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Abstract. In view of the low convergence accuracy, slow convergence speed and easy
to fall into local optimum of standard whale algorithm, a whale optimization algorithm
based on nonlinear adjustment and random walk strategy (NWOA) is proposed. Based on
the exponential function of the maximum fitness value, average fitness value, minimum
fitness value and random factor of the population, a strategy adjusting the inertia weight
nonlinearly is designed to improve the convergence speed and optimization accuracy of
the algorithm. In addition, a nonlinear adjustment convergence factor strategy is used
to balance the global search and local development capabilities of the algorithm. A search
strategy based on random walk is designed to help the algorithm jump out of the local
optimum and improve the local search ability. Through 12 benchmark functions solving,
the experimental results show that NWOA algorithm has significantly improved the con-
vergence speed and optimization accuracy, and solved the problem that the algorithm is
easy to fall into local optimization in multimodal functions. Thus compared with other
swarm intelligence algorithms, NWOA algorithm shows better optimization performance.
Keywords: whale optimization algorithm, nonlinear adjustment, random walk strategy,
function optimization

1. Introduction. Optimization problem has always been a research hotspot in com-
puter science, engineering research and other fields. Inspired by the swarm intelligence in
nature, a variety of swarm intelligence optimization algorithms, such as Particle Swarm
Optimization (PSO) [1], Ant Colony Optimization (ACO) [2], Gey Wolf Optimization
(GWO) [3], Ant Lion Optimization (ALO) [4], and Sine Cosine Algorithm (SCA) [5]
were proposed. They are widely used in the solution of complex function optimization
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problem [6–9], which fully proves the powerful optimization performance of the swarm
intelligence optimization algorithm.

Whale Optimization Algorithm (WOA) is a new swarm intelligence optimization algo-
rithm proposed by Mirjalili et al. in 2016 [10]. Through random search, prey surrounding,
and bubble-net foraging of humpback whales, it simulates the group hunting behavior of
humpback whales and achieves the optimization. The whale optimization algorithm has
simple structure and few adjustable parameters. It is faster and more accurate than tradi-
tional particle optimization algorithms and genetic algorithms in terms of multi-function
solving. Thus WOA algorithm has been widely used in machine learning [11], path plan-
ning [12], feature selection [13], production scheduling [14], and image segmentation [15]
due to its good optimization performance.

Although WOA is widely used, it also has the disadvantages of traditional swarm intel-
ligence optimization algorithm, such as easy to fall into local optimum, slow convergence
speed and low optimization accuracy. Aiming to these shortcomings, many improved al-
gorithms have been put forward to improve the performance of traditional WOA. Oliv et
al. presented a hybrid pure WOA [16], which used the hybrid pure strategy to guide the
position update of whales, and avoided falling into the local optimum to a certain extent.
Zhou et al. introduced Levy flight into the whale optimization algorithm to increase the
population diversity and improve the ability to jump out of local optimal solution [17].
Sun et al. presented an improved whale optimization algorithm to solve large-scale global
optimization problems. Cosine function, quadratic interpolation and Levy flight strategy
were also introduced to avoid falling into local optimum effectively [18]. Based on adaptive
weights and simulated annealing, Chu et al. put forward a whale optimization algorithm
to effectively improve the convergence accuracy and optimization performance of the al-
gorithm [19]. Liu et al. proposed a WOA with a global search strategy. They introduced
adaptive weight and optimal neighborhood disturbance to improve the convergence speed
and optimization accuracy [20]. The above improved strategy improves the performance
of WOA algorithm in some degree, and there is still room for further improvement.

Aiming at the problems of slow convergence, low optimization accuracy, and easy to
fall into local optimum of traditional WOA algorithms, a Nonlinear Adjustment of Inertia
Weight and Random Walk Strategies-Based Whale Optimization Algorithm (NWOA) is
put forward. In the standard WOA algorithm, the inertia weight in the position update
formula is a fixed value of 1. When dealing with complex optimization problems, the
search process of the algorithm is extremely complicated, and the obtained solutions are
random. Inspired by the PSO algorithm, a strategy for nonlinearly adjusting the inertia
weight based on the exponential function of the maximum fitness value, average fitness
value, minimum fitness value and random factor of the population is designed. Based on
the real-time performance behavior of the population during the iterative process, this
strategy is introduced into the position update formula to guide the population to optimize
it optimally. Meanwhile, the convergence factor plays a key role in the global development
and local search ability of the coordination algorithm, and its setting decreases linearly
with the number of iterations from 2 to 0. However, when solving complex optimization
problems, the linear decreasing strategy of convergence factor is difficult to adapt to the
actual search situation. Therefore, a nonlinear adjusting convergence factor strategy is
designed to coordinate the global development and local search ability of the algorithm. At
the same time, in the iterative process of optimization, inspired by the ALO algorithm,
a search strategy based on random walk is designed. A new solution is obtained by
perturbing the contemporary optimal solution through the random walk strategy. Greedy
selection strategy is used to compare the fitness values of contemporary optimal solution
and new solution, and select and retain the solution with better fitness value. This
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strategy is conducive to jumping out of local optimization. Meanwhile, the performance
of NWOA algorithm is verified by 12 benchmark functions. The results show that the
algorithm performs well in function optimization, has higher optimization accuracy and
faster convergence speed, and can effectively avoid the algorithm falling into local optimal
solution.

2. Whale optimization algorithm. The characteristics of WOA can be described from
three aspects: prey surrounding, bubble-net foraging and random search.

Assuming that the whale population is N and the dimension of the problem space to
be solved is d, then the corresponding solution of the i-th whale in the dimensional space
is Xi = (x1

i , x
2
i , . . . , x

d
i ) and i = 1, 2, 3, . . . , N . The position of each whale in the search

space represents a feasible solution to the optimization, and the position of the optimal
whale corresponds to the global optimal solution.

2.1. Prey surrounding. In the whale algorithm, the optimal whale position is not
known primordially during the search. Therefore, it is assumed that the current solution
closest to the objective function generated in the iteration is the optimal whale position.
Other individuals of the group swim towards the optimal whale position to update their
own positions and surround the prey. The position updating formula is as follows:{

X(t+ 1) = X∗(t)− A ·D
D = |C ·X∗(t)−X(t)| (1)

where, t is the current iteration number; X∗ is the global optimal whale position vector;
X is the current whale position vector, A and C are the coefficient matrixes. Its formula
is:

A = 2a · r1 − a (2)

C = 2r2 (3)

a = 2− 2t/T (4)

where, r1 and r2 are the random numbers in [0, 1]. a is the convergence factor, and it is
linearly reduced from 2 to 0 at iteration. T is the maximum number of iterations.

2.2. Bubble-net foraging. Humpback whales also update their position by spiraling
up. The position update is:{

X(t+ 1) = X∗(t) +D′ · ebl · cos(2πl)
D′ = |X∗(t)−X(t)| (5)

where, b is a constant that defines the shape of logarithmic helix, and l is a random
number in [−1, 1].

Humpback whales swim toward their prey spirally and shrink the enclosure to get close
to the prey for food. In order to simulate the bubble-net foraging behavior of humpback
whales, when |A| < 1, humpback whale individual uses the probability 0.5 as the threshold
to determine the position update method and select the behaviors of surrounding prey or
spiraling. The position update is as follows:

X(t+ 1) =

{
X∗(t)− A ·D, p < 0.5

X∗(t) +D′ · ebl · cos(2πl), p ≥ 0.5
(6)

where, p is a random number in [0, 1].



Whale Optimization Algorithm 309

2.3. Random search. In the WOA algorithm, in order to improve the global search
ability of whales, when |A| ≥ 1, the whales randomly swim outside the shrinking en-
circlement to search for prey. In the current whale population, a whale individual is
randomly selected as the global optimal solution, and other whale individuals of the pop-
ulation approach it to update their positions. The position update is:

X(t+ 1) = Xrand(t)− A · |C ·Xrand(t)−X(t)| (7)

where, Xrand is the randomly selected whale position vector.

3. Improved whale optimization algorithm (NWOA).

3.1. Non-linear adjustment strategy. (1) Non-linear adjustment of inertia weight
Inertial weight is a key factor to balance the global search ability and local optimization
ability of the algorithm [1]. Research shows that a larger inertia weight is beneficial for
global search and can increase the population diversity, and a smaller inertia weight can
improve the local mining of the algorithm and speed up the convergence speed. It can be
seen from formulas (6) and (7) that the inertia weight of the position update in the WOA
algorithm is a constant 1. Whereas an appropriate inertia weight adjustment strategy
can balance the contradiction between global search and local search, thereby improving
the algorithm optimization. In the actual optimization process, the iterative evolution
of the algorithm is complex and non-linear, and the inertia weight that reduces simply
and linearly cannot match the real optimization well. To this end, this paper designs
a nonlinear adjustment of inertia weight strategy to adjust the whale position update
method. The calculation of the inertia weight in this strategy is based on the real-time
performance behavior of the population at iterative. At each iteration, the inertia weight
value is adjusted nonlinearly by the exponential function of the maximum fitness value,
average fitness value, minimum fitness value and random factor of the population. On the
premise of not increasing the empirical selection parameters, the strategy is formalized as
shown in formula (8):

ωt =
favg − fmin

fmax − favg
· e−l · p , fmax − favg ̸= 0 (8)

where, ωt is the inertia weight of the t-th iteration;
fmax, farg and fmin are the maximum fitness value, average fitness value, and minimum

fitness value of the whale population respectively under current iteration number t; l is
the random number in [0, 1], and p obeys a uniform distribution on [0, 1].
The position update based on nonlinear adjustment of inertia weight strategy is:{

X(t+ 1) = ωt ·X∗(t)− A ·D
D = |C ·X∗(t)−X(t)| (9){

X(t+ 1) = ωt ·X∗(t) +D′ · ebl · cos(2πl)
D′ = |X∗(t)−X(t)| (10)

X(t+ 1) =

{
ωt ·X∗(t)− A ·D, p < 0.5

ωt ·X∗(t) +D′ · ebl · cos(2πl), p ≥ 0.5
(11)

X(t+ 1) = ωt ·Xrand(t)− A · |C ·Xrand(t)−X(t)| (12)

It can be seen from the position update formulas shown in formulas (9)-(12) that, com-
pared with the original position update formulas (1), (5), (6) and (7), the position update
based on the strategy of non-linear adjustment of inertia weight first comprehensively
considers the fitness of the current whale population to improve the algorithm optimiza-
tion. And then the inertia weight is affected by the exponential function. Compared with
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WOA algorithm, the inertia weight decreases faster at the late iteration and improves the
local search ability of the algorithm greatly. Meanwhile, affected by the random factor l,
the randomness of the value helps to maintain the population diversity. It cannot only
make the algorithm have the ability to jump out of the local optimum, but also improves
the global search of it.

(2) Nonlinear adjustment of convergence factor
From the WOA algorithm, the coefficient matrix is used to adjust the balance of the
global and local search ability of the algorithm, and the value of A mainly depends
on the convergence factor a. A large convergence factor can enhance the global search
ability and improve the population diversity, so as to avoid falling into the local optimal
solution at the initial stage of iteration, and forming premature convergence. A small
convergence factor enables the algorithm to have strong local search ability, speeds up
the convergence speed and improves the algorithm efficiency. For this reason, in order to
solve the slow convergence speed caused by the slow deceleration at the later iteration of
WOA, this paper introduces the strategy of nonlinear adjustment of convergence factor
without changing the value boundary of a, so that the balance of global and local search
ability is ensured and the convergence speed is improved. The formal description of the
strategy is:

at = at − at · sin
(
π

2
· t

T

)
(13)

where, at is the value of the convergence factor of the t-th iteration, which is nonlinearly
reduced from 2 to 0 during the iteration.

After introducing the strategy of non-linear adjusting convergence factor into the NWOA
algorithm, the equation for solving the coefficient matrix is changed from formula (2) to
formula (13).

3.2. Random walk strategy. The Random walk strategy (RWS) used in this paper
draws on the idea of the ant random walk model in the ant division optimization algorithm
in [13]. The specific steps are as follows:

(1) At each iteration of the algorithm, the current optimal whale position vector X t is
disturbed by a random walk strategy to obtain a whale position vector X tr, the formula
is as follows:

X tr
i =

(X t
i − ai) · (dti − cti)

bi − ai
+ cti, i = 1, 2, 3, . . . , d (14)

where, ai and bi are the minimum and maximum values of the random walk of the i-th
dimension variable, respectively; cti and dti are the minimum and maximum values of the
t-th iteration of the i-th dimension variable, respectively.
(2) Calculate the fitness f(X tr) of the whale position vector X tr;
(3) The current optimal whale position vector value X t and fitness value f(X t) are

updated according to formula (15):

X t =

{
X tr, f (X tr) < f (X t)
X t, f (X tr) ≥ f (X t)

, f
(
X t
)
=

{
f (X tr) , f (X tr) < f (X t)

f (X t) , f (X tr) ≥ f (X t)
(15)

(4) Output the current optimal whale position vector X t, and end the RWS algorithm.

3.3. NWOA algorithm. The NWOA algorithm is shown as Table 1.



Whale Optimization Algorithm 311

Table 1. Algorithm flow

Pseudo code of NWOA Algorithm
Initialize the whales population Xi(i = 1, 2, ..., n)
Calculate the fitness of each search agent
X∗ =the best search agent
while(t < the maximum number of iterations)
for each search agent
Update a,A,C, l, and p
if1(p < 0.5)
if2(|A| < 1)
Update the position of the current search agent by Eq.(9)

else if2(|A| ≥ 1)
Select a random search agent (Xrand)
Update the position of the current search agent by Eq.(10)

end if2
else if 1(p ≥ 0.5)
Update the position of the current search by Eq.(12)

end if1
end for
Check if any search agent goes beyond the search space and amend it
Calculate the fitness of each search agent, Record X∗

for i = 1 to d do
Improve X∗ use by Eq.(14)
Get X∗∗

end for
Evaluate X∗ and X∗∗ use by Eq.(15)
Update X∗if there is a better solution
t = t+ 1

end while
return X∗

3.4. Algorithm complexity analysis. The whale population is set as N , the dimension
of the problem space to be solved as d, the maximum iteration as T , and the time com-
plexity of standard WOA as O(N × d× T ). The NWOA algorithm introduces non-linear
adjustment inertia weights, non-linear convergence factors and random walk strategies on
the basis of standard algorithms. Time complexity analysis of NWOA algorithm in this
paper:

The strategy of nonlinear inertia weight and convergence factor does not increase the
number of cycles and the additional time complexity, and the time complexity is still
O(N × d × T ). The time complexity of the random walk strategy is O(d × T ). The
calculation scale of other processes in the algorithm is small and can be ignored. Therefore,
the time complexity of the proposed NWOA algorithm is O(N×d×T ), which is consistent
with the time complexity of standard WOA algorithm.

4. Experiment and analysis. In order to verify the optimization of NWOA algorithm,
this paper selects 12 standard test functions for simulation, and compares them with the
Particle Swarm Optimization algorithm [1] (PSO), the Gray Wolf Algorithm [3] (GWO),
and the Vertical and Horizontal Crossover Algorithm [21] (CSO), standard WOA algo-
rithm [10] and LWOA [17]. The simulation experiment platform is based on Windows 10
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64-bit operating system, 3.0GHz frequency and 16G memory, and Python 3.9.1 software
is used for programming.

4.1. Standard test functions and experimental settings. For the 12 standard test
functions selected in this article, their names, variable ranges and target values are listed
in Table 2. Among them, f1−f5 are unimodal functions; f6−f10 are multimodal functions;
f11 and f12 are fixed dimension functions (d is 2); lb and ub are the lower and upper bounds
of decision variables, respectively, and fmin is the global optimal solution of the function.

This paper uses the average value (Ave) and standard deviation (std) of the optimiza-
tion accuracy as the evaluation indexes. The dimensions d of the test function is set as
30, 50 and 100, respectively; the population as 30, and the maximum iterations as 500.
The parameters of PSO, GWO, CSO, standard WOA and LWOA are set according to the
corresponding references. The parameter setting of NWOA algorithm is the same as that
of standard WOA algorithm, and the parameters of random walk strategy introduced in
NWOA algorithm are set according to reference [4].

Table 2. Test functions

Name Function lb ub fmin

Sphere f1(x) =
n∑

i=1

x2
i −100 100 0

Schwefel 2.22 f2(x) =
n∑

i=1

|xi|+
n∏

i=1

|xi| −10 10 0

Schwefel 1.2 f3(x) =
n∑

i=1

(
i∑

j=1

xj

)2

−100 100 0

Rosenbrock f4(x) =
n−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2] −30 30 0

Quartic f5(x) =
n∑

i=1

ix4
i + random[0, 1] −1.28 1.28 0

Restrigin f6(x) =
n∑

i=1

[x2
i − 10 cos(2πxi) + 10] −5.12 5.12 0

Ackley

f7(x) = −20 exp

−0.2

√√√√ 1

n

n∑
i=1

x2
i


− exp

(
1

n

n∑
i=1

cos (2πxi)

)
+ 20 + e

−32 32 0

Griewank f8(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos
(

xi√
i

)
+ 1 −600 600 0

Zakharov f9(x) =
n∑

i=1

x2
i +

(
n∑

i=1

0.5ixi

)2

+

(
n∑

i=1

0.5ixi

)4

−5 10 0

Alpine f10(x) =
n∑

i=1

|xi sin(xi) + 0.1xi| −10 10 0

Drop wave f11(x) = −1 + cos(12
√

x2
1 + x2

2)

0.5(x2
1 + x2

2) + 2
−5.12 5.12 −1

Camel back f12(x) = 4x2
1 − 2.1x4

1 +
1
3
x6
1 + x1x2 − 4x2

2 + 4x4
2 −5 5 −1.0316
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4.2. Experiment and analysis of algorithm performance comparison. In order to
avoid the influence of randomness on the optimization results, the average value (Ave) and
standard deviation (Std) of the optimization accuracy of 6 optimization algorithms are
calculated after 50 times of independent operation. reflects the accuracy of the algorithm,
and Std reflects the algorithm robustness and stability. The relevant statistical results
are listed in Table 3, among which the black fonts are the best results.

Table 3. Comparison of optimal performance of 6 algorithms

Function d
PSO GWO CSO

Ave Std Ave Std Ave Std

f1

30 9.57E-02 3.75E-02 4.16E-31 6.43E-31 7.84E-04 8.32E-04
50 0.7093 0.193493 2.86E-22 3.11E-22 0.198613 0.201729
100 1.17E+01 2.541354 3.06E-14 2.09E-14 1.34E+01 7.959127

f2

30 1.881226 0.950153 8.84E-19 5.67E-19 1.10E-04 6.65E-05
50 7.600576 1.906098 1.24E-13 6.67E-14 2.57E-02 2.05E-02
100 2.65E+01 2.696883 4.49E-09 1.53E-09 1.793796 0.587376

f3

30 6.70E+02 1.72E+03 6.71E-06 1.42E-05 6.81E-02 1.21E-01
50 1.25E+03 1.99E+02 0.182195 0.252752 1.16E+01 3.486827
100 2.42E+04 1.51E+04 3.93E+02 6.35152 1.21E+03 4.39E+02

f4

30 7.79E+01 3.35E+01 2.67E+01 0.85153 2.87E+01 4.906496
50 3.87E+02 4.54E+02 4.72E+01 0.39704 6.52E+01 3.10E+01
100 1.60E+03 1.60E+02 9.81E+01 0.391692 4.42E+02 1.91E+02

f5

30 0.1329 0.038805 1.54E-03 8.77E-04 1.55E-03 1.03E-03
50 0.440187 0.11684 2.31E-03 4.94E-04 5.15E-03 1.31E-03
100 4.027608 1.189289 7.32E-03 8.70E-04 6.59E-03 3.60E-03

f6

30 3.50E+01 4.661145 3.01E-14 3.76E-14 5.95E-04 8.23E-04
50 7.23E+01 1.75E+01 6.851316 2.340851 2.36E-02 8.63E-03
100 2.92E+02 1.28E+01 8.81378 6.498429 1.01E+02 6.746231

f7

30 2.972257 0.218551 2.56E-08 1.58E+08 5.05E-02 2.04E-02
50 2.562834 0.171706 2.26E-06 1.14E-07 0.212828 0.156377
100 2.67226 6.72E-02 2.45E-04 6.46E-05 1.960989 0.159618

f8

30 2.22E+02 2.40E+01 6.18E-03 1.65E-03 7.60E-03 1.34E-02
50 4.21E+02 1.34E+01 7.79E-03 1.42E-02 3.25E-02 1.73E-02
100 9.17E+02 3.77E+01 1.09E-02 1.94E-02 0.374158 0.168336

f9

30 4.63E+02 1.79E+02 9.43E-09 1.29E-08 9.00E-02 9.92E-02
50 1.16E+03 4.71E+02 3.97E-02 3.79E-02 1.06E+01 4.04974
100 6.53E+03 2.54E+03 7.51E+01 1.97E+01 1.34E+02 7.72E+01

f10

30 0.57209 0.319026 4.55E-04 5.56E-04 3.15E-04 4.35E-04
50 2.624156 1.688407 6.34E-04 7.37E-04 2.08E-03 1.33E-03
100 13.44381 3.19191 3.65E-03 3.16E-03 0.208159 0.124683

f11 2 0.999999 1.07E-06 0.999999 2.68E-02 -1 0
f12 2 -1.0316 1.14E-08 -1.0316 5.69E-10 -1.0316 0

Function d
WOA LWOA NWOA

Ave Std Ave Std Ave Std

f1

30 9.72E-20 3.76E-19 1.62E-20 3.44E-20 0 0
50 1.22E-15 1.91E-15 4.04E-15 5.89E-16 0 0
100 3.49E-12 1.25E-11 3.26E-10 4.60E-10 0 0

f2

30 7.66E-14 1.47E-14 3.17E-03 3.84E-13 0 0
50 8.89E-12 7.44E-12 3.34E-11 5.24E-11 0 0
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100 2.78E-09 4.02E-09 6.73E-10 3.17E-10 0 0

f3

30 0.192077 0.53866 1.894728 0.235194 0 0
50 2.97544 1.71382 4.24E+02 2.97E+02 0 0
100 4.29E+01 5.71E+01 7.62E+02 7.09E+02 0 0

f4

30 2.72E+01 0.842227 2.71E+01 0.099515 0.543402 0.136793
50 4.80E+01 0.790134 4.73E+01 0.527936 1.016162 0.224031
100 9.81E+01 0.35415 9.72E+01 0.908728 3.898943 0.639117

f5

30 4.82E-04 1.76E-04 1.34E-03 9.48E-04 1.13E-05 3.78E-05
50 5.94E-04 1.50E-04 3.75E-03 1.33E-03 1.44E-05 1.43E-04
100 1.11E-03 4.86E-04 5.32E-03 5.70E-03 2.87E-05 1.03E-05

f6

30 0 0 0 0 0 0
50 1.49E-14 1.37E-14 3.66E-13 7.21E-13 0 0
100 7.36E-12 9.97E-12 4.16E-11 4.22E-11 0 0

f7

30 6.32E-06 6.14E-06 1.79E-05 1.32E-05 0 0
50 3.21E-05 1.20E-05 6.03E-05 4.67E-05 0 0
100 1.69E-04 8.57E-05 3.43E-04 2.37E-04 0 0

f8

30 3.33E-16 1.05E-16 1.11E-16 1.87E-16 0 0
50 8.33E-03 2.63E-02 4.35E-03 1.37E-02 0 0
100 2.56E-03 8.10E-03 4.71E-03 1.49E-02 0 0

f9

30 5.01E-02 7.49E-02 1.31E+02 4.48E+01 0 0
50 7.23872 1.27E+01 4.27E+02 8.83E+01 0 0
100 7.82E+01 4.71E+01 1.08E+03 1.80E+02 0 0

f10

30 1.98E-13 4.74E-13 3.56E-13 6.82E-13 0 0
50 2.28E-09 6.33E-09 8.29E-06 1.62E-05 0 0
100 2.65E-05 5.49E-05 7.67E-04 5.26E-04 0 0

f11 2 -1 0 -1 0 -1 0
f12 2 -1.0316 0 -1.0316 1.43E-09 -1.0316 0

From Table 3, for unimodal functions f1 − f3 and f7 − f10, PSO, GWO, CSO, WOA,
LWOA and NWOA algorithms can converge to the theoretical optimal value 0 when
d = 30, d = 50 and d = 100, respectively. The standard deviation is 0 with strong
optimization ability and stability. The optimal values and theoretical optimal values
found by the other 5 algorithms have different deviation. For unimodal functions f4 and
f5, the results show that there are some deviations between the optimal values obtained
by 6 algorithms and the theoretical optimal values. However, the optimization accuracy
of NWOA algorithm in these two test functions is more optimal than the other five
algorithms, and the standard deviation Std is relatively low. For multimodal function f6,
both WOA and NWOA can converge to the theoretical optimal value 0 and the standard
deviation Std is 0 when the dimension is d = 30. However, in the dimensions of d = 50
and d = 100, only the NWOA algorithm converges to the theoretical optimal value 0,
and the standard deviation Std is 0. NWOA algorithm shows good optimization ability
and stability in low and high dimensions, and the optimal values and theoretical optimal
values found by the other four algorithms have different degrees of deviation. For the fixed
dimension function f11, CSO, WOA, LWOA and NWOA algorithms can converge to the
theoretical optimal value −1.0, and the standard deviation is 0. For the fixed dimension
function f12, all the 6 algorithms converge to the theoretical optimal value −1.0316, and
the standard deviation Std of CSO, WOA and NWOA algorithms is 0.

In view of further reflection on the advantages of NWOA, the convergence curves of 6
algorithms for 12 standard test functions are given in Figure 1-12.
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Figure 1. d = 50, Convergence curve of
f1(x)

Figure 2. d = 50, Convergence curve of
f2(x)

Figure 3. d = 50, Convergence curve of
f3(x)

Figure 4. d = 50, Convergence curve of
f4(x)

Figure 5. d = 50, Convergence curve of
f5(x)

Figure 6. d = 50, Convergence curve of
f6(x)
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Figure 7. d = 50, Convergence curve of
f7(x)

Figure 8. d = 50, Convergence curve of
f8(x)

Figure 9. d = 50, Convergence curve of
f9(x)

Figure 10. d = 50, Convergence curve of
f10(x)

Figure 11. d = 50, Convergence curve of
f11(x)

Figure 12. d = 50, Convergence curve of
f12(x)

From Figure 1-Figure 10, that the convergence speed of NWOA algorithm is more
optimal than the other five algorithms to some extent. For unimodal functions, NWOA
has optimal convergence accuracy and speed. For multimodal functions, NWOA algorithm
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is more resistant to the attraction of regional mechanisms, has the ability to jump out of
the local optimal solution, and finally converges to the theoretical optimal solution. From
Figure 11-Figure 12, for a fixed 2-dimensional function, the six algorithms can converge
or approximate to the theoretical optimal solution. Among them, the GWO and NWOA
algorithms perform well in convergence speed.

Generally, the optimization of NWOA algorithm on the single-peak and multi-peak test
functions is significantly better than the PSO, GWO, CSO, WOA and LWOA algorithms,
and the convergence speed on the fixed 2-dimensional function is slightly better than
that of PSO, CSO, WOA and LWOA algorithms. This is mainly due to the nonlinear
adjustment of inertia weight, nonlinear adjustment of convergence factors and dynamic
walk strategies. These improved strategies can effectively balance the global exploration
and local search ability , accelerate the convergence speed, and avoid the algorithm falling
into local optimization, so that the algorithm shows good performance in the optimization
accuracy, convergence speed and stability.

5. Conclusion. Aiming at the slow convergence speed and easy to fall into local op-
timal solution of WOA algorithm, a whale optimization algorithm based on nonlinear
adjustment and random walk strategy (NWOA) is proposed in this paper. First of all,
according tothe particle swarm optimization algorithm, the NWOA algorithm introduces
the strategy of non-linear adjustment of inertia weight to adjust the whale position up-
date method, and effectively balance the global exploration and local mining capabilities.
Considering the fitness of whale population, the optimization accuracy is improved, and
the convergence speed and global exploration ability are improved under the random ex-
ponential function. Secondly, based on the influence of the convergence factor a in the
optimization process, and without changing the value boundary of a, nonlinear adjust-
ment of convergence factor is introduced into the NWOA algorithm to ensure the balance
of the global and local search ability of the algorithm, and improve the convergence speed
of it. Finally, during the optimization, inspired by random walk strategy in ant lion op-
timization algorithm, the random walk strategy is introduced into NWOA algorithm to
improve the local optimization ability of the algorithm. Through the statistical results of
6 algorithms in 12 test functions, the NWOA algorithm has been significantly improved
in terms of convergence speed and optimization accuracy. The problem of easy to fall
into the local optimum in the multimodal function is solved with strong optimization.
The next research will apply the NWOA algorithm to large-scale function optimization,
constrained optimization and practical engineering.
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