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Abstract. This work suggests two input schemes for determining vertical vehicle dy-
namics, vertical wheel forces and pitch torques based on Kalman filter (KF). Two different
recursive estimators for determining inputs are modeled mathematically by two regression
equations: the conventional input estimation (CIE) and adaptive weighting input esti-
mation (AWIE) that are two factors of a tunable fading and adaptive weighting fading,
respectively. In numerical simulations, we analyze the current strategy’s feasibility and
precision with a model driving estimation of wheel loads of a half-car over deterministic.
Analyzing and testing datasets of road profiles on the storage cloud are used comparative
mapping in the system. The results show that the proposed approach correctly measures
the vertical dynamics, and the AWIE task offers greater robust estimation capacity than
the vehicle’s CIE scheme.
Keywords: Input estimation; Vehicle vertical dynamics; Recursive least-squares esti-
mator; Cloud computing.

1. Introduction. Serious problems for the driver and passengers are caused by the vi-
bration produced due to the road profile’s unevenness, which has shown vibration on the
ride’s comfort [1-2]. Moreover, to interpret the driving environment and be road safety [3],
the driving behavior of vehicles and artificial intelligence-based vision is necessary [4], so
vertical dynamic estimation plays an important role [5]. In general, there are two methods
to obtain inputs, i.e., direct and indirect measurements [6]. The former process is referred
to as a scheme that uses force sensors/transducers to receive inputs. The latter approach
is referred to as a model-based estimation, input estimation, or force identification, i.e.,
determining the inputs acting on a system directly from the system responses’ measure-
ment. Its displacement or angle employing intermediate force sensors and transducers [7].
So, since we don’t use force sensors/transducers but use device responses, estimating road
profiles is also input estimation, an overview of the force estimation problem for a linear
vibration system [8]. In this way, the designs become their force sensors [9].
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A vehicle driving over deterministic profiles (bumps and potholes) or random road
profiles, the effect of these road profiles are acting as a base excitation for the system.
The methods for estimating the road profiles, based on sliding modes observe [6], on the
second-order and third-order sliding modes refer to [8]; based on road profile and vehicle
acceleration built a transform function between [10]; an artificial neural network [11]; a
wavelet neural network [12] and Kalman filtering (KF) [13] were developed. So, estimating
road profiles is also input estimations, when we don’t use force sensors and transducers
but use system responses.

An approach suggested Kalman inverse filtering using a KF [14] to deconvolve the forces
acting from vehicle response measurements at the tire-road interface [15-17]. The basic
simple KF [18] with the recursive least-squares estimator has been applied to classify tons
of different structures [19]. The simple KF is used with the recursive least-squares esti-
mator (RLSE) [20]. The conventional input estimation (CIE) and the adaptive weighting
input estimation (AWIE) schemes are developed [21]. This work applies the CIE and
AWIE algorithms for a 2 DOF half-car model. The car model’s numerical simulations
demonstrate and compare these two methods’ accuracy to estimate vertical wheel forces
and pitch torques. The current strategy’s feasibility and precision with a model driving
estimation of wheel loads of a half-car over deterministic are analyzed and the testing
dataset of road profiles on storage cloud are used comparative mapping in the system.

Figure 1. Two-dimensional degree-of-freedom half-car model layout

Figure 2. The half-car model traveling with constant velocity on a bump
that is approximated as a sinusoid, top graph with the front wheel passing,
bottom graph, and rear-wheel passing

Contributions of this study are highlighted as follows.
a).Analyzing the current strategy’s feasibility and precision with a model driving es-

timation of wheel loads of a half-car over deterministic. In addition, testing datasets of
road profiles on the storage cloud is analyzed for comparative mapping in the system.
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b). Modeling mathematically two different recursive estimators for determining in-
puts with two regression equations: the conventional input estimation (CIE) and adap-
tive weighting input estimation (AWIE) are two factors of tunable fading and adaptive
weighting fading, respectively.

c). Measuring the vertical dynamics, the AWIE task, and comparing robust estimation
capacity with the vehicle’s CIE scheme.

2. Related works. This section reviews the recursive least-squares estimator using Kalman
filter, the conventional input estimation, and the adaptive weighting input estimation.
Presentations are detailed as follows.

2.1. Recursive Least-Squares Estimator using Kalman filter. This section derives
the discrete-time state equations of the half-car model subjected to the loads. The input
estimation analysis of vertical wheel loads in the model is presented as follows. A half-car
model can be used and suited perfectly with a single-track road model [22]. This work,
modeling of the system assumptions, the effects of the tires are negligible, and the left
side and the right of the car symmetric, shown in Figure 1

Newton’s law gives the equation of motions of the half-car model that is expressed as
follows. ∑

Fz = mz̈ = −FSR
− FSF

− FCR
− FCF

(1)

where FSR
= KR(z − LRθ − zR), FSF

= KF (z + LF θ − zF ), and FCR
= C.R.(ż − LR.θ̇ −

żR);FCF
= CF (ż + LF.θ̇ − żF ).

and Euler’s equation is given as follows:∑
MCG = Iθ̈ = FSR

LR + FSR
LR − FCR

LF − FCF
LF (2)

Two equations (1)and (2) are put into a matrix format as follows:[
m 0
0 I

] [
z̈

θ̈

]
+

[
CF + CR CFLF − CRLR

CFLF − CRLR CFL
2
F + CRL

2
R

] [
ż

θ̇

]
+

[
KF +KR KFLF −KRLR

CFLF − CRLR KFL
2
F +KRL

2
R

] [
z
θ

]
=

[
CF żF + CRżR +KF zF +KRzR

CFLF żF − CRLRżR +KFLF zF −KRLRzR

] (3)

where FV = CF żF + CRżR + KF zF + KRzR, and Tθ = CFLF żF − CRLRżR + KFLF zF −
KRLRzR

In the formula: FV and Tθ are wheel vertical force and pitch torque; z̈, ż, z and θ̈, θ̇, θ
are the vertical acceleration, velocity, displacement, angular acceleration, angular velocity,
angle of the chassis, respectively; m and I are the mass of the chassis and moment of
inertia respectively; KF , KR, CF , CR, LF , LR are spring constants, damping constants in
front and rear; LF , LR are the length of front and rear to CG, respectively. With the
FV , Tθ, this work determined they by the road profiles estimation. We set the state
variables as X1 = z,X2 = z,X3 = θ,X4 = θ when adapting the motion equations with
this the state variable notation. A system with the state and measure equations of the
continuous-time can be stated as follows.

Ẋ(t) = FX(t) +Gu(t) (4)

Z(t) = HX(t) (5)
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where X(t) = [X1X2X3X4]T , u(t) = [FV Tθ].

and F =


0 1 0 0

−(KF +KR)
m

−(CF +CR)
m

−(KFLF−KRLR)
m

−(CFLF−CRLR)
m

0 0 0 1
−(KFLF−KRLR)

I
−(CFLF−CRLR)

I
−(KFL

2
F +KRL

2
R)

I
−(CFL

2
F +CRL

2
R)

I

,

G =


0 0
1
m

0
0 0
0 1

I

 , H =

[
1 0 0 0
0 0 1 0

]
.

With δT length of period times, and based on the inputs of noise process with fictitious
[23] [24]. Then Eq. (4) can be expressed as follows.

X(k + 1) = ΦX(k) + Γ[u(k) + w(k)]

X(k) = [X1(k)X2(k)X3(k)X4(k)]T

Φ = exp(F∆T )

Γ =

(k+1)∆T∫
k∆T

exp{F [(k + 1)∆T − τ ]}Gdτ

w(k) = [w1(k)w2(k)]T

u(t) = [FvTθ]
T

(6)

where u(k),Γ, and X(k) are the wheel loads, input matrix, and state vector; Γ is the
matrix of the state transition, and w(k) is the vector of noise. The mean is assumed as
zero and variance white with Ew(k)wT (j) = QΓkj, in which Γkj expresses as the delta
function. The statistical measurement noise equation of Eq. (5) can be expressed as
follows.

Z(k) = HX(k) + v(k)

Z(k) = [Z1(k)Z2(k)]T

v(k) = [v1(k)v2(k)]T
(7)

where H and Z(k) are the measured variable matrix, and observed vector, respectively;
v(k) is the vector of measured noise, where v(k) is supposed as zero with white noise its
means; and its variance is set as Ev(k)vT (j) = RΓkj, and R = θ2, where θ is the standard
deviation of the measured noise. The magnitudes of the FV and Tθ, are wheel vertical
force, and pitch torque can be estimated from the car model responses.

2.2. Conventional input estimation. Conventional input estimation (CIE), the discrete-
time state equations for the half-car model subject, is taken for vertically loading as in
the previous section. The FV magnitudes, Tθ, are wheel vertical force and pitch torque
can be estimated from the system responses by the proposed input estimation schemes.
The CIE, a simple KF, and a recursive least-squares algorithm can be found in [21]. The
simple KF equations are:

X̄(
k

k + 1
) = ΦX̄ · (k − 1

k − 1
) (8)

P (
k

k − 1
) = ΦP (

k − 1

k − 1
)ΦT + ΓQΓT (9)
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Figure 3. The half-car model traveling with constant velocity on a rect-
angular cleat, top graph: front wheel passing, bottom graph: rear wheel
passing

Figure 4. The NEE of the estimated dynamic loads vs. fading factors at
R = 1E − 15 (i.e., 1 × 10−15) to 1E − 16 with Q = 1E2 for the driving
half-car model on a sine-shaped bump with v =30km/hr

S(k) = HP (
k

k − 1
)HT +R (10)

Ka(k) = P (
k

k − 1
)HTS−1(k) (11)

P (
k

k
) = [I −Ka(k) �H] � P (

k

k − 1
) (12)

Z̄(k) = Z(k)−HX̄(
k

k − 1
) (13)

X̄(
k

k
) = X̄(

k

k − 1
) +Ka(k)Z̄(k) (14)

The equations for a recursive least-squares algorithm with a tuning fading factor are:

Bs(k) = H[ΦMs(k − 1) + I]Γ (15)
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Figure 5. The NEE of the estimated dynamic loads vs. fading factors at
R = 1E − 15 to 1E − 16 with Q = 1E2 for the driving half-car model on a
rectangular cleat with v =30km/hr

Figure 6. The NEE of the estimated dynamic loads vs. fading factors at
R with 1E− 15 to 1E− 16 with Q = 1E2 for the driving half-car model on
a random road with v =30km/hr

Ms(k) = [I −Ka(k)H][ΦMs(k − 1) + I] (16)

Kb(k) = f−1
tr Pb(k − 1)BT

S (k)[Bs(k)f−1
tr Pb(k − 1)BT

S (k) + S(k)]
−1

(17)

Pb(k) = [I −Kb(k)Bs(k)]f−1
tr Pb(k − 1) (18)
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ûCIE(k) = ûCIE(k + 1) +Kb(k)[Z̄(k)−Bs(k)ûCIE(k − 1)] (19)

In the formular, S(k) and Z̄(k) are the innovation covariances and Kb(k) is Kalman
gain that are obtained from the Kalman filter; Pb is the error covariance of the estimated
input vector, ftr represents the fading factor, andBs(k) andMs(k) are sensitivity matrices,
Kb(k), ûCIE(k), and Pb(k) are the correction gain for the updating, the error covariances
of the estimated input vector; where ûCIE(k) is a vertical loads vector. Therefore, the
vertical wheel forces and pitch torques can be estimated using the CIE approach is as
follows:

� Identify the state-variable model given by Eqs. (1) – (5), the discretized state-variable
model, as described by Eqs. (6) and (7), and measure the dynamic response data of the
half-car model system.

� Simple KF equations are used as in the Eqs. (8) – (14) to obtain the innovation
covariance S(k), innovation Z̄(k) , and KF gains Ka(k).

� Recursive least-squares algorithm is applied with a tunable fading factor, Eqs. (15)
– (19), to estimate the dynamic wheel loads ûCIE(k).

The proposed algorithms use the fading factor ftr to balance the fast adaptive capacity
and the lack of precision of the estimation. here.

2.3. Adaptive weighting input estimation. The adaptive weighting input estimation
(AWIE) is the main objective of creating a robust fading factor in the adaptively modified
algorithm according to the residual innovation sequence of the simple KF at each point.
The thorough derivation of the fading element of adaptive weighting refers to the literature
[21] options. Finally, Eqs. (20) – (22) are expressed as follows.

Kb(k) = ftr−1
awPb(k − 1)B

T
S (k)[Bs(k)ftr−1

awPb(k − 1)B
T
S (k) + S(k)]

−1
(20)

where ftraw(k) =

{
1
σ/|z̄(k)|

|z̄(k)| ≤ σ
|z̄(k)| > σ

Pb(k) = [I −Kb(k)Bs(k)]ftr−1
awPb(k − 1) (21)

ûAWIE(k) = ûAWIE(k − 1) +Kb(k)[Z̄(k)−Bs(k)ûAWIE(k − 1)] (22)

The estimating vertical dynamics are calculated scheme mathematically as a procedure
by applying the AWIE scheme is given in detail below. The CIE scheme is used to identify
two steps first. Then, the recursive least-squares strategy is applied with an adaptive
weighting fading factor that refers to Eqs. (15), (16), and (20) – (22), to estimate vertical
wheel forces and pitch torques ûAWIE(k − 1).

3. Experimental Results.

3.1. Scenario environmental setting experiment. A half-car model is driven with
different constant velocities, e.g., 30, 60, 90km/hr, over three types of road profile, e.g.,
the random road, sine-shaped bump, and rectangular cleat profiles. In the first numerical
experiment, the car is driven over the sine-shaped bump, the vertical motion of the axles
zF (front wheel) and zR(rear wheel). Figure 2 shows a half-car model scenario traveling
with constant velocity on a bump approximated as a sinusoid, top graph with the front
wheel passing, bottom graph, and rear-wheel passing.

ZF =

 0 if t < tFS
h0 sin(wf t), wf = πv

D
, if tFS ≤ t ≤ tFE

0 if t > tFE

(23)
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Table 1. The parameters of the driving half-car model.

ZR =

 0 if t < tRS
h0 sin(wf t), wf = πv

D
, if tRS ≤ t ≤ tRE

0 if t > tRE

(24)

where v and wf are the car velocity and angular frequency respectively; h0 and d are
the height of the bump, and horizontal coordinate; D and L are the length of the bump
and distance between the front and rear wheel, tFS and tFE are the front wheels starting
time and front-wheel ending time; tRS and tRE are the rear wheels starting time and
rear-wheel ending time, respectively.

The estimated error (NEE) in Eq. (28) is termed the normalized one to get the optimal
estimatition with NEE of dynamic wheel loads; the tune the fading factor ftr in Q is
assumed one level to set as 1E2, two levels of measurement noise σ is set to 1E− 7.5 and
1E − 8, respectively. Table 1 lists the setting parameters for the half-car model.

Using Eqs. (23a) and (23b) in Eqs. (3a) and (3b), we obtained the wheel vertical force
and pitch torque as follows:

Fv−sin = h0(1− Utp1)[KF sin(wft) + CRwf cos(wft)]

+h0(UtL − UtP1)[KR sin(wft) + CRwf cos(wft)]
(25)

Fθ−sin = h0LF (1− Utp1)[KF sin(wft) + CFwf cos(wft)]− h0LR(UtL

−UtP1)[KR sin(wft) + CRwf cos(wft)]
(26)

where

Utp1 =

{
0, if t ≤ tFE
1, if t > tFE

;UtL=

{
0, if t ≤ tRS
1, if t > tRS

;Utp2=

{
0, if t ≤ tRE
1, if t > tRE

In the secondary numerical experiment, the car is driven over rectangular cleat. Figure
3 illustrates a half-car model scenario of traveling with constant velocity on a rectangular
cleat, top graph: front wheel passing, bottom graph: rear wheel passing. Simplifying the
wheel vertical force and pitch torque in Eqs. (3a) and (3b), can be written as follows.

Fv−rect = h0(1− Utp1)KF + h0(UtL − Utp1)KR (27)

Fθ−rect = h0LF (1− Utp1)KF − h0LR(UtL − Utp1)KR (28)

where

Utp1 =

{
0, if t ≤ tFE
1, if t > tFE

;UtL=

{
0, if t ≤ tRS
1, if t > tRS

;Utp2=

{
0, if t ≤ tRE
1, if t > tRE
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In the third numerical experiment, the car is driven over ISO-8608 random road profile
[25] at this period. Simplifying the wheel vertical force and pitch torque in Eqs. (3a) and
(3b), can be written as follows:

Fv−rand = KF × zR(s) +KR × zR(s) (29)

Fθ−rand = KF × LF × zR(s)−KR × LR × zR(s) (30)

where zR(s) =
∑N

i=1Ai sin(Ωis−Ψi)

Ai =
√

2Φ(Ωi)∆Ω, i = 1 ∼ N (31)

where Ωi : wavenumbers are chosen to lie at N equal interval ∆Ω , Ψi : phase angles
The simulation parameters consist of a sampling interval of ∆T is set to 0.001 sec, and
a final time tf is set to 1.2 sec. The exact and loads estimations validate the proposed
approach with its error metric as defined expression as follows.

Error =

√∑n
k=1 u

2
Exact(k)−

√∑n
k=1 û

2
Est(k)∑n

k=1 u
2
Exact(k)

× 100% (32)

3.2. Several obtained results. Several obtained results are represented as follows.
(1) Dynamic wheel load types are estimated in the half-car model with a 30km/hr velocity
crossing the three different road profile types. Figures 10 to 12 depict the obtained
estimation results from the AWIE and CIE approaches. Figures 10(a), 10(b), 11(a),
11(b) and 12(a), 12(b) displays the experimental results with ftr = 0.1, Figures 10(c),
10(d), 11(c), 11(d) and 12(c), 12(d) the experimental results ftr = 0.9, for the wheel
vertical forces and pitch torques, respectively.

Figure 7. The simulated output displacement and angle for the driving
half-car model on sine-shaped bump with setting v = 30km/hr, σ = 1E−8,
Q = 1E2

Figure 12(d). The pitch torques of the obtained estimation for the driving half-car
model on the random road profile with v = 30km/hr: (a) AWIE scheme; (b) CIE scheme
(ftr = 0.9), respectively. (2) Table 2 summarizes the NEEs of the dynamic wheel load
types for the half-car model with a velocity of 30km/hr in the three road profiles. The
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Figure 8. The obtained simulation output displacement and angle for the
driving half-car model n the rectangular-cleat with setting v = 30km/hr,
σ = 1E − 8, Q = 1E2

Figure 9. The simulated output displacement and angle for the driving
half-car model on the random-road with setting v = 30km/hr,θ = 1E −
8(i.e., 1× 10−8), Q = 1E2(i.e., 1× 102).

NEE of wheel loads type is within 4.93%for the AWIE method and within 5.33% for the
CIE method with ftr = 0.1. The NEE of wheel load type in the half-car model crossing
sine-shaped bump and rectangular cleat are within 1.76%, crossing random road profile
are within 43.03% for the CIE method with ftr = 0.9.

In work, the initial conditions for the approaches are given by: the state vector is a
4-by-1 zero matrix and the filter’s error covariance matrix is a 4-by-4 diagonal matrix
of 1E10 for the simple KF, the error covariance is a 2-by-2 diagonal matrix of 1E8, the
sensitivity matrix is a 4-by-4 zero matrix and wheel loads is a 2-by-1 as zero matrices with
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(a) Wheel vertical forces estimation (b) Pitch torques obtained estimation

(c) Wheel vertical forces estimation (d) Pitch torques of the obtained estimation

Figure 10. Wheel vertical forces and Pitch torques of the obtained esti-
mations for the driving half-car model on the sine-shaped bump with setting
v =30km/hr over (a) AWIE scheme and (b) CIE scheme (ftr = 0.9), re-
spectively

Table 2. The NEE of the three estimated dynamic wheel load types for the
driving half-car model over three road profiles with a velocity of 30km/hr
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(a) Wheel vertical forces estimation (b) Pitch torques obtained estimation

(c) Wheel vertical forces estimation (d) Pitch torques of the obtained estimation

Figure 11. Wheel vertical forces and the pitch torques of the obtained es-
timation for the driving half-car model on the rectangular cleat with setting
v = 30km/hr: (a) AWIE scheme and (b) CIE scheme (ftr = 0.9), respec-
tively

applying the least-squares algorithms. The obtained value of the NEE with three dynamic
wheel load types indicates that the half-car model-driven over the sine-shaped bump and
rectangular cleat significantly less than the random road profile when 0.1 ≤ ftr ≤ 0.9.
Figures 4 to 6 illustrate the NEE’s comparison of the estimated dynamic loads with
different fading factors for the driving half-car model over the varieties roads.

Additionally, the estimation results for the wheel vertical force and pitch torque in the
car driven over the three different road profile types are good, and all NEE values are
within 5.33% at θ = 1E−8 with Q = 1E2, when ftr = 0.1 in CIE, and AWIE approaches
(in Table 2). The fading factor ftr discards old data by weighting data according to
the occurred data time. The measurement noise covariance must have been increased in
comparison with the previous measurements. e.g., the estimated optimization method
[26]. Therefore, in numerical experiments, ftr = 0.1 is used to compare the AWIE, and
CIE approaches’ efficiency and robustness with θ = 1E − 8 with Q = 1E2. As well as
demonstrate the accuracy of the half-car model system’s proposed methods, the vertical
wheel forces and pitch torques are estimated with output responses, displacement, and
angle (Figs. 7-9).
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(a) Wheel vertical forces estimation (b) Pitch torques obtained estimation

Figure 12. Wheel vertical forces and the pitch torques of the obtained
estimation for the driving half-car model on the rectangular cleat with set-
ting v = 30km/hr: (a) AWIE scheme and (b) CIE scheme (ftr = 0.9),
respectively

Table 3. The NEE of the three estimated dynamic wheel load types for
the driving half-car model over three road profiles with different constant
velocity (km/hr)

(3) Table 3 summarize the NEEs of the dynamic wheel load types for the half-car model
in the three road profiles with different constant velocity (30, 60, 90km/hr). The NEE
of wheel load type is within 5.33% for the CIE method with ftr = 0.1 and the AWIE
method.

(4) Dynamic wheel load types are estimated in the half-car model with a velocity of
90km/hr crossing three different road profile types. Figures 13– 15 show estimation results
for the AWIE and CIE (with ftr = 0.1) approaches, the simulation results for the vertical
wheel forces and pitch torques, respectively.

(5) An oscillating motion from front to rear is referred to as pitching that pitches if
the rough road’s wavelengths are such that the front and rear’s vertical movements are
in opposition process. This implies if, as the rear goes up on a bump or vice versa, the
front axle drops into a depression. Figures 10(b), 10(d), 11(b), 11(d), 13(b), and 14(b)
show the pitch torques of the obtained estimation for the driving half-car model on the
rectangular cleat with parameter setting variety values.

3.3. Experimental discussions. Some achieved results reveal that the proposed scheme
correction are listed as follows.
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(a) Wheel vertical forces estimation (b) Pitch torques obtained estimation

Figure 13. Wheel vertical forces and the pitch torques of the obtained
estimation for the driving half-car model on the sine-shaped bump with
v = 90km/hr: (a) AWIE scheme; (b) CIE scheme (ftr = 0.1), respectively.

(a) Wheel vertical forces estimation (b) Pitch torques obtained estimation

Figure 14. The vertical wheel forces and pitch torques of the obtained
estimation for the driving half-car model on the rectangular cleat with v =
90km/hr: (a) AWIE scheme; (b) CIE scheme (ftr = 0.1), respectively

(1) The proposed methods had substantial errors in the initial estimate, but after a few
time step, the estimated rapidly converge to the exact values as shown in Figures 10(a),
10(c), 11(a), 11(c), 13(a) and 14(a), these simulation results reveal that the proposed
scheme can correct the error in the initial estimate by using tremendous values of the
filter’s error covariances and the error covariances.

(2) For comparing estimated results with σ = 1E − 7.5 and 1E − 8, investigated that
the determined results for σ = 1E − 7.5 have larger NEEs than those for σ = 1E − 8.
Figures 4 to 6 show the NEE of the estimated dynamic loads vs. different fading factors.
The estimated accuracy is reduced, this is because of considerable measurement noise.
For σ = 1E − 8, a high precision measurement sensor is needed. (3) In terms of the
energy content, the dynamic wheel loads estimation for the driving half-car model over
three different road profile types with v = 30km/hr, (a) the NEEs of vertical wheel forces
are 4.91%, 0.61%, and 4.93%; pitch torques are 1.42%, 0.63% and 2.13% using the AWIE
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(a) The vertical wheel forces of the obtained
estimation

(b) The pitch torques of the obtained estimation

Figure 15. The vertical wheel forces and the pitch torques of the obtained
estimation for the driving half-car model on random road profile with setting
v = 90km/hr: (a) AWIE scheme; (b) CIE scheme (ftr = 0.1), respectively

method, (b) the NEEs of vertical wheel forces are 1.12%, 0.78%, and 5.33%; pitch torques
are 0.70%, 0.91% and 2.24% using the CIE method with ftr = 0.1, respectively. Table
2 lists the NEE of the three estimated dynamic wheel load types for the driving half-car
model over three road profiles with a velocity of 30km/hr. There aren’t change abruptly
for estimated loads in the rectangular cleat shown as in Figures 11, and 14; the loads’
estimated error results from less than estimated loads in sine-shaped bump and random
road profile as shown in Figures 4 to 6. Additionally, the calculated results pitch torques
better than vertical forces using CIE and AWIE approaches.

The dynamic wheel loads estimation results for the half-car model-driven over three
different road profile types with car velocity v = 30, 60, 90km/hr are good, and NEE
values are within 5.33%, when ftr = 0.1 in CIE and AWIE approaches. Table 3 depicts the
NEE of the three estimated dynamic wheel load types for the driving half-car model over
three road profiles with different constant velocities (km/hr). Additionally, the estimated
results pitch torques better than vertical forces using CIE and AWIE approaches.

(4) The AWIE and CIE schemes’ obtained estimation results with ftr are set to 0.1
that are excellent agreements with the exam vertical wheel forces’ exact values and pitch
torques in the cosine-shaped bump, rectangular cleat, and random road profile types when
car velocity v = 30km/hr. Figures 10(a), (b), 11(a), (b), and 12(a), (b)) show the vertical
wheel forces of the obtained estimation for the driving half-car model on the rectangular
cleat with different setting parameters. Figures 13 to 15 show the obtained results with
parameter setting v is set to 90km/hr. Nevertheless, in three different road profiles, the
measurement results of the CIE method with ftr = 0.9 vary substantially from the exact
values of the vertical wheel forces and pitch torques at vehicle velocity as shown in Figures
10(c), (d), 11(c), (d), and 12(c), (d). Therefore, as the inference is drawn in Figures 10(a),
(b), 11(a), (b), and 12(a), (b), as well as, the same simulation results are obtained for the
velocity change Figures 13 – 15, the adaptive weighting fading factor has adequate and
robust estimation performance.

(5) Pitching oscillating movement can occur by the vehicle wheel based on a previ-
ous multiple half-car models over the road surface uneven wavelength [27]. The work,
wheelbase of the half-car model, is set 2m, a wavelength of the cosine-shaped bump and
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rectangular cleat are set to 1m, and the car driven over the road profiles. So, there are
pitching appearances in Figures 10(b), 10(d), 11(b), 11(d), 13(b), and 14(b).

(6) The aim of vertical dynamics is to tuning body suspension and damping to guarantee
good ride comfort, respectively minimal stress of the load at sufficient safety. According
to the simulation estimated results, these body suspension spring force and damping force
in Eqs. (1a), (1b) can also be assessed using the two inverse methods. After all, they can
estimate the input (road profile) from the system output in inverse.

4. Conclusion. This paper analyzed the current strategy’s feasibility and precision with
a model driving estimation of wheel loads of a half-car over deterministic. The half-car
model’s vertical dynamics are identified using the two estimated input methods, e.g., the
conventional input estimation (CIE) and adaptive weighting input estimation (AWIE)
schemes. The instance scenarios verify the accuracy of the wheel vertical forces’ estima-
tion results and pitch torques for the CIE scheme with a fading factor, e.g., a symbol
factor of ftr is set 0.1 and the AWIE scheme. The tracking of the random vertical dynam-
ics can offer the perfect performance of the methods. Moreover, a comparison of efficiency
and robustness results indicates that the AWIE approach has superior robust estimation
capability than the half-car model system’s CIE scheme. Referring to the dataset of road
profiles on storage cloud is used comparative mapping in the system. The experimen-
tal results also show that the proposed method correctly measures the vehicle’s vertical
dynamics compared with the literature as similar as in [21]. Future work will apply to
various fields [28-33], e. g., vibration and noise guidance.
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