 iterations, whereas CDAN begins to convergence at 8499 iterations,
and convergences at 40499 iterations. In this case, the proposed method has the fastest
convergence, followed by CDAN method.
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Figure 5. Convergence speeds of four methods

4.3. Comparison of distribution discrepancy. In this sub-section, we test the distri-
bution discrepancy of our proposed method, domain-adversarial neural network method(DANN),
conditional adversarial domain adaption(CDAN) method and Resnet-50 for tasks A to W
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and W to A. The A-distance is adopt to measure the distribution discrepancies of these
methods. A-distance is defined as:

distA = 2 (1− 2ε) (26)

where ε expresses classifier error. The smaller A-distance is, the more similar the distri-
butions are. In the task A to W, the A-distance results for our proposed method, domain-
adversarial neural network method, conditional adversarial domain adaption method and
Resnet-50 method are 0.66, 1.44, 1.22 and 1.88, respectively; for task W to A they are
1.3, 1.2, 0.66 and 0.33. In both these two tasks the A-distance of our proposed method
is the smallest. Therefore, this show that our proposed method has the best performance
on feature extraction (see Figure 6).

Figure 6. Distribution discrepancy results for the conditional adversarial
domain adaption method, Resnet-50, domain-adversarial neural network
and proposed method

5. Conclusions. In this paper, we design a self-attention layer and add it between the
fourth layer and fifth layer of Resnet-50, which effectively extracts feature relationships
between the current pixel and all other pixels. We also use a least-squares function to
deduce new loss and modify the output layer to reduce the generation of gradient disap-
pearance and improve accuracy. Compared with conditional adversarial domain adapta-
tion method, the average accuracies of our proposed method are increased by 2.8%, 1.3%
and 6% On the Office-31 dataset, Image CLEF-DA dataset and Office-Home, respectively.
For all tasks of the three datasets, the proposed method still has higher accuracy than
Resnet-50, deep adaptation network, domain-adversarial neural network, joint adapta-
tion network and conditional adversarial domain adaptation methods. Compared with
conditional adversarial domain adaptation method, the proposed method convergences
speed is improved by about ten times. Besides, the proposed method also has smaller the
A-distance than other methods, which shows that the proposed method has better perfor-
mance on feature extraction. On the whole, the proposed method has better performance
in accuracy and convergence speed than others.

The proposed method is only suitable for the target domain that has the same classifi-
cations with source domain. In our feature work, we will consider how to design network
to make the method be suitable for target domain that has different classifications with
source domain.
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