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Abstract. Community detection is a fundamental problem for analyzing the structural
properties of complex networks. The existing approaches focus on detecting disjoint com-
munities, even though communities in real graphs are well known to be overlapping.
Another shortcoming is those approaches usually exploit the lower-order adjacent infor-
mation and neglect the higher-order connective structure on networks. We deal with those
problems by motif-aware Label Propagation. Specifically, the motif-based hypergraph is
constructed to encode the higher-order structural characteristic of the network. Then, we
unify the structure of hypergraph and original graph, calculate the belonging coefficient
in the propagation process, and map each node to multiple community labels. Experi-
mental results on multiple datasets have shown the superiority of the proposed method in
improving the community detection performance.
Keywords: Community detection, Motif, label propagation
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1. Introduction. Graphs or networks provide a natural way of representing complex
real-word systems, where the nodes stand for elementary units of the system and the
edges represent their relations. Network data arises in a wide range of fields, such as social
networks, collaboration networks, communication networks, biological networks and food
webs [1]. Community detection aims to partition the network into subsets of vertices of
relatively denser connections [2, 3]. It has been shown that many real-world networks
have a significant property of community structure, and community detection is a key
technique to understand the structure and function of the complex systems represented
as networks. For example, in protein-protein interaction networks, community detection
can identify function modules [4]; in World Wide Web, it can find groups of webpages
associated with similar topics [5].

Lots of community detection methods have been proposed in the literature, includ-
ing those based on modularity-maximization [6], generative and statistical models [7],
local-metric optimization [8], hierarchical clustering [9, 10], spectral-clustering [11], link
prediction [12] and matrix factorization [13]. Existing methods usually assume that each
node belongs to exactly one community, i.e., they group the nodes into a set of disjoint
clusters. In practice, such an assumption is rarely satisfied [14,15]. For example, in social
networks, it is expected that the individuals belong to multiple interest groups [16]; in
collaboration networks, scientists may collaborate with several research groups [17]. In
those scenarios, vertices can belong to more than one community, then the boundaries
of communities overlap. Overlapping community detection is a much harder problem, as
the number of communities a node belongs to is uncertain.

Another shortcoming is that those methods operate on simple graphs, in which edges
are not denoted with weights to describe the degree of relations among nodes. In other
words, those edges describe only the “existence” of relations between the connected pair
of nodes. Simple graphs only possess the lower-order structure of the network and only
the direct one-hop connections between nodes are taken into consideration, so existing
community detection models learning from simple graphs might be suboptimal [18]. On
the other hand, simple graphs constitute the majority of the real-world applications, so it
is important to explore the higher-order structure among nodes from those simple graphs.
In order to capture structural features of the graphs, one popular strategy is motif-based
higher-order structure mining. Motifs are defined as recurring, significant patterns of in-
terconnections or simply the building blocks of the networks [19, 20]. As it can provide
higher-order connectivity patterns and are crucial for uncovering the organization of com-
plex networks, motif-based structure has been gaining increasing attention in community
detection [21].

Most real-world networks are large scale. For example, popular social networks, such
as Facebook and Wechat, have reached hundreds of millions or even billions of users.
Identifying communities in such big networks requires the algorithms to be computation-
ally efficient. The majority of traditional community detection algorithms, like modu-
larity or matrix factorization based algorithms, are not suitable for such circumstance,
as they typically take O(n2) for optimizing and are too slow. On the other hand, la-
bel propagation-based community detection methods have been shown to be nearly linear
time complexity and perform efficiently for its simplicity. For example, RAK [22] is one of
the representative label propagation algorithm. It assigns each node in the network with
a label denoting the community to which it belongs. In the process of label propagation,
the node update its label with the labels belonging to most of its neighbors. RAK claimed
that 95% of nodes can be identified correctly after five iterations, i.e., it has nearly linear
time computational complexity. Because of its simplicity and effectiveness, there are a
amount of methods which utilize label propagation for community detection [23–27].
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Although the merits of motif and label propagation are obvious, many community de-
tection algorithms utilize them independently. To the best of our knowledge, the first
work combining the motif and label propagation for community detection was presented
by Li et al. [18] recently, named MWLP. It exploits higher-order structure characteristics
of the network by means of motif and designs a re-weighted network, then employs a
novel voting strategy for label propagation. Experimental results revealed the superior-
ity of MWLP for community detection. However, it identifies the disjoint community
structure while can not deal with the problem of overlapping community. In terms of
node confidence calculation, Wang et al. [28] proposed a confidence calculation method
to improve the calculation accuracy. Kang et al. [29] use a non-inertial particle swarm
optimization with elite mutation-Gaussian process regression is proposed to optimize the
hyper-parameters of GRP. Yang et al. [30] proposed a multigroup multistrategy SCA
algorithm. Dong et al. [31] proposed a Model Affiliation Graph with Interacting Commu-
nities. In this paper, we extended the MWLP and propose a novel method to deal with
overlapping community detection for large scale networks. The main contribution of this
paper is that the proposed method considers both high-order and low-order structures
when detecting networks. Then in the process of label propagation, nodes can belong
to multiple communities at the same time, and the label of the node itself is considered.
This method can effectively improve the classification results of community detection.

2. Related works. In 2005, the first algorithm that deal with overlapping communities
was proposed by Palla et al. [32]. They constructed a community with a series of k-cliques
such that any one clique can be reached from another via a series of adjacent k-cliques. A
multitude of overlapping community detection algorithms were proposed to date, which
mainly falls into five broad categories: edge partition [15], matrix factorization [33], clique
searching and merging [34, 35], label propagating and spectral method. In this section,
we focus those representative algorithms which utilize label propagation for overlapping
community detection. Another focus is motif, i.e., small patterns that appear frequently
in a variety of graphs. However, though few methods dealing with motif clustering on dis-
joint community detection have been proposed, the motifs based overlapping community
detection methods have not yet been comprehensively investigated.

2.1. Label propagation. Rahavan et al. [22] proposed the first label propagation based
algorithm RAK for community detection. It initializes each node with a unique label.
Then, RAK spread labels through the edges of the graph and updates the label of a node
to the label that appears most frequently among its neighbours, iterating until a general
consensus is reached. Because of its intuitive and quasi-linear time complexity, a number
of algorithms are built based on label propagation for community detection, including a
few work for overlapping community detection. COPRA [36] is extended from RAK and
tries to find overlapping communities in the network. It assigns each node with one or
more labels with different belonging factors. In each iteration the belonging factors would
be updated and normalized according to the union of its neighbours. Because the degree of
overlap is controlled by a hyper-parameter, this method detects inaccurate communities in
high overlapping networks. DEMON [37] considers that the generic community detection
algorithms are not suitable to deal with large scale and dense networks, as they typically
try to cluster the whole structure and return some huge communities and a long list of
small branches. To deal with this problem, it reveals local community structure for each
node in its ego neighborhood through label propagation. For the current node, its local
communities are merged with previous found communities into a global collection. As
different node may share neighbors, their local communities or their merged communities
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may overlap. SLPA [38] is also an extension of the RAK. It employed a speaker-listener
based information propagation process to update labels. Specifically, in each loop a node
is selected as a listener, and each neighbor send out a label which is most frequent among
its label set, then the listener accept the most popular label from the collection of labels
received from neighbors. When the relatively stable outputs is produced, SLPA deleted
the label whose occurrence is less than a given threshold, then connected nodes having
a particular label are grouped together and form a community. NI-LPA [39] sorts the
nodes in a fixed order to deal with the LPA instability problem, and allowed a node to
contain many community labels for overlapping community detection. And, each label is
associated with a belonging coefficient which is computed according to the node degree
and its adjacent information among its neighbors. In propagation process, for each node
NI-LPA uses the asynchronous mode to sum the coefficients of the same label among its
neighbors and store label with the best coefficient.

2.2. Motifs in Community Detection. Real-world complex networks usually present
and share patterns of interconnections or small subgraphs, called network motifs, occur-
ring with a frequency higher than that in a random network [20,40]. High frequencies of
certain motifs indicate the important functions they play in a network, and can be recog-
nized as fundamental units of networks [41]. It is surprising that there are few studies to
explore the role those motifs have in community detection. Arenas et al. [42] generalized
Newman-Girvan modularity [2] with motifs, and showed that it can reveal more detailed
subdivision with respect to those obtained by optimizing the standard modularity. Ben-
son et al. [43] encoded the higher-order structures of networks by means of tensors, then a
tensor spectral clustering method was proposed to search a partitioning that does not cut
the motifs. Another work [41] by the same authors extended the spectral graph clustering
methodology to account for higher-order structures in networks, in which the entries of
the adjacency matrix record the co-occurrence counts of corresponding nodes in an in-
stance of motif. Li et al. [44] considered that the higher-order connections encoded in the
motif-based hypergraph usually violate the original lower-order topological structure and
may be fragmented, therefore, it will render the community structure with instability and
degenerate the performance of the algorithm. To address the fragmentation issue, they
proposed the algorithm termed EdMot to enhance the connectivity structure of the in-
put network by integrating both the motif-based structure and the lower-order structure.
MLM-MOGA [45] extracts a clustering on a multiplex network based on multi-objective
optimization, in which it maximizes the number of instances of a motif inside the same
community, while minimizing cutting instances of the same motif on all layers.

3. The proposed algorithm. In this section, we elaborate how we apply the motif and
label propagation for overlapping community detection. Our method is adapted from
COPRA [36], which is a well-established overlapping community method based on label
propagation. COPRA utilizes the lower-order topology structure information, i.e., at the
level of edges and nodes for label propagation, while we incorporate higher-order structure
information into lower-order structures for label propagation. Motivated by MWLP [18],
we adopt motif-based strategy to mine higher-order structure information, and then pre-
serve both higher-order and lower-order structure by re-weighting the node adjacency
matrix. Compared with the existing work, we add higher-order structure detection to the
traditional overlapping community detection method, and then combine it with the orig-
inal network. In the process of propagation, we also attach the label information of the
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node itself, which can better find the real structure distribution of the network. Our algo-
rithm have three key operations: motif-based higher-order structure mining, Multi-Label
annotation and motif-aware weighted label propagation.

3.1. Motif-based higher-order structure mining. Given a network G = (V,E),
where V is the node set and E is the edge set. Let n = |V | and m = |E| represent
the number of nodes and the number of edges, respectively. In this paper, we introduced
the Motif-based adjacency matrix WMm [46] to obtain the higher-order structural features
of the network. As shown in Eq.1, WMm can be expressed as follows:

WMm(i, j) = IMm
ij , (1)

where IMm
ij represents the number of the motif Mm containing both node i and node

j. The most common higher-order structure is the small network subgraph, and its
different types will reveal different structures. Many researchers have made great efforts
and achieved good results for motif recognition, such FANMOD [47], Kavosh [48] and so
on. Figure 1 shows the directional motif types for all three nodes. In this experiment,
we focus on triangular motifs as the research object. The triangle is the main type of
most network motifs, and its nature also reflects the communication relations in the social
network. After determining the motif type, we can use the identified motif to reveal the
higher-order structure of the network.

�1 M2 M3 M4
M5 M6

M7 M8 M9 M10
M11 M12

M13

Figure 1. 13 kinds of triangle connected subgraph.

It has been shown in [18] that the bidirectional relationship of nodes can better reflect
the connection structure of nodes. As shown in Figure 1, there are many bidirectional Mo-
tifs to reflect the higher-order structure information. According to the suggestion in [18],
we choose the bidirectional Motif M13 in our experiments. The resulting adjacency ma-
trix WMm can be viewed as a weighted matrix. Larger weight means that the connections
between corresponding nodes are closer. Futhermore, there are not only higher-order con-
nections but also lower-order connections in the network. If only focus on higher-order
structure information, then the lower-order structure information will be lost. Therefore,
we adopt a re-weighted network framework [18] to maintain higher-order and lower-order
structural information. The weighted network can be expressed in matrix form as follows:

W = A+WMm , (2)

where A is the adjacency matrix of the orginal network, in which the edges of the original
network can be weighted or unweighted. WMm is an adjacency matrix with higher-order
structure features based on Motif. After this transformation, the relationship between
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the elements of W can be seen as a measure of the intimacy between nodes. Therefore,
we solve the problem that higher-order and lower-order connections can not be utilized
at the same time. The structure mining process is described in Algorithm 1.

Algorithm 1 Motif-based higher-order structure mining

Input: A network G = (V,E).
Output: An adjacency matrix W containing information of higher-order and

lower-order structures of the network.

1: Identify the type of motif, i.e., Mm.
2: The motif adjacency matrix WMm is obtained by Eq.1.
3: The re-weighted network W is constructed by Eq.2.

3.2. Multi-label annotation. Firstly, we treat each node as a separate community.
Like COPRA, each node is initialized to a unique label which indicates its community.
Obviously, in the scenario of overlapping communities, each node may belong to multiple
communities. Therefore, we need to allow each node to contain multiple labels. We
associate each node ni with a set of pairs (li1, b

i
1), (l

i
2, b

i
2), ..., (l

i
N , b

i
N), where lix stands for

the x− th label of the node ni, and bix is the belonging coefficient of the node belonging to

the label lix. For each node ni, the sum of all the belonging coefficient is 1, i.e.,
N∑
x=1

bix = 1.

In each propagation step, we use synchronous update propagation, where the node
labels in the t − th iteration are always based on the neighborhood set labels in the
(t− 1)th iteration. However, this method will make the label include all neighborhoods.
We only need to keep the community that each node is most likely to belong to, not all
communities. In our method, we first construct the node labels as described above. Then
we set a parameter v to indicate the maximum number of communities that each node can
belong to. We set the threshold to the reciprocal of v, pairs with an belonging coefficient
less than 1

v
is then deleted.

As mentioned in the [36], a situation that may arise during the selection process is
that all pairs in a node may have belonging coefficients less than the threshold. If so, we
select only the pair with the largest belonging coefficient and delete the others. If more
than one pair has the same maximum belonging coefficient below the threshold, we keep
a randomly selected pair among them.

3.3. Motif-Aware Weighted Label Propagation. Different from the traditional la-
bel propagation algorithm, our label propagation method is performed on a re-weighted
network. The pseudo-code description is shown later. For the convenience of illustration,
we designed two simple network and then run algorithms on it. The network description
and running results of example 1 are shown in Table 1. In (a), Node represents the node,
and Neighbor represents its neighbors. The weight relationship between nodes is shown
in (b). For nodes that are not connected to each other, we set their weight relationship
to 0. Since we will use the label of the node itself in the propagation process, we set the
weight of the node to itself to 1. Then, the algorithm propagation result is shown in (c).
N represents the node, and tn represents the n− th run result. In each result, the left side
of the bracket represents the label, and the right side represents the belonging coefficient.
Our algorithm ends after propagating three times on the example. The result of the third
time is the same as the second time, so it will not be shown separately.

Taking the first node as an example, we first initialize the label pair of the node to
(1, 1). When propagating, we set the parameter v = 1, which means that each node can
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Table 1. The results of the proposed MCOPRA method running on the
example 1

Node Neighbor
1 2 5 6
2 1 5 6
3 4 5 6 7
4 3 5 6
5 1 2 3 4
6 1 2 3 4
7 3 8 9
8 7 9
9 7 8

(a)

1 2 3 4 5 6 7 8 9

1 1 3 0 0 2 2 0 0 0
2 3 1 0 0 2 2 0 0 0
3 0 0 1 3 2 2 1 0 0
4 0 0 3 1 2 2 0 0 0
5 2 2 2 2 1 0 0 0 0
6 2 2 2 2 0 1 0 0 0
7 0 0 1 0 0 0 1 2 2
8 0 0 0 0 0 0 2 1 2
9 0 0 0 0 0 0 2 2 1

(b)

N t0 t1 t2
1 [1,1] [2,1] [3,1]
2 [2,1] [1,1] [3,1]
3 [3,1] [4,1] [3,1]
4 [4,1] [3,1] [3,1]
5 [5,1] [3,1] [3,1]
6 [6,1] [3,1] [3,1]
7 [7,1] [9,1] [9,1]
8 [8,1] [9,1] [9,1]
9 [9,1] [8,1] [9,1]

(c)

only select one label. In the first propagation, we know that node 1 has three neighbors
2, 5, 6. Their corresponding labels are 2, 5, 6, respectively. We know that the label of
the first neighbor of node 1 is 2, and the belonging coefficient is 1. Then, after mul-
tiplying the weight between nodes by the belonging coefficient, the first neighborhood
label pair (2, 3) is obtained. By analogy, plus the label pair of node 1 itself, we get the
neighborhood label set [(2, 3), (5, 2), (6, 2), (1, 1)]. After that, the label set is normalized
to [(2, 0.375), (5, 0.25), (6, 0.25), (1, 0.125)]. Since the belonging coefficient of label 2 is the
largest, the label of node 1 is set to 2, and the coefficient is set to 1. Therefore, after
the first iteration, we get the label pair of node 1 as (2, 1). The propagation process of
the remaining nodes is the same. The algorithm stops after three rounds of propagation.
Finally, we get two communities. The first community contains nodes (1, 2, 3, 4, 5, 6), and
the second community contains nodes (7, 8, 9). The results of the algorithm are consistent
with the expected results. Intuitively, the running process of the algorithm is shown in
Figure 2.

1

5

6

2 8

7 9

4

3 2

3

3

1 9

9 8

3

4 3

3

3

3 9

9 9

3

3

t = 0 t = 1 t = 2

Figure 2. The results of MCOPRA running on the example 1.

In order to verify the effectiveness of the proposed algorithm for detecting overlapping
communities, we conduct experiments on another example. We take the left part of
example 1 as this example. The running process is shown in Figure 3 and Table 2. In
this example, we set the parameter v = 3. We use the propagation process of node 5
to illustrate one of the experimental steps. First, we give node 5 an initial label pair
(5, 1). Then, in the first propagation, according to its neighbors, the label pairs we
get are [(1, 2), (2, 2), (3, 2), (4, 2), (5, 1)]. Through normalization, we get the label pair
[(1,0.22),(2,0.22),(3,0.22),(4,0.22),(5,0.11)]. The belonging coefficients of all label pairs
are less than the threshold 1/3. Among them, the belonging coefficients of labels 1, 2, 3, 4
are equal and greater than the coefficient of label 5, so we randomly select a label from
these four labels. Finally, the label pair of node 5 is (1, 1). The propagation process
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is the same for the next few times. In the fourth propagation, we can get the label
pair of node 5 as [(1, 4.57), (4, 4.43)]. The normalized label pair is [(1, 0.51), (4, 0.49)].
Because the belonging coefficients of these two pairs are greater than the threshold, both
label pairs will be retained. Finally, the label pair of node 5 is [(1, 0.51), (4, 0.49)]. The
algorithm stops after 4 propagations. In the end, the communities we get are (1, 2, 5, 6) and
(3, 4, 5, 6). Among them, nodes 5 and 6 are overlapping nodes. Finally, the experimental
results prove that our algorithm can effectively detect overlapping communities, and the
results are the same as expected.

Table 2. The results of MCOPRA running on the example 2

N t0 t1 t2 t3 t4
1 [1,1] [2,1] [1,1] [1,1] [1,1]
2 [2,1] [1,1] [2,0.5;1,0.5] [1,1] [1,1]
3 [3,1] [4,1] [3,0.5;4,0.5] [4,1] [4,1]
4 [4,1] [3,1] [4,1] [4,1] [4,1]
5 [5,1] [1,1] [1,1] [1,0.57;4,0.43] [1,0.51;4,0.49]
6 [6,1] [4,1] [4,1] [1,0.43;4,0.57] [1,0.49;4,0.51]
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t = 0

6

1

2

5

4

3

[2,1]

[1,1]

[1,1]

[4,1]

[3,1]

[4,1]

t = 1

6

1

2

5

4

3

[1,1]

[2,0.5;

1,0.5]
[1,1]

[3,0.5;

4,0.5]

[4,1]

[4,1]

t = 2

6

1

2

5

4

3

[1,1]

[1,1]

[1,0.57;

4,0.43]

[4,1]

[4,1]

[1,0.43;

4,0.57]

t = 3

6
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2

5

4

3

[1,1]

[1,1]

[1,0.51;

4,0.49]

[4,1]

[4,1]

[1,0.49;

4,0.51]

t = 4

Figure 3. The results of MCOPRA running on the example 2.

Based on the results of the previous two examples, we summarize the pseudo-code of
the complete MCOPRA algorithm as shown in Algorithm 2 and 3. Algorithm 2 illustrates
the overall flow of our algorithm. In Algorithm 3, the detailed steps of propagation and
normalization are explained. N(x) is the neighborhood set of node x. The algorithm
contains two node label vectors new and old. new.x and old.x represent the latest label
and the previous label of node x, respectively. For the label of node x, it contains many
pairs (c, b), where c and b represent the label and the belonging coefficient, respectively.
b← by represents b← bywxy in the propagation process, where wxy represents the weight
relationship between nodes x and y. t represents the number of iterations. When t reaches
the maximum number of iterations, the program stops.
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Algorithm 2 motif-based propagation process

Input: An adjacency matrix W .
Output: Node community classification result.

1: Initialize each node label : old.x← {(x, 1)}.
2: repeat
3: repeat each node :
4: Propagate(x, old, new).
5: end
6: If id(old) = id(new) : min← mc(min, count(new)).

Else : min← count(new).
7: If min 6= oldmin : old← new and oldmin← min.

until min = oldmin or t > T .
8: repeat each node x:
9: ids← id(old.x).

10: repeat each c in ids:
11: If, for some g, (c, g) is in coms, (c, i) in sub:

coms← coms–{(c, g)} ∪ {(c, g ∪ {x})}.
sub← sub–{(c, i)} ∪ {(c, i ∩ ids)}.

Else:
coms← coms ∪ {(c, {x})}.
sub← sub ∪ {(c, ids)}.

end
end

12: For each (c, i) in sub: If i 6= {} : coms← coms–(c, g).

4. Experiments. In this section, we applied the proposed algorithm MCOPRA on two
types of networks to evalute effectiveness. The one is run on real-world networks, a few
of them we know their community structure, and for many of them their community
structure are not clear. The other is the synthetic network, we adjust their structure by
modifying coresponding parameters.

4.1. Datasets.
(1)Synthetic networks. In order to verify the effective and accuracy of our algorithm,
we generate the LFR [49] benchmark as our experimental network. The number of nodes
has increased from 1000 to 20000 and mixing parameter(mu) has increased from 0 to
0.8. In Tabel 3, n is the number of nodes in the network, k and maxk represent the
average degree and the maximum average degree of the network, respectively. Minc and
maxc are denote minimum and maximum numbers of communitise, respectively. The
mixing parameter mu represents the ratio of the degree of external of a node relative
to its community to the total degree of the node. On and Om are the number of the
overlapping nodes and the community memberships of each overlapping node.

We use five different networks size, small networks(1000 nodes, 2000 nodes and 5000
nodes) and large networks(10000 nodes and 20000 nodes). And for a given size, we use
two different types: overlapping communities and non-overlapping communities. For both
communities share some common parameters: k = 10, maxk = 30, minc = 10, maxc =
50. The different is that we set On to 0 and Om to 0 on the non-overlapping community.
In overlapping communities, we set On to be 1/100th of the number of nodes n and Om
to be fixed at 2.
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Algorithm 3 motif-based propagation process (contd.)

Propagate(x, source, dest):

1: dest.x← {}.
2: repeat each y in N(x):
3: repeat each (c, by) in source.y:
4: b← by.
5: If, for some bx, (c, bx) is in dest.x : dest.x← dest.x− {(c, bx)} ∪ {(c, bx + b)}.
6: Else : dest.x← dest.x ∪ {(c, b)}.

end
end

7: repeat each (c, by) in x:
8: b← by.
9: If, for some bx, (c, bx) is in dest.x : dest.x← dest.x− {(c, bx)} ∪ {(c, bx + b)}.

10: Else : dest.x← dest.x ∪ {(c, b)}.
end

11: Normalize(dest.x).
12: bmax = 0.
13: repeat each (c, b) in dest.x :
14: If b < 1

v
:

15: dest.x← dest.x− {(c, b)}.
16: If b > bmax :
17: bmax ← b and cmax ← c.

end
18: If dest.x = {} : dest.x← {(cmax, 1)}.
19: Else : Normalize(dest.x).

Normalize(l):

1: sum = 0.
2: repeat each (c, b) in l:
3: sum← sum+ b.

end
4: repeat each (c, b) in l:
5: l← l − {(c, b)} ∪ {(c, b/sum)}.

end

Table 3. The parameters used for the generation of synthetic networks

network n k maxk minc maxc on om mu
LFR1 1000 10 30 10 50 0 0 0-0.4
LFR2 1000 10 30 10 50 10 2 0-0.5
LFR3 2000 10 30 10 50 0 0 0-0.4
LFR4 2000 10 30 10 50 20 2 0-0.5
LFR5 5000 10 30 10 50 0 0 0-0.4
LFR6 5000 10 30 10 50 50 2 0-0.5
LFR7 10000 10 30 10 50 0 0 0-0.4
LFR8 10000 10 30 10 50 100 2 0-0.5
LFR9 20000 10 30 10 50 0 0 0-0.4
LFR10 20000 10 30 10 50 200 2 0-0.5

(2)Real-world networks. In real-world networks, we use karate, football and dolphin.
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The node communities of these networks are known, and several of their properties are
shown in Table 4. In which, N and E are the number of nodes and edges, C is the number
of communities. A brief description of these three networks is given below.

Table 4. Properties of real-world networks

Datasets N E C
Karate [50] 34 78 2
Dolphin [51] 62 159 2
Football [52] 115 613 12

Karate network [50]: The Zachary Network is a social network based on observations
of a karate club at an American University. Zachary observed and described the network
consists of 34 nodes and 78 edges, where nodes represent members of a club and edges
represent friendships among members. Now the karate club network has become a well-
known benchmark network in complex social network.

Dolphin network [51]: The second network is the dolphin network. The Dolphin
dataset is a network of social relationships obtained by Lusseau et al., who observed
the communication of 62 groups of dolphins in New Zealand’s Doubrucsound Strait over
a period of 7 years. The network has 62 nodes and 159 edges. Nodes in the network
represent dolphins, and edges represent a frequent contact between dolphins.

Football network [52]: The third real network is the college football network. New-
man created a complex social network based on the national college football association.
The network contained 115 nodes and 616 edges, where the nodes represent football
teams and the edges between two nodes indicates that a game has been played between
two teams. The 115 teams are divided into 12 leagues. The format of the competition is
that teams within the league play group games, followed by games between teams within
the league. An alliance can then be represented as the real community structure of the
network.

For the other networks, we don’t know what the real community is. These networks are
shown in Table 5. In which N and E are the number of nodes and edges, D represents
the network node density. Dmax, Dmin and Davg indicate the maximum, minimum and
average degrees of node, respectively. The property Assor represents the correlation of
degrees, and is used to examine whether vertices with similar degree values tend to be
connected to each other.

Table 5. Properties of real-world networks

Datasets N E D Dmax Dmin Davg Assor
Polbooks 105 441 0.081 25 2 8 -0.128

Jazz 198 2.7k 0.141 100 1 27 0.02
Lesmis 77 254 0.087 36 1 6 -0.165

Email-univ 1.1k 5.5k 0.009 71 1 9 0.078
Polblogs 1.5k 19k 0.017 467 0 25 -0.196
ca-GrQc 5.2k 14.5k 0.00181 81 0 5 0.659

TerroristRel 881 8.6k 0.022 36 1 19 0.851

4.2. Comparison methods. We select three community detection algorithms as a com-
parison method, all three algorithms can detect overlapping communities.

COPRA [36]: COPRA is a community detection algorithm based on label propagation
proposed by Gregory in 2010. This algorithm can be regarded as an improved version
of RAK. The biggest improvement of COPRA algorithm over RAK algorithm is that
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COPRA can be used to find overlapping communities, while RAK algorithm can only be
used to find non-overlapping communities.

NI-LPA [39]: NI-LPA is a method proposed by Ben et al., in 2019. It is an algorithm
that focuses on the function of nodes. Because there are only two cases where the label
has a high attribution factor: the label is sent by multiple source nodes, or the label is sent
by an important node. Therefore, after the propagation phase, the pairs with ownership
coefficient less than a certain threshold are deleted, and only the labels with the best
ownership coefficient are retained.

LFM [53]: In 2009, Lancichinetti proposed a LFM algorithm based on the optimal
fitness function. The algorithm needs to calculate the difference of fitness when the nodes
join the community. The most important thing is that some nodes in the network may
have high fitness for multiple communities.

4.3. Evaluation metrics.
Normalized mutual information(NMI): For overlapping community, we can use

the extended NMI [53] to judge the difference between the communities by the algorithm
and the real communities. Its values are distributed between 0 and 1. The higher the
NMI value is, the more accurate the partition results are, and the lower the NMI value
is, the less similar the communities are. For partition C ′, Eq.3,4 gives the main formula
of overlapping NMI.

NMI = 1− 1

2
[H(X|Y ) +H(Y |X)], (3)

H(X|Y ) =
1

C ′

∑
k

H(Xk|Y )

H(Xk)
. (4)

Modularity(Q): For non-overlapping communities, we need to evaluate the quality of
the community through quantitative indicators, so as to further measure the advantages
and disadvantages of several community detection algorithms. In order to evaluate the
division of community, one idea is to ensure that there are as many edges within the
community as possible. Newman and Girvan proposed a measure to evaluate the quality
of community division, called the modulariy measure Q [54]. The modularity Q means
that the value of Q tends to 1, the more obvious the modularity degree of the generated
community division is. Therefore, the measurement standard proposed by the definition
is :

Q =
∑
i

(eii − ai2) = Tre−
∥∥e2∥∥ , (5)

where ‖γ2‖ represents the sum of all the elements in the matrix γ. Eq.5 represents the
ratio of the edges connecting two nodes of the same type in a network to the expected
ratio of the edges connecting any two nodes in the same community structure.

Normalized mutual information(EQ): Modularity Q [54] was originally proposed
by Newman and Girvan for non-overlapping community structure. However, with the
development of network, modularity can not be applied to complex network structure.
Therefore, Shen et al. [55] proposed a function to measure the performance of overlapping
community detection algorithm based on the number of overlapping members. A high
value of modularity indicates that the network partition is significant. In this paper, we
use the extended modularity Eq.6 as follows:
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EQ =
1

2m

∑
i

∑
uεci,vεci

1

QuQv

[Auv −
kukv
2m

], (6)

where Qu represents the community to which node u belongs, A is the adjacency matrix
of the network, ku represents the degree of node u, and m is the total number of edges in
the network.

4.4. Experimental results and discussion.
(1) Experimental results on modularity Q. Based on the LFR synthetic network, we
generated five kinds of non-overlapping networks. Then we evaluate the performance of
the algorithms using the modularityQ. The results of these algorithms on non-overlapping
networks are shown in Table 6. For both MCOPRA and COPRA, we set the parameter
v = 1 of their algorithm. It can be seen from the table that with the increase of mixing
parameters mu, the values of Q obtained by each algorithm begins to decrease. In the
case of the same value of mu, we can find that as the number of network nodes increases,
the performance of our algorithm is not greatly affected. Therefore, we can know that
our algorithm can still obtain a high Q value even when the number of network nodes
is large or small. As the results show, in most scenarios, our algorithm performance
is better than the COPRA algorithm. Finally, we conclude that the method has good
stability. By changing the number of nodes in the network, or changing the value of mu,
our algorithm can still detect the community structure well. The best results on each
dataset are highlighted in bold, the rest of the tables are the same.

Table 6. Experimental results Q on non-overlapping communities in syn-
thetic network.

LFR1 LFR3 LFR5 LFR7 LFR9
mu MCOPRA COPRA MCOPRA COPRA MCOPRA COPRA MCOPRA COPRA MCOPRA COPRA
0.0 0.9994 0.9481 0.9931 0.9265 0.9937 0.9419 0.9924 0.9693 0.9969 0.9653
0.1 0.9011 0.8521 0.9012 0.8594 0.8951 0.8546 0.8926 0.8730 0.8968 0.8735
0.2 0.7996 0.7829 0.7854 0.7663 0.7915 0.7631 0.7905 0.7659 0.7914 0.7771
0.3 0.6913 0.6904 0.6914 0.6724 0.6836 0.6877 0.6871 0.6686 0.6868 0.6730
0.4 0.5918 0.5778 0.5800 0.5506 0.5814 0.5741 0.5763 0.5793 0.5783 0.5639

(2) Experimental results on NMI. In order to verify the effectiveness of the algorithm
in the detection of overlapping communities, we also conducted experiments under five
overlapping networks generated by the synthetic network. For both COPRA and MCO-
PRA, we set the parameter v = 5 of their algorithm. Figure 4 shows the experimental
results of several algorithms in overlapping communities. In the table, the symbol “−”
means that the algorithm has been unable to find the community structure. The rest of
the tables below are the same. We measure the quality of the detected network commu-
nity structure by calculating the NMI value of overlapping communities. As can be seen
from Figure 4, compared with the other three algorithms, MCOPRA has advantages in
most cases. And we can find that MCOPRA is in a relatively stable state between the
value of mu from 0.0 to 0.4, which reflects the stability of our algorithm. When the value
of mu is 0.5, some algorithms can no longer detect the community structure, but the
performance of our algorithm is still better than other algorithms. Finally, experimental
results also show that our algorithm can maintain great performance in the case of simple
or complex community structure.
(3) Experimental results on EQ. EQ values of the four algorithms-LFM [53], CO-
PRA [36], NI-LPA [39] are listed in Table 7. It can be seen from the table that our
algorithm has the best classification effect in most cases. In several networks such as
email, Polbooks and GrQc, EQ is close to 0.5. This shows that the proposed algorithm
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Figure 4. Experimental results NMI on non-overlapping communities in
synthetic network. (a), (b), (c), (d), (e), representing network LFR2, LFR4,
LFR6, LFR8, LFR10.

can detect overlapping communities in real networks. From Table 7, it can be observed
that MCOPRA has advantages over the other three algorithms. The reason is that our
proposed algorithm introduces higher-order structure factors in the process of detecting
overlapping communities.
(4) The effect of the value of v on the modularity. In order to understand how
v affects the quality of community classification, we measured the EQ value obtained by
the algorithm on the real network TerroristRel. When v = 1, the value of EQ obtained
by the algorithm is 0.65, which is better than v = 2. Between v = 3 and 8, the EQ value
reaches a better situation, reaching the maximum value of 0.87 when v = 7. Starting
from v = 9, the EQ value drops to about 0.3, until v = 20, the value fluctuates slightly
between 0.3 and 0.4. Then the EQ value began to decline, and stabilized at 0.2 with the
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Table 7. Results of modularity EQ running in real-world networks

Datasets MCOPRA LFM COPRA NI-LPA
Karate 0.3718(v=2) 0.2863 0.1358(v=2) 0.3703
Dolphin 0.3784(v=3) 0.3984 0.1119(v=3) 0.0403
Polbooks 0.4556(v=4) 0.4360 0.5527(v=4) 0.2227

Jazz 0.3484(v=3) 0.1816 0.2938(v=3) -
Lesmis 0.2888(v=3) 0.2594 0.2415(v=3) 0.0756

Football 0.5715(v=6) 0.6386 0.2472(v=6) -
Email-univ 0.5109(v=2) - 0.4578(v=2) 0.0302

Polblogs 0.3770(v=2) 0.3684 0.3788(v=2) -
ca-GrQc 0.4334(v=6) 0.0911 0.4282(v=6) 0.4276

TerroristRel 0.8527(v=4) 0.3127 0.5637(v=4) 0.8423

increase of v. So we know that v has a big effect on EQ. The result is also show in Figure
5.
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Figure 5. EQ of MCOPRA on TerroristRel network.

5. Conclusions. In this paper, we propose a novel method, the motif-aware Label Prop-
agation Algorithm (MCOPRA), which is based on label propagation techniques to detect
overlapping communities in complex networks. MCOPRA retains the good propagation
method of COPRA, and uses the higher-order structural features of the network to im-
prove the label selection process. Therefore, our algorithm uses a new filtering method to
remove unnecessary labels. The proposed method improves the accuracy and robustness
of community detection. We have done a lot of experiments on real and artificial networks,
and the quality of MCOPRA for detecting overlapping communities has been proved in
experiments. We found that when it comes to networks with complex node relationships,
our algorithm can find the community closest to the correct network and maintain high
stability. On the real network, our method can reveal the real community distribution. In
the future, we can improve the MCOPRA model to discover communities in the context
of dynamic networks.
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