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Abstract. Multiple electric vehicles simultaneously connected to a distribution load net-
work will significantly impact the stability of the power grid. This paper proposes an im-
proved Honey-badger algorithm (IHBA) through elite reverse learning, spiral update, and
wild dog survival strategies to optimize the orderly charging of electric vehicles (EV).
Objective functions of EV charge orderly planning are taken by using load fluctuation
satisfaction, user cost satisfaction, and user convenience satisfaction to achieve the high
efficiency of orderly charging. The benchmark test function and the electric vehicle se-
quential charging problem were employed to evaluate the proposed IHBA approach. The
obtained results are compared with the other algorithms in the literature, which indicate
that the IHBA algorithm does not only provides more accurate outcome but better con-
vergence speed than the other competitors.
Keywords: Electric vehicle, Orderly charging, Improved honey badger algorithm

1. INTRODUCTION. With the aggravation of global energy shortage [1], environ-
mental pollution [2], and driving safety challenges, the automobile industry has been
steering its course toward electrification, intelligence, networking and sharing. As global
energy conservation and emission reduction becomes the general trend, gradually replac-
ing traditional fuel vehicles with new energy vehicles [3] such as electric vehicles (EV)
grows into our country’s social consensus and development direction. Charging of electric
vehicles simultaneously connected to the power grid on a large scale may bring load im-
pact to the power grid and create new challenges to the reliable operation of the power
system [4]. Efficiently realizing the optimal scheduling of large-scale electric vehicles has
increasingly become a hot issue [5].

In recent years, using an efficient control strategy [6] and advanced optimization algo-
rithm to achieve orderly charging of electric vehicles has become an effective means of
electric vehicle scheduling. The optimization objective function of the main control layer
for ”peak load shifting and valley filling” [7] is established and the hierarchical collabo-
rative control strategy of multiple secondary level optimization objectives enhances the
real-time practicability of electric vehicle optimal scheduling.

More and more attention has been paid to the application of the metaheuristic al-
gorithm in resolving issues in engineering such as the typical Cuckoo Search algorithm
(CS)[8], Particle swarm optimization (PSO) [9, 10], simulated annealing algorithm (SA)
[11], Whale optimization algorithm (WOA) [12], Cat Swarm Optimization(CSO) [13],
Grey wolf optimization algorithm(GWO) [14], Fish Migration Optimization (FMO) [15],
etc. And many algorithms have been applied in engineering field, such as wireless sensor
problem [16, 17, 18], vehicle routing problem [19, 20, 21], hydropower station dispatching
problem [22, 23], security and communication network issues [24, 25, 26], reactive power
optimization problem [27, 28, 29], job shop scheduling problem [30, 31, 32],orderly charg-
ing strategy of electric vehicle [33, 34, 35] etc. The Honey badger (HBA) [36] used in
this paper is a new swarm intelligence optimization algorithm. Many scholars have put
forward advanced improvement methods while studying the algorithm.

As a new swarm intelligence algorithm, the Honey badger algorithm was proposed by
Fatma A. Hashima et al. in 2021. It mainly simulates the dynamic search behavior of
Honey badger mining and searching honey. Because of its good experimental results and
simple structure, it has a wide application prospect in the future.

In this paper, the HBA algorithm is studied and improved for its global search ability
and convergence speed in large-scale problems. Taking private electric vehicles [37] as
the main research object, the battery condition of large-scale electric vehicles is simulated
by Monte Carlo method [38]. The multi-objective optimization function is established
considering the maximum load fluctuation satisfaction, the cost satisfaction of the largest
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users, and maximum user convenience satisfaction. Finally, the IHBA is used to solve the
optimization objective function.

2. Related work.

2.1. Honey badger optimization algorithm. Badger is a mammal with black and
white furry fur [39] which usually lives in the semi-desert and tropical rainforest of Africa,
southwest Asia, and the Indian subcontinent.With a size of 59 - 76 cm in body length
and 6.5- 14 kg in body weight,this forager preys on 60 different species, including some
dangerous snakes..Its staple food is honey and prefers to stay alone in its nest and only
meets other badgers in the breeding season. However, honey badgers don’t have a specific
period of time for breeding as their cubs are born all year round. Moreover, when there is
no easy way to escape, these fearless creatures will not hesitate to attack larger predators.
A technique called the rat sniffing was used while walking slowly so it could continuously
discover its preys by roughly excavating the locations of interest. In order to find sufficient
supply of food, it can dig 50 holes in a radius of 40 kilometers or more a day.

The problem lies in that honey badgers are not good at finding beehives. On the other
hand, honeyguide birds are capable of locating hives but they cannot find honey. These
phenomena lead to a form of commensalism between the two species. The bird leads the
badger to the hive, helps it open the hive with its long claws, and they both enjoy the
reward of teamwork.

2.1.1. Population initialization. Some parameters need to be preset for population ini-
tialization, such as population size N , the number of iterations L, parameters of some
algorithms, etc. Initialize the population X of honey badgers in the search space. X is a
population composed of N honey badger individuals, it can be expressed as:

X =


X11 X12 X13 X14 . . . . . . X1D

X21 X22 X23 X24 . . . . . . X2D

X31 X32 X33 X34 . . . . . . X3D

X41 X42 X43 X44 . . . . . . X4D

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Xn1 Xn2 Xn3 Xn4 . . . . . . XnD


Xj =

[
X1
j X2

j . . . . . . XD
j

]
(1)

Randomly generate the initial position of honey badger, defined as:

Xj = lbj + r1 · (ubj − lbj) (2)

Where, r1 is a random number uniformly distributed on [0, 1]. Xjis the position of the
jth individual among the N candidate individuals,and lbj, ubj are the lower and upper
bounds of the optimization space, respectively.

2.1.2. Prey attraction. The attraction of prey is related to the concentration intensity of
prey and the distance between prey and the jth honey badger. Kj represents the odor
intensity of the prey. If the value of Kj is larger, it indicates that the jth honey badger
can find the location of the prey more accurately and then move to the prey faster, it is
mathematically expressed as:

Kj = r2 ·
S

4πd2j
(3)

S = (Xj −Xj+1)
2 (4)

dj = Xp −Xj (5)
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Where, S can be called source intensity or concentrated intensity.djis the distance
between the prey and the jth honey badger. Xp is the position of the prey, which is
regarded as the position of an optimal individual in the algorithm. From Eq.(3) and (5),
the closer the honey badger to its prey, the stronger the attraction (odor) will develop.

2.1.3. Density factor. The density factor decreases slowly with the number of iterations to
ensure a smooth transition from exploration to precise development. Eq.(6) is used to up-
date the decreasing factor with the number of iterations in order to reduce randomization.
It is mathematically expressed as:

α = C0 · exp

(
l

lmax

)
(6)

Where, C0 is a constant greater than or equal to 1 with a default value 2. l is the
current number of iterations, and lmax is the maximum number of iterations.

2.1.4. Update the location of the search agent. The update process of HBA location is
divided into two parts. The first process is the ”Mining stage” in which honey badgers
follow similar to Cardioid shape to look for preys as the expression:

Xnew = Xp + F · β ·K ·Xp + F · r3 · dj · |cos (2πr4) [1− cos (2πr5)]| (7)

Where, the location of prey is the best location found so far; that is, the global best
location. β , the ability of honey badgers to obtain food is set to be greater than or equal
to 1 (the default value is 6). dj is the distance between the prey and the jth honey badger.
r3, r4 and r5 are three different random numbers between 0 and 1. F stands for the search
direction of the search agent as shown in Eq.(8):

F =

{
1 r6 ≤ 0.5
−1 r6 > 0.5

(8)

The second location update process is the ”Honey stage”. The honey badger and
the honeyguide have an inherent cooperative and mutually beneficial relationship. A
honeyguide can easily find a hive but is not capable of destroy it. Once the honeyguide
finds the location of the hive, it makes a strange sound to attract the honeybadger . The
situation that the honey badger follows the honeyguide to the hive can be simulated as
Eq.(9):

Xnew = Xp + F · r7 · α · dj (9)

In the above formula, Xnew refers to the new location of the honey badger, while Xp

refers to the location of the prey, F and α Use Eq.(8) and (6) respectively. From Eq.(9), it
can be observed that according to the distance information dj, the honey badger searches
at a position close to Xp.

2.2. Mathematical model of charge EV orderly planning.

2.2.1. Travel rules of electric vehicles. The disordered mode of electric vehicles [40] indi-
cated that any strategy could not control the charging behavior of electric vehicles, which
was mainly affected by users’ daily travel habits. Family electric vehicles are primarily
used for users’ commuting and leisure. For household electric vehicles, the time of network
access follows the normal distribution, and its probability density function [41] is

fw (tw) =


1

σw
√
2π

exp
[
− (tw−µw)2

2σ2
c

]
µw − 12 ≤ tw ≤ 24

1
σw
√
2π

exp
[
− (tw+24−µw)2

2σ2
c

]
0 ≤ tw ≤ µw − 12

(10)
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The starting time of charging is tw, µw = 17.6 and σw = 3.4 represent the expected
value with 17.6 is the starting charging time, and its standard deviation is 3.4.

The daily mileage [42, 43] also follows the normal distribution approximation, and its
probability density function is:

fd(S) =
1

Sσd
√

2π
exp

[
−(lnS − µd)

2σ2
d

]
(11)

Where d is the daily driving distance. The expected value of d, µd is 3.20 and its standard
deviation σd is 0.88.

Es =

(
1− d

D

)
· 100% (12)

Where Es is the current remaining power of the battery, d is the daily driving distance,
and D is the maximum distance after draining a set of batteries. The charging time of
electric vehicles can be described as

ti =
(1− Es) · Cb

pi
(13)

Where ti is the charging time of the ith electric vehicle.Cb is the capacity of the battery
and Pi is the charging power.

2.2.2. Mathematical model of orderly charging. The formula of orderly charging model is
as follows

Q = 1− q(t)− q (t∗)

q (t0)
(14)

In Eq.(14), Q, the price satisfaction [44] is related to the charging time and electricity
price. q(t0), the power cost without implementing the TOU price policy is the current
charging cost after the optimization. q(t∗), the cost of all charging in the valley period
is the minimum cost. The less electricity charges are paid, the higher the satisfaction of
users will increase accordingly.

The convenience satisfaction index reflects the change of their personal electricity con-
sumption habits, which is measured by the change of electricity consumption in each time
period. When the power grid does not participate in the dispatching, users can choose
the appropriate time to charge according to the circumstances. And there is no need to
specify which time period to start charging. In this case, the satisfaction of convenience
reaches its maximum. When a user responds to the orderly charging strategy, his satis-
faction of convenience will be likely to decline. As a consequence, the charging start time
will change and the change of power consumption in each time period will also change.
The greater the power consumption change in each time period is produced, the lower
the convenience satisfaction will be signaled. When no change is made, the convenience
reaches the maximum , which is defined explicitly as

B = 1−
∫ 24

1
|f0(t)− f(t)| dt∫ 24

1
f0(t)dt

(15)

Where B is satisfaction of convenience,
∫ 24

1
|f0(t)− f(t)| dt is the sum of power con-

sumption changes in each time period,
∫ 24

1
f0(t)dt is the charging amount in disordered

charging mode, and B is a function of starting charging time. It can be seen from Eq.(15)
that when the user makes any adjustment due to disobedience to the grid response during
charging, the convenience satisfaction is 1. However, when the change degree of power
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consumption in each time period is more prominent, the more users obey the regulation
of the power grid, the lower the convenience satisfaction will become.

This paper takes the power grid variance as an index to reflect the stability of power
grid. The smaller the grid load variance is, the more stable the grid load is, specifically,
such as Eq.(16) and Eq.(17).

Pa =
1

T

M∑
m=1

(
Pm
0 +

∑
x

P t
x

)
(16)

V 2 =
1

T

M∑
m=1

(
Pm
0 +

∑
x

P t
x − Pa

)2

(17)

The above formula: V 2 is the standard deviation of power grid. T is the number of
time cycles. There are 24 cycles, 1 hour per cycle. Pm

0 is the basic load of residents
without electric vehicle charging load in the tth time period. P t

x is the charging power of
M electric vehicles in the tth time period; Pa is the average value of the total load of the
community in a day. Therefore, the degree of satisfaction Eq.(14) describing the degree
of charge fluctuation can be obtained.

Z = 1− V 2
t − V 2

min

V 2
max − V 2

min

(18)

Where Z represents the degree of satisfaction of grid load fluctuation, V 2
t represents the

variance of the grid after the implementation of the optimization strategy, V 2
min represents

the minimum grid load variance before and after the implementation of the strategy, and
V 2
max represents the maximum grid load variance before and after the implementation of

the strategy. The greater the fluctuation of load, the smoother the load curve and the
smaller the peak valley difference.

Normalize the three indexes of Eqs.(14), (15) and Eq.(18) to obtain Eq.(19)

Y = ω1Q+ ω2B + ω3Z (19)

Where Y is the sum of the objective function of all three users’ satisfaction factors in the
power grid. The larger Y is, the higher the recognition of power grid and users for the
strategy is ω1 + ω2 + ω3 = 1, and the three are proportional coefficients.

2.2.3. Constraints. Considering the security of the distribution network, the charging
load in all periods should not exceed the upper limit of the distribution network power.
Namely:

Pbase +
T∑
i=1

Ciτpi < Pstd (20)

Where Pbase represents the basic load of the distribution network before electric vehicles
are connected in a large scale; Pstd is the upper limit of power that the distribution
network can bear. pi is the charging power of electric vehicle,Ciτ is the number of electric
vehicles in the ith time period.

The upper and lower limits of state of charge are constrained. In order to avoid over-
charge and discharge of EV power battery, its state of charge meets the following require-
ments:

Smin ≤ St,m ≤ Smax (21)

Smin and Smax represent the lower limit and upper limit of state of charge S, respectively.
Charging power constraint represents the charging power of electric vehicle in the pro-

cess of charging cannot exceed the maximum power that the battery can bear.
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P d
t,m ≤ PEV

max (22)

P d
t,m is the charging power of the mth EV, PEV

max is the maximum charging power that the
electric vehicle can withstand.

3. Improved HBA algorithm.

3.1. Algorithm improvement. Reverse learning was proposed by Tizhoosh in 2005
[45]. The article points out that generating reverse solutions can effectively improve the
diversity of solutions with better results close to the optimal solution. However, with this
reverse population, it may be more difficult to approximate the optimal solution than the
original population. OBL strategy is to select some individuals with the best function
values to form an elite population from all individual objective functions. This population
with the reverse solution of the elite population, then integrates the population based on
by the reverse learning strategy with the initial population. It will select high-quality
individuals with the same number as the initial population to form a new initial popula-
tion. Although elite individuals carry more practical information, the best individual will
become even harder to be found if the number of elite individuals is large. Subsequently,
the search agent would be wandering in a region and have difficulty to jump out of local
optimal solutions. The equation is as follows:

X
′

m = r(u+ e)−Xm (23)

Where r is the random value on [0, 1], u and e represent the upper and lower bounds of
the search space respectively, and Xm is the position of the current individual. Certain
excellent individuals are selected from the reverse and current populations to form a new
population. EBOL mechanism has a good effect on enhancing the diversity and quality
in the population.

In the original HBA, the exploration stage of the honey badger starts from the local
search in the algorithm. Due to the heart-shaped update mechanism, this local search
ability could be relatively weak. Therefore, a spiral motion mechanism is introduced
to strengthen the exploration ability of the algorithm of which the update mode of the
honey badger is controlled through a random parameter R. It will be updated around the
current position if R < 0.3. Otherwise, it will be updated around the globally optimal
location as shown in Eq.(24)

Xnew =

{
dj · ebt · cos(2πl) +Xi R < 0.3
dj · ebt · cos(2πl) +Xb R ≥ 0.3

(24)

Where dj is the distance between the jth honey badger and the prey, b is the logarithmic
spiral shape constant, t is the value range of [−1, 1], Xnew is the updated position of the
honey badger, Xi is the current position of the honey badger, and Xb is the global optimal
position (i.e. prey).

Dingo optimization algorithm (DOA) is a new intelligent optimization algorithm pro-
posed in 2021[46]. The algorithm was designed according to the social behavior of Aus-
tralian dingo, which possesses the characteristics of strong optimization ability and fast
convergence speed. It ensures the global development ability of the algorithm by intro-
ducing a survival strategy. Firstly, the survival rate of wild dogs was calculated by a
fitness value as shown in Eq.(25).

S(i) =
fmax − f(i)

fmax − fmin

(25)



An Improved Honey Badger Algorithm for Electric Vehicle Charge Orderly Planning 339

Start

Initialize population size 

algorithm related parameters

Calculate the fitness value of 

the current population

Update density factor

Update the position of honey 

badger in the population

Calculate the individual fitness 

value and retain the optimal 

individual

Initializing population with 

elite reverse learning strategy

Spiral policy update location

Introduce wild dog survival 

mechanism to update individual 

location

Calculate the individual fitness 

value and retain the optimal 

individual

Meet the end 

Conditions?

Output optimal results

End

No

Yes

Figure 1. Flow chart of the IHBA.

Where fmax and fmin are the best value and the worst value of the fitness of the current
generation respectively. f(i) is the current fitness value of the ith honey badger. S(i) is
the normalized fitness within the range with the survival rate of [0,1]. Eq.(26) is used in
case of low survival rate, for example, where S(i) is less than or equal to 0.5.

Xi(t+ 1) = Xb(t+ 1) + 0.5[Xr1(t)− (−1)y ·Xr2(t)] (26)

Where Xi(t + 1) is the honey badger with the lowest survival rate to be updated, r1
and r2 are random numbers generated from 1 to the population size range with a premise
r1 6= r2. Xr1(t) and Xr2(t) are the rth1 and rth2 honey badgers randomly selected, Xb(t) is
the best honey badger found in the last iteration, and Y is a binary number randomly
generated by the algorithm, which is [0, 1]. The flow chart of the algorithm is shown in
Figure 1.

3.2. Experimental results on mathematic test function. In order to prove that
IHBA has a better performance, the CEC2013 standard mathematical test functions
were used in comparison of the results between HBA, GWO, MFO, and DOA. In order to
ensure the fairness and accuracy of the investigation, 50 runs of each function were tested
independently. The parameter settings of these algorithms are shown in Table 1.

In this paper, the best value(BP), average value(AVE) and standard deviation(STD)
are used to evaluate the performance of different algorithms. Table 2 and Table 3 show
the average, standard and optimal values of different algorithms and IHBA under the
standard test functions.
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Table 1. Parameter setting of each algorithm.

Algorithms Parameters setting

IHBA Pop = 30, iteration = 300, C = 2, β = 6

HBA Pop = 30, iteration = 300, C = 2, β = 6

DOA Pop = 30, iteration = 300, P = 0.5, Q = 0.7

MFO Pop = 30, iteration = 300, b = 1

GWO Pop = 30, iteration = 300, C = 2, α = [0, 2]

Table 2. Comparison of optimization performance of HBA, MFO, IHBA
on 28 classical test functions.

50D

HBA MFO IHBA

BP AVE STD BP AVE STD BP AVE STD

F1 4.28E-11 2.82E-08 3.90E-08 6.28E+03 2.01E+04 1.29E+04 9.10E-13 3.25E-12 3.10E-12
F2 1.41E+06 2.89E+06 1.10E+06 2.92E+07 8.91E+07 3.41E+07 1.01E+06 1.78E+06 4.90E+05

F3 8.47E+08 2.89E+09 1.90E+09 9.22E+10 1.32E+11 4.09E+10 9.42E+07 6.61E+08 5.65E+08

F4 2.31E+04 3.00E+04 3.83E+03 9.61E+04 1.55E+05 3.98E+04 8.12E+02 2.47E+03 9.80E+02
F5 4.30E-09 7.83E-08 9.91E-08 3.94E+03 6.95E+03 3.25E+03 3.59E-09 9.81E-09 8.29E-09

F6 4.35E+01 7.02E+01 3.54E+01 3.10E+02 1.28E+03 8.13E+02 4.35E+01 5.62E+01 2.21E+01

F7 5.81E+01 8.34E+01 1.36E+01 1.59E+02 2.32E+02 3.59E+01 5.45E+01 7.74E+01 1.38E+01
F8 2.11E+01 2.12E+01 5.05E-02 2.11E+01 2.12E+01 5.64E-02 2.11E+01 2.12E+01 3.93E-02

F9 4.46E+01 5.45E+01 6.34E+00 5.20E+01 5.99E+01 5.46E+00 4.32E+01 5.06E+01 6.21E+00

F10 1.35E-01 8.37E-01 4.43E-01 1.46E+03 3.78E+03 1.26E+03 3.33E-02 7.88E-02 2.75E-02
F11 1.33E+02 1.97E+02 4.76E+01 3.18E+02 4.87E+02 1.79E+02 1.18E+02 1.86E+02 3.44E+01

F12 2.00E+02 2.86E+02 7.27E+01 6.37E+02 7.63E+02 1.13E+02 1.71E+02 2.31E+02 3.65E+01

F13 3.98E+02 5.16E+02 8.63E+01 5.89E+02 8.31E+02 1.63E+02 2.96E+02 4.33E+02 8.05E+01
F14 3.90E+03 5.67E+03 1.42E+03 4.49E+03 6.97E+03 1.22E+03 3.89E+03 6.19E+03 1.98E+03

F15 7.02E+03 1.01E+04 2.94E+03 7.92E+03 9.46E+03 1.21E+03 6.16E+03 8.63E+03 2.00E+03

F16 2.80E+00 3.59E+00 4.02E-01 1.19E+00 1.86E+00 8.34E-01 1.29E+00 3.15E+00 1.15E+00
F17 1.70E+02 2.83E+02 5.09E+01 3.08E+02 8.27E+02 5.59E+02 2.01E+02 2.92E+02 4.51E+01

F18 2.81E+02 3.73E+02 7.49E+01 4.58E+02 1.17E+03 4.40E+02 2.31E+02 3.79E+02 1.34E+02
F19 1.36E+01 2.95E+01 1.23E+01 1.64E+04 4.65E+05 3.38E+05 9.81E+00 1.64E+01 4.25E+00

F20 2.15E+01 2.24E+01 8.41E-01 2.18E+01 2.38E+01 9.32E-01 1.89E+01 2.19E+01 1.64E+00

F21 2.00E+02 8.87E+02 2.80E+02 1.13E+03 2.13E+03 8.66E+02 2.00E+02 9.44E+02 2.94E+02
F22 5.13E+03 7.23E+03 1.90E+03 5.00E+03 7.32E+03 1.24E+03 4.89E+03 6.59E+03 1.13E+03

F23 7.48E+03 1.10E+04 1.95E+03 9.27E+03 1.06E+04 9.23E+02 7.57E+03 1.10E+04 2.11E+03

F24 3.96E+02 4.31E+02 2.60E+01 3.21E+02 3.56E+02 1.73E+01 3.43E+02 3.86E+02 2.87E+01
F25 4.04E+02 4.53E+02 2.17E+01 3.57E+02 3.75E+02 1.19E+01 3.77E+02 4.10E+02 2.25E+01

F26 4.03E+02 4.71E+02 3.34E+01 2.06E+02 4.30E+02 7.89E+01 4.10E+02 4.47E+02 1.80E+01

F27 1.62E+03 2.07E+03 2.21E+02 1.69E+03 1.88E+03 1.19E+02 1.60E+03 1.87E+03 1.83E+02
F28 4.00E+02 1.54E+03 1.83E+03 1.59E+03 4.52E+03 1.87E+03 4.00E+02 1.42E+03 1.64E+03

Win 22 22 19 22 22 18 — — —
Lose 5 6 9 6 6 10 — — —
Draw 1 0 0 0 0 0 — — —

In the table, it should be noted that, the smaller the value corresponding to the algo-
rithm, the better their performance. ’Lose’, ’Win’, or ’Draw’ give the numbers of worse,
better, and similar performances compared to the proposed IHBA respectively. If the
improved honey badger algorithm is superior to other algorithms in the same test func-
tion and corresponding items, one will be added to the column of ”win”, if it is worse,
”lose” plus one; otherwise, add one to ”draw”. According to Table 2, from the optimal
value, IHBA algorithm has 22 better, 1 similar and 5 worse performances than HBA
algorithm respectively. from the average value, it has 22 better, 0 similar and 6 worse
performances respectively. from the perspective of standard deviation, it has 19 better, 0
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Table 3. Comparison of optimization performance of GWO, DOA, IHBA
on 28 classical test functions

50D

GWO DOA IHBA

BP AVE STD BP AVE STD BP AVE STD

F1 1.29E+03 3.28E+03 1.23E+03 3.23E+04 4.54E+04 9.09E+03 9.10E-13 3.25E-12 3.10E-12

F2 1.40E+07 4.18E+07 2.90E+07 1.59E+08 2.89E+08 1.22E+08 1.01E+06 1.78E+06 4.90E+05
F3 1.03E+10 1.85E+10 6.46E+09 5.27E+10 4.63E+12 1.40E+13 9.42E+07 6.61E+08 5.65E+08

F4 4.36E+04 5.32E+04 7.03E+03 4.20E+04 6.29E+04 1.27E+04 8.12E+02 2.47E+03 9.80E+02

F5 5.98E+02 9.21E+02 2.73E+02 3.56E+03 5.85E+03 2.28E+03 3.59E-09 9.81E-09 8.29E-09
F6 1.63E+02 2.38E+02 6.16E+01 3.56E+03 5.85E+03 2.28E+03 4.35E+01 5.62E+01 2.21E+01

F7 4.20E+01 6.22E+01 1.82E+01 1.42E+02 1.99E+02 5.51E+01 5.45E+01 7.74E+01 1.38E+01

F8 2.11E+01 2.12E+01 5.10E-02 2.11E+01 2.12E+01 4.06E-02 2.11E+01 2.12E+01 3.93E-02
F9 3.85E+01 4.04E+01 2.53E+00 5.64E+01 6.41E+01 5.54E+00 4.32E+01 5.06E+01 6.21E+00

F10 4.01E+02 5.40E+02 7.97E+01 2.27E+03 5.13E+03 1.56E+03 3.33E-02 7.88E-02 2.75E-02

F11 1.66E+02 2.20E+02 2.99E+01 6.06E+02 7.73E+02 1.23E+02 1.18E+02 1.86E+02 3.44E+01
F12 1.90E+02 2.46E+02 3.60E+01 6.56E+02 7.69E+02 9.32E+01 1.71E+02 2.31E+02 3.65E+01

F13 3.16E+02 4.00E+02 6.64E+01 5.67E+02 8.11E+02 1.28E+02 2.96E+02 4.33E+02 8.05E+01
F14 5.54E+03 7.17E+03 2.19E+03 1.10E+04 1.31E+04 1.58E+03 3.89E+03 6.19E+03 1.98E+03

F15 6.47E+03 9.67E+03 3.46E+03 1.11E+04 1.41E+04 1.51E+03 6.16E+03 8.63E+03 2.00E+03

F16 3.47E+00 3.76E+00 1.97E-01 3.32E+00 4.11E+00 5.14E-01 1.29E+00 3.15E+00 1.15E+00
F17 2.56E+02 3.52E+02 8.57E+01 7.53E+02 1.13E+03 1.64E+02 2.01E+02 2.92E+02 4.51E+01

F18 4.58E+02 5.64E+02 5.78E+01 1.08E+03 1.23E+03 1.02E+02 2.31E+02 3.79E+02 1.34E+02

F19 3.16E+01 2.94E+02 2.74E+02 1.61E+04 5.21E+04 3.76E+04 9.81E+00 1.64E+01 4.25E+00
F20 1.99E+01 2.13E+01 8.05E-01 2.35E+01 2.43E+01 4.24E-01 1.89E+01 2.19E+01 1.64E+00

F21 1.15E+03 2.28E+03 8.10E+02 3.76E+03 4.06E+03 1.56E+02 2.00E+02 9.44E+02 2.94E+02

F22 5.96E+03 6.95E+03 6.84E+02 1.07E+04 1.31E+04 1.60E+03 4.89E+03 6.59E+03 1.13E+03
F23 6.25E+03 8.86E+03 2.78E+03 1.09E+04 1.32E+04 1.52E+03 7.57E+03 1.10E+04 2.11E+03

F24 2.80E+02 3.09E+02 1.73E+01 3.84E+02 4.06E+02 1.54E+01 3.43E+02 3.86E+02 2.87E+01

F25 3.30E+02 3.47E+02 1.10E+01 4.03E+02 4.28E+02 2.29E+01 3.77E+02 4.10E+02 2.25E+01
F26 3.83E+02 3.98E+02 8.58E+00 2.06E+02 4.21E+02 1.07E+02 4.10E+02 4.47E+02 1.80E+01

F27 1.13E+03 1.40E+03 1.39E+02 2.03E+03 2.18E+03 1.10E+02 1.60E+03 1.87E+03 1.83E+02
F28 7.02E+02 1.06E+03 3.63E+02 5.87E+03 7.33E+03 7.98E+02 4.00E+02 1.42E+03 1.64E+03

Win 20 18 18 27 27 16 — — —

Lose 8 10 10 1 1 12 — — —
Draw 0 0 0 0 0 0 — — —

similar and 9 worse performances respectively. Compared with the MFO algorithm, the
IHBA algorithm achieves the best performance of 78.6% in 28 classical test functions..
From the perspective of average value, the IHBA algorithm has won 78.6% of 28 classical
test functions. IHBA algorithm lost 21.4% of MFO algorithm in 28 test functions. From
the perspective of standard deviation, the IHBA algorithm achieved 64.3% success in 28
classical test functions. IHBA algorithm lost 35.7% of the MFO algorithm in 28 test func-
tions. It can be seen from Table 3 that among the 28 test functions, the number of winners
of the IHBA algorithm is much higher than that of the GOA and GWO algorithms.

Figure 2 shows the convergence curves of the proposed algorithms of IHBA, GWO,
HBA, PSO, MFO, and DOA for several selected test functions. It could be seen that the
proposed IHBA algorithm has faster convergence speed under 28 classical mathematical
test functions in general.

4. Application of IHBA on Electric Vehicle Charge Orderly Planning. Taking
the residential area as an example, the orderly charging of large electric vehicles is realized
by using IHBA algorithm, HBA algorithm and PSO algorithm. In order to reflect its
significance in practical engineering, performance indicators include user cost satisfaction,
user convenience satisfaction, load fluctuation satisfaction, and the efficiency of these
three algorithms. According to the distribution of users’ working hours and rest hours,
the large-scale disorderly charging of electric vehicles will focus on the peak load of the
power grid. Therefore, the control center will divide 24 hours a day into 24 cycles and
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(a) F2 (b) F6

(c) F10 (d) F11

(e) F19 (f) F20

Figure 2. Convergence curves of different algorithms on F2(a), F6(b),
F10(c), F11(d), F19(e), F20(f) with 50D.

refresh the charging request data and the real-time power of the distribution network each
hour. The optimal charging load curve and initial charging point time of electric vehicle
are calculated by using the optimization algorithms. The control center makes an orderly
charging arrangement for the cycle based on the proposed optimal solutions.

In this paper, 500 electric vehicles are set for dispatching. The maximum charging
power of electric vehicles is 5 kW, and the maximum capacity of batteries is 25 . Taking
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24 hours as the dispatching cycle, the maximum number of iterations is 500 and the
number of collecting agents is set to 50. In this paper, we should not only consider the
relevant benefits of the power grid, but also ensure the benefits of users, and finally set
the parameter optimization of Eq. (15) as ω1 = 0.2, ω1 = 0.4, ω3 = 0.2. The following
assumptions are made for the charging example of electric vehicle:

1) The electric vehicle consumes 15kw·h for every 100km.
2) Electric vehicles are charged immediately after the last trip and only once a day.
3) Charge the battery to 100% each time.
4) The charging start time and daily driving distance are uncorrelated random variables.
5) It is assumed that all-electric vehicles participate in dispatching.
The basic load of the residential area is shown in Table 4. The TOU price of the

residential area is shown in Table 5.

Table 4. Basic load of the residential area

Time Load/kW Time Load/kW Time Load/kW

1:00 1670.4 9:00 2345.2 17:00 2382.8
2:00 1740.6 10:00 2399.2 18:00 2402.3
3:00 1699.8 11:00 2449.6 19:00 2543.1
4:00 1605.1 12:00 2200.3 20:00 2533.3
5:00 1776.6 13:00 2230.7 21:00 2382.8
6:00 1830.4 14:00 2263.8 22:00 2386.9
7:00 1894.2 15:00 2242.4 23:00 1990.5
8:00 2103.4 16:00 2243.4 24:00 1808.4

Table 5. TOU price of residential area

Period The charging time Electricity price yuan/ kW·h

Valley period 24,1,2,3,4,5,6,7 0.2
Peak period 9,10,11,19,20,21,22,23 0.59
Flat period 8,12,13,14,15,16,17,18 0.4

The disordered charging mode and ordered charging mode are simulated by Monte
Carlo simulation, Figure 3 is obtained.

It can be seen from Figure 3 that the orderly charging model can significantly cut the
peak and fill the valley of the load curve under the disordered charging mode. The effect
is the best under the optimization of IHBA, and the specific data are shown in Table 6.

Table 6. Comparison of indicators under various algorithms

Algorithm Peak value/kW Valley value/kW Peak valley difference /% cost/yuan

IHBA 2628 1943 26.07 1197
HBA 2658 1938 27.09 1296
PSO 3015 1692 43.88 1273

Disorderly 3588 1605 55.27 2560

From Table 6, we can clearly see the superiority of the IHBA algorithm, which can not
only cut peak and fill the valley, but can also obtain a more economical result. The fitness
values of each algorithm are compared in Table 7.



344 R.F. Chen, H. Luo, K.C. Huang, T.T. Nguyen, J.S. Pan

Figure 3. Total load curve of orderly charging of electric vehicles.

Table 7. Comparison of fitness values of various algorithms

Algorithm User cost satisfaction Q User convenience
satisfaction B

Load fluctuation
satisfaction Z

Objective func-
tion value Y

PSO 0.6538 0.3572 0.8792 0.6253
HBA 0.7857 0.2316 0.9817 0.6425
IHBA 0.8517 0.2007 0.9931 0.6478

It can be concluded from Table 7 that the algorithm with the most significant overall
satisfaction is the IHBA, followed by HBA, and finally PSO.

5. Conclusion. In this paper, an improved honey badger algorithm (IHBA) was pro-
posed for rectifying the original honey badger algorithm’s drawbacks such as its slow
convergence speed, ease to fall into local extremum, and low-quality solution of a high-
dimensional search space. Different approaches were employed to improve the IHBA: the
reverse elite learning to generate a uniform initial solution, the spiral update strategy,
and a wild dog survival scheme in order to develop the algorithm’s ability effectively and
avoid falling into local optimization.

Test findings of the IHBA algorithm were compared with the HBA, MFO, GWO, and
DOA algorithms for the selected 28 benchmark functions in CEC2013. Compared results
indicated that IHBA had certain advantages in solving the optimal solution of the test
functions in terms of the algorithm’s convergence speed, convergence accuracy, and sta-
bility. The applied IHBA algorithm for solving the orderly charging of electric vehicles
shows that a large EV charge planning scheme reduces the peak load of the power grid
and enhances the strength of the valley.
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