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Abstract. The basic principle of reversible data hiding with contrast enhancement ab-
breviated as RDH-CE is to enhance the perceived contrast of stego images using an re-
versible data-embedding manner. Considering that existing RDH-CE methods can only
enhance the global contrast of the image but ignore or may even reduce the local contrast,
an RDH-CE method combining K-means clustering with multiple features is proposed
in this paper. K-means clustering with multiple features is employed to yield multiple
histograms. Adaptive contrast enhancement based on the local properties of multiple his-
tograms is applied to enhance the local contrast as well as global contrast while achieving
satisfactory embedding capacity. The experimental results also demonstrate the effective-
ness of the proposed method.
Keywords: Reversible data hiding, Contrast enhancement, Genetic algorithm, Multiple
histogram

1. Introduction. Differently from digital watermarking [1, 2] that aims at increasing
robustness against attacks, data hiding focuses on achieving high capacity imperceptibly.
Reversible data hiding (RDH), as a special branch of data hiding, has the capabilities
of exactly recovering the stego image to its original state after extracting the embedded
data. Depending on its capabilities, RDH are useful at some applications such as military
imaging, medical imaging or law enforcement, where permanent distortion is not allowed.
Up to now, RDH has been extensively investigated and a large number of RDH methods
have been proposed from the following perspectives: lossless compression [3,4], difference
expansion (DE) [5], histogram shifting (HS) [6], prediction error expansion (PEE) [7–10],
integer-to-integer transform [4, 11–14]. Among the aforementioned techniques, DE is a
classical work of RDH, which was firstly proposed by Tian [5] to embed one bit into

198



Multi-histogram Reversible Data Hiding with Contrast Enhancement 199

the least significant bit of the expanded difference. Another classical work of RDH is
HS that was proposed by Ni et al. [6] to select peak bins of the image histogram for
embedding data while shifting other bins for guaranteing reversibility. HS produces a
high quality stego image but the embedding capacity is limited by the peak height of
the image histogram. Thodi et al. [7] proposed PEE (an improved version of DE) by
expanding prediction errors, rather than difference values in DE for embedding data.
Subsequently, some methods extended the PEE by improving the performance of the
predictor, such as gradient-adjusted predictor [15], rhombus predictor [16], and pixel-
value-ordering [17–19], to generate a prediction-error histogram (PEH) with a sharper
distribution. To maintain high visual quality, HS is introduced into these methods to
modify the PEH for embedding data. We term the methods of this type combining HS
and PEE as PEE-HS based methods. PEE-HS based methods have gradually become one
of the mainstream methods for RDH owing to their efficient capacity-distortion tradeoff.
However, traditional PEE-HS based methods uniformly modify the entire PEH without
consideration of the local properties of prediction errors. To this end, Li et al. [20]
proposed a multiple histograms modification (MHM) based RDH method by adaptively
selecting embedding bins for each histogram. In their method, the entire PEH is split into
16 equal-sized histograms according to the local complexities of prediction errors. The
rate-distortion is formulated and solved using exhaustive search, so that the embedding
bins for multiple histograms achieving the highest PSNR at a given payload are obtained.
Inspired by Li et al.’s method, Wang et al. [21] proposed to utilize fussy C-means equipped
with multiple features to obtain multiple sharply distributed histograms. Weng et al. [22]
proposed to establish multiple histograms by exploiting K-means clustering with multiple-
features and utilize the improved crisscross optimization algorithm with a fast convergence
speed to search optimal embedding bins for each histogram. Wang et al. proposed an
RDH general framework with MHM, in which multiple histograms are constructed based
on optimized multi-features, and the rate allocation is formulated and solved with genetic
algorithm [23].

In a word, the RDH methods proposed so far focus on largely increasing the embedding
capacity without degrading the image quality. In RDH methods, the peak signal-to-noise
ratio (PSNR) is most frequently used for evaluating the visual quality. However, these
methods seldom consider increasing the perceived contrast of the stego image. For ex-
ample, for poorly illuminated images, increasing the visual image quality such as image
contrast is more important than simply keeping high PSNR values. Histogram equaliza-
tion [24] is one of the most popularly used methods for contrast enhancement. Wu et
al. [25] proposed an RDH method with contrast enhancement (RDH-CE) that aims at
enhancing the image contrast as well as providing a high embedding capacity. Effectively,
the image contrast enhancement can be achieved by spreading the limited dramatic dis-
tributed histogram as evenly and broadly as possible to the whole grayscale range [0, 255].
Specifically, their method spread pixel values towards two ends of the whole grayscale
range by recursively performing HS, so that the image contrast is enhanced and high
embedding capacity is achieved. Several methods have been proposed to achieve more
contrast enhancement effects and higher embedding capacity [26–32]. Besides, some re-
searchers have extended RDH-CE to medical images [29,33]. Among the aforementioned
techniques, Jafar et al. [27] proposed to split the image into five categories using K-means
clustering, and adaptively perform the local contrast enhancement as well as increase the
embedding capacity according to the local property of each category. Kim et al. [31] pro-
posed to enhance the contrast using an adaptive bin selection process based on brightness
preservation [31].
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After carrying out several observations on Jafar et al. [27], it is found that Jafar et
al.’s method provides no payload but merely causes undesirable image distortion because
the global contrast of the image is enhanced by stretching the global histogram without
considering embedding data. The second observation is that K-means clustering equipped
with a single feature does not exactly evaluate the local complexity of each pixel to be
predicted, and therefore cannot generate five more sharply-distributed categories. Finally,
Jafar et al.’s method cannot differently treat Types II to IV, and thus, cannot perform
the local contrast enhancement in an adaptive manner for Types II to IV.

In this paper, we propose a novel RDH-CE method based on K-means clustering with
multiple subtly designed features. K-means clustering with multiple subtly-designed fea-
tures are utilized to generate multiple sharply-distributed categories. The spreading range
is allocated for each category, and then, the global contrast enhancement is achieved by
spreading each category using HS across the allocated grayscale range. Each category is
processed adaptively according to the local property of each histogram. The pixels are
processed locally based on the local complexity.

The rest of this paper is organized as follows. The proposed method is presented in
Section 2. The experimental result is discussed in Section 3 while the conclusion is given
in Section 4.

2. The proposed method. In this section, several parts of the proposed method will
be introduced one by one.

2.1. Global contrast. According to the aforementioned description, Jafar et al.’s method
utilizes histogram stretching to achieve the global contrast, which makes no contribution
to increase the payload. Differently from Jafar et al.’s method, the genetic algorithm
(GA) is firstly used in the proposed method to select multiple bins for the global contrast
as well as data embedding. In this paper, the maximum and minimum pixel values of a
cover image with size M × N are denoted by LG and SG, respectively. Taking Lena for
example, SG = 26 and LG = 245. GA is utilized to select multiple optimal bins from both
sides of the image histogram which achieve the highest rate-distortion performance, and
subsequently, HS is repeatedly performed to achieve both data embedding and contrast
enhancement. From Fig. 1, it is obvious that GA is used to search 26 optimal bits on the
left side of the image histogram and 10 optimal bins on the right side of the histogram.

(a) (b) (c)

Figure 1. A simple example. (a) Original image histogram, (b) Original
image histogram that uses GA to select multiple bins marked in red. (c)
The image with the global contrast enhancement and the payload of 43, 097
bits.
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(a) Two sets

(b) LBP

Figure 2. Two sets Sα marked in “N” and Sβ marked in “◦”.

2.2. Multiple histograms. All the pixels are split into two disjoint sets: Sα and Sβ in
the same way as the layout of a chessboard, which are marked by “N” and “◦”, respectively,
as shown in Fig. 2. Two sets are processed in the same manner. Here, we only discuss
the set Sα. Specifically, each pixel in Sα is predicted by its nearest pixels from Sβ.
Simultaneously, multiple features of each pixel in Sα extracted from the local complexities
are determined by the pixels in Sβ. During data embedding, all the pixels in Sβ must
remain unaltered. Before prediction, multiple features need to be extracted, so that five
histograms are constructed using K-means with multiple features. Here, multiple features
are described one by one.

(1) Sobel masks. For a pixel xn,m in Sα, Sobel masks [34,35] is calculated as

f 1
m,n =

√
∇2
h +∇2

v, (1)

where ∇h =
1∑

k=−1
rk [xn+k,m+1 − xn+k,m−1] and ∇v =

1∑
k=−1

rk [xn+1,m+k − xn−1,m+k]. rk =

2 for k = 0 while rk = 1 for k 6= 0. Referring to Eq. (1), the four neighbors of xm,n,
i.e., xn−1,m−1, xn−1,m+1, xn+1,m−1 and xn+1,m−1, involve calculating ∇(h,v). However, those
neighbors may be changed during data embedding because they belong to the same set
Sα as xm,n. To guarantee reversibility and simultaneously apply Sobel masks to the pixels
in Sα, Eq. (2) is used to generate all eight neighbors of xn,m using the pixels in Sβ. As
formulated in Eq. (2), each of xn−1,m−1, xn−1,m+1, xn+1,m−1 and xn+1,m−1 is replaced by
the mean value of its top, bottom, left and right neighbors.

xn,m =

{
xn,m, if xn,m ∈ Sα;
µ, otherwise.

(2)

where µ = (xn+1,m+xn−1,m+xn,m+1 +xn,m−1)/4.



202 S. W. Weng and Y. Zhou, B. B. You, T. Z. Zhang and Caijie, Yang

(2) The intensity variations of pixels in four directions, namely horizonal (σ2
t0

), vertical
(σ2

t90
), 45o (σ2

t45
) diagonal and 135o diagonal (σ2

t135
) directions. The efficient adaptive pre-

diction (EAP) predictor [36] is described as follows. In EAP, the eight neighbors of xn,m
are split into four sets, namely t0, t45, t90 and t135, where t0 = {xn,m−1, xn,m+1, µ0},
t45 = {xn,m+1, xn+1,m, µ45}, t90 = {xn+1,m, xn−1,m, µ90}, t135 = {xn,m−1, xn+1,m, µ135}.
Here, µ0 = (xn,m−1+xn,m+1)/2, µ45 = (xn,m+1+xn+1,m)/2, µ90 = (xn+1,m+xn−1,m)/2 and
µ135 = (xn,m−1+xn+1,m) /2.

Four parameters are applied to measure intensity variation of pixels in four directions,
namely horizonal (σ2

t0
), vertical (σ2

t90
), 45o (σ2

t45
) diagonal and 135o diagonal (σ2

t135
) direc-

tions. 
σ2
t0

=
∑3

k=1 (t0 (k)− µ)2;

σ2
t45

=
∑3

k=1 (t45 (k)− µ)2;

σ2
t90

=
∑3

k=1 (t90 (k)− µ)2;

σ2
t135

=
∑3

k=1 (t135 (k)− µ)2;

(3)

where µ = (µ0 + µ45 + µ90 + µ135)/4. Therefore, f 2
n,m =

√
(σ2

t0 + σ2
t45 + σ2

t90 + σ2
t135).

(3) Mean value of V containing four neighbors surrounding xn,m, namely f 3
n,m = µ,

where V = {xn,m−1, xn,m+1, xn−1,m, xn+1,m}.
(4) Maximum pixel of V , namely f 4

n,m = max{V }.
(5) Minimum pixel of V , namely f 5

n,m = min{V }.
(6) The 6th feature f 6

n,m, namely the local variance of V , is calculated as following:

f 6
n,m =

∑
x∈V

(x− µ)2. (4)

(7) Local variance of four horizonal pixels centered at xn,m is calculated below:

f 7
n,m =

∑
k=m−3,m−1,m+1,m+3

(xn,k − µh), (5)

where µh is the mean value of xn,m−3, xn,m−1, xn,m+1 and xn,m+3.
(8) Local variance of four vertical pixels centered at xn,m is obtained using the rule:

f 8
n,m =

∑
k=n−3,n−1,n+1,n+3

(xk,m − µv), (6)

where µv is the mean value of xn−3,m, xn−1,m, xn+1,m and xn+3,m.
(9) As illustrated in Fig. 2, f 9

n,m also applied in [22] indicates the sum of the horizontal
and vertical differences of a 5× 5-sized block centered at xn,m.

f 9
n,m =

7∑
a=1

(|su [a]− sb[a]|+ |sl [a]− sr[a]|) , (7)

where the symbols su = {xn−1,m−2, xn−2,m−1, xn,m−1, xn−1,m, xn−2,m+1, xn,m+1, xn−1,m+2},
sb = {xn+1,m−2, xn,m−1, xn+2,m−1, xn+1,m, xn,m+1, xn+2,m+1, xn+1,m+2}, sl = {xn−2,m−1,
xn−1, m−2, xn−1,m, xn,m−1, xn+1,m−2, xn+1,m, xn+2,m−1}, sr = {xn−2,m+1, xn−1,m, xn−1,m+2,
xn,m+1, xn+1,m, xn+1,m+2, xn+2,m+1}, and [a] represents the ath pixel of a set.

(10) Referring to Fig. 2, f 10
n,m also used in [22] indicates the local invariance of pixels

marked in “N”.

f 10
n,m =

∑
x∈Sα

(|x− µ̄|), (8)

where µ̄ is the average value of pixels marked in “◦” of a 5×5-sized block shown in Fig. 2.
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2.3. Local contrast. K-means clustering with multiple features are used for generating
five histograms, and then sorted according to the ascending order of the entropies of
histograms to generate five sorted histograms, namely h1 (smooth), h2 (near smooth), h3
(weak edge), h4 (moderate edge) and h5 (strong edge). Specifically, the entropy of the κth

histogram is calculated by

El =
∑

k∈[0,255]

−pk log pk, (9)

where pk denotes the occurrence frequency of the pixels valued k in each histogram.
The pixels belonging to different histograms are processed differently to achieve data
embedding and contrast enhancement, and simultaneously alleviate the problems of local
contrast enhancement.

As we know, introducing small changes to the pixels in h1 for enhancing the contrast
inevitably degrades the visual quality like noise amplification. Stretching the pixels in h5
that contains strong edges will result in excessive edge enhancement. To alliterate the
problems associated with noise amplification in smooth regions and excessive enhancement
of strong edges, each pixel in h1 ∪ h5 is slightly modified using HS via Eq. (10) for data
embedding without consideration of contrast enhancement.

x
′
=


x− b, if x = xlp;
x+ b, if x = xrp;
x, if x ∈ (xrp, xlp) ;
x+ 1, if x > xrp;
x− 1, if x < xlp;

(10)

where xlp and xrp represent left and right peak points of the histogram, respectively, b is
a bit to be embedded, namely b ∈ {0, 1}. The reverse process of Eq. (10) is given by

x =

 x
′
, if x

′ ∈ [xrp, xlp];
x

′ − 1, if x
′ ≥ xrp + 1;

x
′
+ 1, if x

′ ≤ xlp − 1.
(11)

2.3.1. Modifying h2 to h4. For the current pixel xn,m of the κth hκ, it is predicted by
its top, bottom, left and right neighbors to generate the prediction value x

′
n,m, namely

x
′
n,m = µ. Each prediction error en,m is calculated to be en,m = xn,m − x

′
n,m, so that the

prediction error histogram (PEH) HPκ is generated.
As an evolutionary optimization algorithm, the genetic algorithm (GA) is firstly used

in this paper to automatically search for multiple optimal bins for different PEHs while
achieving contrast enhancement and data embedding. As we know, GA has the capability
of powerful global search and fast convergence speed, which can guarantee efficient search
in the huge solution space.

Before utilizing GA to search for multiple optimal bins for each PEH of HP2 to HP4,
we need to allocate the desired capacity P to three histograms (HP2 to HP4), namely
P2 to P4. For simplification, P3 = P2 + P4 and P2 = P4. After performing the capacity
allocation, GA is utilized to select multiple optimal bins from both sides of each PEH
which achieve the highest rate-distortion performance under the allocated capacity, and
subsequently, HS is repeatedly performed to embed Pl into the prediction errors of the κth

hκ while achieving contrast enhancement. Let the selected bins of HE be pκ,lω < · · · <
pκ,l2 < pκ,l1 < 0 ≤ pκ,r1 < pκ,r2 < · · · < pκ,rυ . During data embedding, each prediction
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error is modified below

e
′
=


e, if pκ,l1 < e < pκ,r1 ;
e− (i− 1)− b, if e = pκ,li ;
e+ (j − 1) + b, if e = pκ,rj ;
e− i, if pκ,li+1

< e < pκ,li ;
e+ j, if pκ,rj < e < pκ,rj+1

;

(12)

where i ∈ {1, 2, · · · , ω} and j ∈ {1, 2, · · · , υ}. The reverse operation of Eq. (13) is
expressed by

e =


e
′
, if pκ,l1 < e

′
< pκ,r1 ;

e
′
+ (i− 1), if e

′
= pκ,li ;

e− (j − 1), if e
′
= pκ,rj ;

e+ i, if pκ,li+1
< e

′
< pκ,li ;

e− j, if pκ,rj < e
′
< pκ,rj+1

;

(13)

3. Experimental results. Several experiments are carried out to demonstrate the ef-
fectiveness of the proposed method. As shown in Fig. 1, four classical images including
Lena, Baboon, Peppers, Airplane and Barbara taken from USC-SIPI [37] are used as test
images.

(a) Lena (b) Baboon (c) Peppers (d) Airplane (e) Barbara

Figure 3. five test images.

To validate the capability of the proposed method in enhancing the contrast and
strengthening the edges in the image, the well-known image sharpness measure Tenegrad
(TEN) [38] is employed in the proposed method to measure the contrast enhancement.

TEN =
∑
n

∑
m

f 1
m,n , if f 1

m,n > µt; (14)

where f 1
n,m is the Sobel gradient magnitude value [34, 35] computed in Eq. (1) and µt is

a predefined threshold value that is chosen in the experiments as the mean value of all
Sobel gradient magnitude values.

The non-reference metric Q [39] is given by

Q =
∑N

k=1
Qk

/
N, (15)

where Qk = s1 × (s1 − s2)/(s1 + s2), and s1, s2, · · · , are the singular values satisfying
s1 > s2 > · · · > 0. N = b(H ×W )/(8× 8)c denotes the number of disjoint image blocks
of size 8× 8 for a H ×W -sized image. A larger Q implies the better contrast of the stego
image.

Five figures including Fig. 4 to Fig. 8 reveal visually that the proposed method has the
capability of enhancing the image contrast. In addition, these figures clearly show the
proposed method achieves larger Q and TEN .
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(a) (b)

Figure 4. Lena and the corresponding stego image with PSNR = 31.78
dB under a capacity of 161, 061 bits. (a) Original Lena with TEN = 9.0295
and Q = 74.2732; (b) The stego image for Lena with TEN = 10.1530 and
Q = 81.9170.

(a) (b)

Figure 5. Airplane and the corresponding stego image with PSNR =
28.33 dB under a capacity of 176, 854 bits. (a) Original Airplane with
TEN = 10.9043 and Q = 83.5543; (b) The stego image for Airplane with
TEN = 12.1593 and Q = 95.7003.

(a) (b)

Figure 6. Baboon and the corresponding stego image with PSNR =
36.38 dB under a capacity of 61, 763 bits. (a) Original Baboon with TEN =
21.7174 and C̄ = 190.3886; (b) The stego image for Baboon with TEN =
21.8939 and C̄ = 191.7313.

4. Conclusions. In this paper, we proposed a multi-histogram reversible data hiding
method with contrast enhancement. Multiple histograms are processed differently with
the consideration of the local properties of histograms. Considering that stretching exces-
sively the pixels in h1 and h5 for improving the contrast inevitably causes the problems
associated with noise amplification or over enhancement, the pixels in h1 and h5 are mod-
ified using HS to carry data so that satisfactory visual quality can be maintained. h2 to
h4 are adaptively modified to achieve the local and global contrast while embedding the
required capacity. GA is used in h2 to h4 to adaptively select multiple optimal embedding
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(a) (b)

Figure 7. Peppers and the corresponding stego image with PSNR =
33.39 dB under a capacity of 100, 919 bits. (a) Original Peppers with
TEN = 8.2019 and Q = 81.4708; (b) The stego image for Peppers with
TEN = 8.4910 and Q = 82.7411.

(a) (b)

Figure 8. Barbara and the corresponding stego image with PSNR =
38.24 dB under a capacity of 83, 841 bits. (a) Original Barbara with TEN =
15.0979 and Q = 129.0935; (b) The stego image for Barbara with TEN =
15.2138 and Q = 131.3552.

bins for each histogram. Experimental results revealed the effectiveness of the proposed
method in terms of the embedding capacity and contrast enhancement.
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