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Abstract. For location information publishing, its sparsity can seriously affect the ef-
fectiveness of traditional location differential privacy protection algorithms. In this pa-
per, a user interest-based differential privacy location publishing algorithm combined with
quadtree partition (QPDPLP) is proposed, which uses a mapping function to process
perturbed locations outside the user’s area of interest to reduce the amount of noise in-
jection. First, the disturbance location of the user interest area is combined with the
quadtree structure to divide. Second, the ratio of each node weight to the total weight is
the basis for area division, and then according to the sparsity of the divided area position
points to add noise to the area position points. Finally, using the real location and the
processed disturbance location of the randomly selected location as a published location.
Experimental results show that, given the same privacy budget, the QPDPLP algorithm
is more effective than traditional algorithms in protecting users’ location privacy.
Keywords: Quadtree, Privacy Protection, Differential Privacy, User Interest Area

1. Introduction. In recent years, Location-based Service (LBS) has brought great con-
venience to people, but with the continuous development of the Internet, mobile terminals,
and location technology, the number of users communicating through social networking
platforms has increased rapidly, resulting in the accumulation of user behavior databases
in social networks to expand, including the user’s sensitive information, such as home
address, ID number, etc. Once these sensitive information is obtained by criminals, it will
pose a great threat to the interests of users [1,2]. For example, the March 2018 Facebook
user data breach that influenced the U.S. election originated from a partnership between
Facebook and Cambridge Analytica, which claimed that the company had created an app
on Facebook for predicting users’ personality preferences for academic research purposes,
when in fact Cambridge Analytica had not only collected test results from users. The
personal information of 50 million users on Facebook was collected in passing without
permission. Cambridge Analytica, after acquiring these user data, built a user portrait
without authorization, and statistically analyzed each user’s interests, personality, and
behavioral characteristics through data analysis to predict their political leanings, then
targeted to push news to users, with the help of Facebook’s advertising delivery system
to influence users’ voting behavior. As a result, Facebook has had an inescapable impact
on the U.S. election. Therefore, how to make users use the social networking platform
normally and at the same time ensure that sensitive information is not leaked is an urgent
issue that needs to be addressed.

Most traditional location privacy protection techniques are based on k-anonymity [3–5],
t-closeness [6], and l-diversity [7], but they ignore the influence of an attacker’s knowledge
of known background and population density, thus failing to adequately protect LBS pri-
vacy security. Therefore, how to protect the location information published by users from
illegal acquisition by LBS providers and against hackers’ background knowledge attacks
is one of the challenging research topics in the field of location data publishing privacy
protection technology. To solve this problem, this paper presents a location publishing
algorithm based on differential privacy [8, 9]. This algorithm does not care about the
background knowledge of an attacker. Even if an attacker already has all information of
the record except one, the privacy of the record will not be compromised. Considering the
sparsity of location points in the area of interest, an appropriate perturbation algorithm
is selected according to the sparsity. The main contributions of this paper are as follows:

1. For different areas with different densities of locations, quadtree and relative weights
are introduced to judge the sparsity of the divided region, and the disturbance al-
gorithm is flexibly selected according to the sparsity of the region. The influence
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of the number of location points and the sparsity of location in the region with the
published location is reduced.

2. The mapping function is used to deal with the disturbed locations outside the area
of interest, and the relative weights are used to avoid adding too much noise when
the locations in the quadtree recursively divided area are sparse, effectively reducing
the amount of added noise.

3. The sparsity of location points and the number of location points are analyzed ex-
perimentally. By comparing with other schemes, it is proved that the algorithm can
effectively improve the location privacy protection under the same privacy budget.

2. Related Works. Differential privacy [10–13] applies a random algorithm to add noise
to the real location, and the generated published location is verified to be valid. Current
research on differential privacy is divided into designing algorithms that satisfy differen-
tial privacy and reduce the amount of differential privacy noise. Li et al. [14] proposed a
personalization-based algorithm to construct user interest areas based on individualized
user preferences, but the privacy protection of user interest areas constructed using this
algorithm is low; Yan et al. [15] proposed a user demand privacy protection framework
based on differential privacy and association rules, which enhance the protection of user
privacy, but ignore the impact of location differences within user areas on privacy protec-
tion. Liu and Zhu [16] partition the user’s area of interest and add noise to the locations
in the areas of interest by using different perturbation strategies and query functions, but
this method requires high computational and memory space, and when the perturbation
strategy is used inappropriately, it can seriously increase the injection of noise; Dong et
al. [17] partition the data equally without considering the distribution of location data,
and create buckets to represent these data. However, this method also adds noise to re-
gions where no data exists, which invariably increases the amount of noise injected, and
if the number of buckets is reduced, then the distribution of data cannot be adequately
represented; Deldar and Abadi [18] proposed the PDLP-TD algorithm, which constructs
a noisy tree using a database and assigns privacy levels and adds privacy parameters to
the branches of the tree, respectively, but the regular construction of the tree results in
low efficiency of the algorithm; Huo and Meng [19] designed algorithms for several spa-
tial index structures to satisfy differential privacy, but did not consider the amount of
injection of noise into the spatial structure.

To address the relevant shortcomings of the above algorithm, this paper proposes a
location differential privacy publishing algorithm QPDPLP based on the user’s area of
interest, which considers the effect of both the number of position points and the sparsity
of position points on the amount of noise added by combining the properties of quadtree
when publishing locations in the area of interest.

3. Problem Definition. The basic idea of differential privacy is to addinterference noise
to the raw data, the functions of the raw data and the dataset of the query results are
a part to achieve privacy protection. Differential privacy algorithms are usually done
on the basis of the concept of adjacent datasets, which guarantees that the ratio of the
probability that an operation to insert or delete a record from an adjacent dataset will
produce the same result is close to 1.

Definition 3.1. Adjacent datasets. Given two datasets A1 and A2, A1 and A2 are said
to be neighboring datasets when A1 and A2 satisfy the same structure and one and only
one data is different, as shown in Equation (1).

|A1∆A2| = 1 (1)
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Definition 3.2. Differential privacy. Given adjacent datasets A1 and A2, f is a random
query algorithm on A1 and A2. The arbitrary output of algorithm f on datasets A1 and A2

is Z. If Equation (2) is satisfied, then algorithm f is said to satisfy ε-differential privacy.

Pr[f(a1) = z]

Pr[f(a2) = z]
≤ eε, a1 ∈ A1, a2 ∈ A2, z ∈ Z (2)

where ε denotes the privacy budget factor in units of distance, and by varying the value
of the difference factor, you can control the magnitude of noise addition, that is, the degree
of privacy of the published data. When ε→ 0, the higher the degree of privacy, indicating
that the output of the two datasets are not very different from each other.

Definition 3.3. Position sensitivity. Suppose any function q : A→ Rd, where the inputs
are the data sets A1 and A2, and the outputs are d − dimensional real vectors, For any
data sets A1 and A2, there is:

∆q = max
A1,A2

||q(A1)− q(A2)|| (3)

∆q denotes the position sensitivity of the function q, indicating the effect of noise ad-
dition on the data query. ∥q(A1)− q(A2)∥ shows the Manhattan distance between q(A1)
and q(A2). Note that the sensitivity is independent of the dataset and only correlates with
the query results.

In this paper, a quadtree based method is used for the partitioning of region, the extent
of which depends on the relative weight values of the following functions.

Definition 3.4. Weighting function. In a quadtree, suppose that each node is denoted
as e(key, parent) and the parent of that node is denoted as parent(Key, Sub), then the
weight of that node is denoted as follows:

w[e] =
e.key

parent.Key
(4)

Where, key represents the weight of each node, namely the number of position points in
the region; Key represents the weight of the parent node, that is, the number of locations
in the region where the parent node is located; Sub represents the subscript of the parent
node.

After partitioning the regions of interest, noise needs to be added to each region to
achieve a perturbation effect on the true location, introducing the notion of a distance
function in the selection of the perturbation algorithm, defined as follows:

Definition 3.5. Distance function. Assume that n position objects on the two-dimensional
plane K, then the distance between any two points can be expressed as:

dist(o1, o2) =

√
(o1.x− o2.x)2 + (o1.y − o2.y)2 (5)

where, K = {oi(xi, yi) : i = 1, 2, . . . , n}, o1 denotes the horizontal coordinates of point
o1.x and the vertical coordinates of point o1.y; o2.x denotes the horizontal coordinates of
point o2 and the vertical coordinates of point o2.y.

4. Location Differential Privacy Publishing Algorithm.

4.1. Traditional Perturbation Publishing Algorithm.
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4.1.1. Independent Perturbation Publishing Algorithm. The Laplace mechanism is one of
the most basic noise mechanisms for differential privacy protection. This mechanism adds
random noise that obeys the Laplace distribution to the returned result, so that the result
meets the differential privacy and is suitable for the protection of numerical data.

Theorem 4.1. Laplace perturbation [20]. For any function q on data set A, if the output
of Algorithm D satisfies Equation(6), then Algorithm D satisfies ε-differential privacy.

D(A) = q(A) + Lap(
∆q

ε
)d (6)

Where Lap(∆q
ε
)
∆
= denotes the added Laplace noise, and the noise variable is propor-

tional to the location sensitivity and inversely proportional to the privacy budget ε.

In two-dimensional space, noise cannot be added directly using the above Equation,
this paper gives the probability function of the noise that needs to be added to satisfy
ε-differential privacy in the case of a single location.
Suppose the set of true positions is A1, the ε-differential privacy is satisfied when the

elements in the set of disturbed positions A2 after adding noise satisfy Equation (7).

Pr[D(a1) = a2] =
ε2

2π
e−ε∗dist(a1,a2), a1 ∈ A1, a2 ∈ A2 (7)

Where Pr[D(a1) = a2] denotes the probability that the true position a1 after adding
noise is a2. When ε is certain, it can be seen from Equation(7) that Pr[D(a1) = a2] is
only related to the distance between a1 and a2, and that Pr[D(a1) = a2] decreases as the
distance between the two increases.

In order to simplify the representation, the polar function can be used to achieve the
following:

Pr[D(a1) = a2] =
ε2

2π
e−ε∗dist(a1,a2), a1 ∈ A1, a2 ∈ A2 (8)

Where dist(a1, a2) denotes the distance between a1 and a2, and a denotes the angle
between a1 in polar coordinates and the polar axis.
To facilitate the solution, the Equation (9) is decomposed onto the distance dist(a1, a2)

and the angle a to obtain the following Equation:

Pr[Dε,dist(a1,a2)[dist(a1, a2)]] =

∫ 2π

0

Pr[Qε[dist(a1, a2), α]]dα

= ε2dist(a1, a2)e
−εdist(a1,a2)

(9)

Pr[Dε,α(α)] =

∫ +∞

0

Pr[Qε[dist(a1, a2), α]]dr

=
1

2π

(10)

According to the above Equation, noise can be added to the real location set A1 and a
random disturbed location set A2, can be generated to achieve the purpose of differential
privacy location protection, where

B{bi = ai + [dist(a1, a2) cosα, dist(a1, a2) sinα]} (11)

The independent perturbation algorithm is to add Laplace noise to each position in
the true position A1 separately, which satisfies ε-differential privacy and whose degree of
privacy protection is the sum of the privacy protection budgets for each location. When
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the number of real locations is small and the real locations are far apart, the effect of
the noise addition algorithm proposed in this section is ideal, but the degree of privacy
protection will decrease as the number of locations in the collection increases, and satisfies
ε-geography indistinguishability [21], that is, the closer the disturbed location to the real
location, the easier it is to publish. When the real location is too close and too much, the
degree of privacy will decrease.

4.1.2. Centroid Perturbation Publishing Algorithm. This section addresses the above prob-
lem by adding noise to the centroid of a polygonal model, the idea of this model is: firstly,
the protected points and the surrounding points that meet the requirements are formed
into a polygon, secondly to calculate its centroid coordinates using the centroid Equation,
and finally to add noise to it by using an independent perturbation algorithm. Suppose
that the set of positions F in a user’s trajectory map represents protected position points,
Location set A represents two-dimensional information about the user’s historical position
points, and the points in the location set A with the number of users visits greater than
m are added to the pending set H.

For these position points, According to the algorithm, the protected points fi(xi, yi)(i =
1, 2, . . . , n) and the randomly selected points hi(xi, yi)(i = 1, 2, . . . , n) from the undeter-
mined set H form a polygon and calculate its centroid. The centroid I(x, y) is computed
as shown in Equation (11). Figure 1 shows an example of a triangle.

Figure 1. Constructing triangle to solve the centroid

When constructing the polygon, assume that the protected point fi(xi, yi)(i = 1, 2, . . . , n)
is the center of the circle and draw acircle with radius R, the point where the polygon is
constructed should fall in the circle. It should be noted that the value of R should not be
too small, otherwise the range of the generated polygon is too small to play the role of
blurring the true position. The R-value should not be too large either, as it will reduce
the level of privacy protection. Therefore, we need to set Rmax and Rmin, so:

Rmin ≤ R ≤ Rmax (12)

According to the method described above, the set of centroid M corresponding to the
set H of protected position points is obtained, and then noise is added to each particle
by the Laplace algorithm, and the resulting results are added to the database C.

4.1.3. QPDPLP Algorithm. Suppose that the user interest area is a square with r as its
side length. When the perturbation location a2 generated by perturbation algorithm D is
within the user’s area of interest, then a2 is added to database C; When the perturbation
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location generated by the perturbation algorithm D is not in the user’s zone of interest,
the mapping function is used to project onto the area of interest, and the points resulting
from the projection are added to the database C.

At a certain moment, given the prior probability p(t)−(a1) and the perturbation algo-
rithm D, solve for the posterior probability p(t)+(a1). According to the Bayes’ theorem,
there is:

p(t)+(a1) = p(a1|a2) =
p(a2|a1)p(t)−(a1)∑

a′∈A p(a2|a1
′)p(t)−(a1

′)
(13)

The mapping function F is expressed as follows:

F (a2) = argmin
c∈C

∑
a1∈A1

p(t)+(a1)δ(a1, c) (14)

Among them, δ(a1, c) is used to measure the degree of service quality loss when publish-
ing c instead of a1, and the service quality loss is the quality proportional to the accuracy
of the location that the service provider should provide and the location it receives.

Based on the user’s background knowledge it is known that in the user interest area,
users are not only active in one region. When the position points frequently accessed
by users are not close together or in small numbers, the privacy protection of using
independent perturbation algorithms is high. To take an extreme example, Suppose the
set of user locations contains three locations, a11, a12, a13, where a11 is located at a location
in Tian An Men Square in Beijing, a12 is located at a location in the Yuntai Mountain
Scenic Spot in Jiaozuo, and a13 is located at a location in Fante Joy World in Zhengzhou.
Suppose the user’s current location is in position a12, when the user wants to search
for a hotel within 1 km of the current location, if the three positions of the centroid
perturbation to protect the location, will lead to three positions of the centroid far away
from the current position, the search result is certainly not Jiaozuo Yuntai Mountain
near the hotel, so the error is very large, although it also achieves the role of privacy
protection, but seriously affects the quality of service. In this case, the independent
perturbation method is obviously better than the centroid perturbation method; however,
when the visited position points are close to each other or there are too many of them,
the use of a centroid perturbation algorithm is preferable to an independent perturbation
algorithm. For an extreme example, when a user sends multiple service requests at the
same location, the centroid perturbation method only needs to add noise once, but the
independent disturbance method requires multiple noise additions. Therefore, when the
location is close or the number of when there is too much, the centroid perturbation
method is better than the independent perturbation method.

To address the aforementioned problems, this section proposes a differential privacy
location publishing algorithm that combines quadtree partitioning, which effectively com-
bines an independent perturbation algorithm and a centroid perturbation algorithm by
introducing relative weights threshold ξ and sparsity threshold ψ to enhance the protec-
tion of location privacy.

The idea of a quadtree is to recursively divide geospatial space into different levels of
tree structure, it divides a space of known extent into four equal subspaces, and so on
recursively until the tree hierarchy reaches a certain depth or satisfies some requirement
and then stops dividing, as shown in Figure 2(a). The traditional method uses a complete
quadtree, and although it is easy to implement differential privacy analysis, the method
results in a large number of empty nodes due to the large height of the quadtree when the
location distribution is unbalanced, resulting in excessive noise injection overall. In this
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paper, we design a quadtree splitting method based on relative weights, which effectively
reduces the noise injection.

In the first step the weights of each node in the quadtree can be calculated according
to definition 3.4; Since the subscripts of child nodes are associated with the subscripts of
their parents for each partition of the region, the node subscripts are defined as follows:
State i represents the subscript of the parent node corresponding to the desired node;
The state ij represents the subscript of the child node of a node with state i, where
j = 1, 2, 3, 4.

The second step calculates the weight of each area relative to the area of interest, as
follows:

W [e] = wij[e] ∗W [parent], 1 ≤ j ≤ 4 (15)

Where wij[e] denotes the weight of the requested region. The third step compares the
result calculated in the second step with ξ, as follows:

Divide =

{
True,W [e]≥ξ
False,W [e]<ξ

(16)

Among them, Divide represents division of areas, Truemeans continue to divide, False
indicates that the division is stopped, ξ denotes the threshold value of relative weights,
when ξ = 1/6, the area division is shown in Figure 2(b).

(a) Area division
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 3 4 8  4

  1 2  3   2
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w1=4/30
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(b) ξ = 1/6

Figure 2. Area division method based on quadtree weight

Step four and so on until the entire area of interest can no longer be divided.
The next key question is how to choose the appropriate perturbation algorithm for

each area. Assuming that V1 = {v1i : i = 1, 2, . . . ,m}, then the sparsity of the area is
calculated as follows:

S1 =

√√√√√ m∑
j=1

[dist(v1i, v1j)− v1.dist]
2

m− 1
, 1 ≤ i ≤ m (17)
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Where v1 denotes region 1, S1 indicates the sparsity of region 1, dist(v1i, v1j) means

the distance between any two points in v1, and v1.dist denotes the average of the point-
to-point distances in v1.
The sparsity of any region vi(i = 1, 2, . . . , n) can be obtained from Equation (18), where

Si denotes the sparsity of the i− th region, dist(vij, vik) denotes the distance between any

two points in vi, and vi.dist denotes the average of the point-to-point distances in vi
calculated as follows:

Si =

√√√√√ m∑
j=1

[dist(vij, vik)− vi.dist]
2

m− 1
, 1 ≤ i ≤ n, 1 ≤ k ≤ m (18)

Based on the above derived Equation, the entire regional division can be calculated.
For the distribution of true position points in each region, we can calculate its sparsity
level Si(i = 1, 2, . . . , n) using Equation(18) and compare it with the sparsity threshold
ψ, when the former is small, an independent perturbation algorithm is used, otherwise a
centroid perturbation algorithm is used, so that the error-disturbance caused by adding
noise can be reduced as much as possible.

The main flow of the QPDPLP algorithm is given below.
Step 1: Establishing a square with r as its side length as a user interest area;
Step 2: According to the quadtree idea, the user’s interest area is divided into several

small areas, and the quadtree sp litting is controlled by the weight threshold ξ.
Step 3: From Equation (17) and Equation (18), calculate the sparsity Si(i = 1, 2, . . . , n)

corresponding to each region, compare it with the sparsity threshold ψ, select the per-
turbation algorithm based on the comparison result, and put the calculated perturbation
location into the database C;

Step 4: For the disturbed locations that fall outside the interest area, use Equation
(14) to map them to the interest area, and add the mapping result to the database C;
Step 5: Add the real location A to database C, and then randomly select a number

of position points from database C to be published location Z.
The overall algorithm of the differential privacy publishing algorithm combined with

the quadtree division is as follows:

4.1.4. Algorithmic Analysis. The total error of the independent perturbation algorithm
is the sum of the noise added at each true position. Assuming that the privacy budget
consumed at each location is ε the expectation of the added noise at each location is
E[dist(a1, a2)]i(i = 1, 2, . . . , n), so:

E[dist(a1, a2)]i =

∫ +∞

0

dist(a1, a2) ∗ P [dist(a1, a2)]d[dist(a1, a2)]

=

∫ +∞

0

dist(a1, a2) ∗ ε2dist(a1, a2)e−ε∗dist(a1,a2)ddist(a1, a2)

=
2

ε

(19)

From Equation (19), the total error of the independent perturbation algorithm is:
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Algorithm 1 QPDPLP algorithm

Input: Real position set A, Length of area of interest r, the prior probability p(t)− of the
non-interest area before moment t, Differential privacy budget ε, Rmin, Rmax, Relative
weight threshold ξ, Sparsity threshold ψ.

Output: Publish location Z
1: nshoCount = Initialize();
2: for nshoCount > ξ
3: Recursion(e); // Iterative division of areas
4: end for
5: Calculate; // Equation (18)
6: if Si > ψ Then
7: D=Choose(0); //0 indicates an independent perturbation algorithm
8: else
9: D=Choose(1); //1 represents the centroid perturbation algorithm

10: C in=Disturbed(D);
11: P (t)+= ChooseLoc(p(t)−); // Equation (13)
12: C out← CalRelease(p(t)+);
13: C ← (C in ∪ C out ∪ A);
14: Z=RandomChoose(C);
15: return Z;

Error1 =
n∑

i=1

errori

= n ∗ E[dist(a1, a2)]i

=
2n

ε

(20)

The total error of the centroid perturbation algorithm takes into account not only the
error caused by adding noise to the centroid, but also the error between the true position
and the sought-after centroid. Assume that the privacy budget consumed per location is
ε, but in fact, the privacy budget consumed by each location is ε

′
/n, then the error added

to the centroid is Es[dist(a1, a2)] =
2

n2ε
, 1 ≤ s ≤ m, then the total error of the centroid

perturbation algorithm is:

Error2 =
n∑

i=1

(dist(a1i, a
′

1s) + dist(a1s, a
′

1s))

=
n∑

i=1

dist(a1i, a
′

1s) +
2

n2ε
, 1 ≤ s ≤ m

(21)

where a1i denotes the i − th true position, a1s denotes the centroid position, and a
′
1s

denotes the disturbed position obtained after adding noise to the centroid position.
The QPDPLP algorithm is an algorithm that combines the independent perturbation

algorithm and the centroid perturbation algorithm based on the relative weight threshold
ξ and the sparsity threshold Ψ, So the total error is:

Error3 = 2j
ε
+

n∑
i=ς+1

dist(a1i, a
′
1s) +

2
(n−ς)2ε

, 1 ≤ j ≤ ς, 1 ≤ s ≤ m (22)
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Among them, a1i represents the i − th real position, and a
′
1s represents the disturbed

position obtained by adding noise to the centroid position.

5. Experiments and Analysis. Comparative experiments will be performed QPDPLP
algorithm, the differential privacy location protection method (ISTDP) for irregular line
trees [22] and the Haar wavelet zero-tree compression algorithm (EH-WT-DP), which is
representative for improving the accuracy of differential privacy queries [23].

Since the value of the privacy budget directly affects the size of the noise addition and
thus affects the error analysis, Therefore, this paper uses the same privacy budget to
evaluate the accuracy of the algorithm query and the time complexity of the algorithm in
terms of location sparsity and the number of position points.

5.1. Experimental Setup. The QPDPLP algorithms were implemented using MAT-
LAB, and the experimental environment was a Windows 7 operating system with 8.00
GB RAM and a 3.60 GHz CPU. The datasets used in the experiments are the landmark
and storage real datasets, the former being the landmarks consisting of geographic coor-
dinates of the 48 large U.S. states provided by Infochimps big data site with about 880k
data points, and the latter being the U.S. storage facility location data with sparse data
points of about 10,000 data points. The specific parameter settings are shown in Table 1.

Table 1. Experimental parameters

Parameter Description Parameter value range
ε Privacy budget 1 <= ε <= 10
Si Location sparsity 1 <= Si <= 13
n Number of location points 0 <= n <= 200

5.2. Variation of Query Error at Different Location Sparsity. To test the com-
parison of the query errors of three algorithms, QPDPLP, ISTDP, and EHWT-DP, in the
experiment, the parameters was set up with ε=1, and the degree of sparsity was taken
from 1 ∼ 13. For different location sparsity in storage dataset and landmark dataset, the
results of the experiment are shown in Figure 3.
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Figure 3. Error in different degree of sparsity
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As can be seen from Figure 3(a), the EHWT-DP algorithm has the highest total error
and the lowest location availability, i.e., the lowest location security, because EHWT-
DP is strongly influenced by location sparsity; The ISTDP algorithm, whose total error
does not fluctuate much and essentially shows a slow growth trend, has the best location
availability, this is because the algorithm is essentially independent of location sparsity
when privacy budgets are the same, resulting in better query accuracy, minimal errors
and low fluctuations; The QPDPLP algorithm in this paper is intermediate between
the two algorithms and close to the performance of the ISTDP algorithm because the
algorithm combines an independent perturbation publishing algorithm and a centroid
perturbation publishing algorithm, so it is affected by location sparsity and therefore
location availability is slightly lower than the ISTDP algorithm. Figure 3(b) shows similar
results on the landmark dataset. Also, the performance of the three algorithms on the
storages dataset is better than the performance on the landmark dataset because the data
distribution of storages is denser and the data distribution of landmark is sparse, so the
total error of the former is smaller than the latter.

5.3. Variation of Query Error for Different Number of Position Points. In ad-
dition to location sparsity influencing the three algorithms, the number of position points
is an important factor in the error. In this paper, we experimentally analyze the effect of
the number of position points on the total error of three algorithms. In the experiment,
the parameters was set up with ε=1, and sparsity is 2. The results of the experiment are
shown in Figure 4.
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Figure 4. Error under the number of different position points

It can be seen from Figure 4(a) that as the number of position points increases, the total
error of the three algorithms increases. where the EHWT-DP algorithm shows the largest
increase due to its large query error for individual position points, so that the total error
increases linearly as the number of position points increases; The QPDPLP algorithm
and the ISTDP algorithm have a smaller increase in the total error than the EHWT-DP
algorithm due to the smaller query error at a single location, and the QPDPLP algorithm
is also superior to the ISTDP algorithm due to the introduction of a centroid perturbation
publishing algorithm in this paper, which reduces the amount of noise injection. Figure
4(b) shows similar results on the landmark dataset.

5.4. Comparison of Algorithmic Time Complexity. This experiment was conducted
on the storage dataset and the landmark dataset. To compare the run times of QPDPLP,
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EHWT-DP and ISTDP, in the experiment, the parameters was set up with n = 200, and
sparsity is 2. The results are shown in Figure 5.
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Figure 5. Algorithm running time

It can be seen from the figure that the running time of QPDPLP and ISTDP are very
close, this is because these two algorithms are improved based on the tree structure and are
only related to the location set n. The grid division of the region is performed in an offline
environment, so the running time is less than EHWT-DP. The main time complexity of
ISTDP is to recursively divide the sub-line segment tree, so the time complexity of the
algorithm is O(logn); QPDPLP is similar to ISTDP, and the time complexity is also
O(logn). Since QPDPLP introduces a relative weight threshold ξ , which can effectively
control the number of divisions, the operational efficiency is improved compared to that
of ISTDP, while it is superior relative to EHWT-DP, the time complexity of which is
O(nlogn).

6. Conclusions. The core of the differential privacy protection algorithm based on user’s
interest area proposed in this paper is to introduce relative weight threshold and sparsity
threshold based on traditional position disturbance, and propose a QPDPLP algorithm
based on user’s interest area. The algorithm firstly uses the idea of quadtree to divide
the user’s area of interest; then the sparsity of the divided area is judged; and finally,
the perturbation algorithm is selected according to the sparsity. Compared with the
traditional algorithm, the algorithm considers both the influence of the number of position
points on the published location and the influence of the sparsity of the position points
on the published location, and the algorithm designed in this paper effectively reduces
the total error between the scrambled location and the real location after adding noise.

After analyzing and comparing the experimental results, it is demonstrated that the
amount of noise added is effectively reduced under the same privacy budget, thus ensuring
that the user’s private information is not leaked. Future research can continue to optimize
the QPDPLP algorithm to reduce the running time of the algorithm and disturb the
usability of location publishing for better application to location publishing services.



408 Z.H. Shen, M.K. Liu, H. Wang, P.Q. Liu, K. Liu and F.F Lian

Acknowledgment. This work was supported by the National Natural Science Founda-
tion of China (61300216), Doctoral Scientific Fund of Henan Polytechnic University(B2022-
16) and Youth Fund of Henan Polytechnic University(Q2014-05).

REFERENCES

[1] L. Zhang, D. Liu, M. Chen, H. Li, C. Wang, Y. Zhang, and Y. Du, A user collaboration privacy
protection scheme with threshold scheme and smart contract, Information Sciences, vol. 560, no. 1,
pp. 183-201, 2021.

[2] K. Wang, C. Chen, Z. Tie, M. Shojafar, S. Kumar, and S. Kumari, Forward Privacy Preservation in
IoT-Enabled Healthcare Systems, IEEE Transactions On Industrial Informatics, vol. 18, no. 3, pp.
1991-1999, 2022.

[3] S. Zhang, X. Li, Z. Tan, T. Peng, and G. Wang, A caching and spatial K-anonymity driven privacy
enhancement scheme in continuous location-based services, Future Generation Computer Systems,
vol. 94, pp. 40-50, 2019.

[4] O. Lu, Q. Zheng, L. Shaolin, H. Yuan, and X. Jia, Releasing Correlated Trajectories: Towards High
Utility and Optimal Differential Privacy, IEEE Transactions On Dependable and Secure Computing,
vol. 17, no. 5, pp. 1109-1123, 2020.

[5] Y. Liu and Q. Zhao, E-voting scheme using secret sharing and K-anonymity, World Wide Web-
Internet and Web Information Systems, vol. 22, no. 4, pp. 1657-1667, 2019.

[6] R. Bild, J. Eicher and F. Prasser, Efficient Protection of Health Data from Sensitive Attribute
Disclosure,Studies in Health Technology and Informatics, vol. 270, pp. 193-197, 2020.

[7] M.A. Mohamed, S.M. Ghanem and M.H. Nagi, Privacy-preserving for distributed data streams:
towards l-diversity., International Arab Journal of Information Technology, vol. 17, no. 1, pp. 52-64,
2020.

[8] Z. Wang, J. Li, J. Hu, J. Ren, Z. Li and Y. Li, Towards Privacy-preserving Incentive for Mobile
Crowdsensing Under An Untrusted Platform,IEEE INFOCOM 2019 - IEEE Conference on Com-
puter Communications, pp. 2053-2061, 2019.

[9] T. Wang, Y. Mei, W. Jia, X. Zheng, G. Wang, and M. Xie, Edge-based differential privacy computing
for sensor–cloud systems, Journal of Parallel and Distributed Computing, vol. 136, pp. 75-85, 2020.

[10] P.C.M. Arachchige, P. Bertok, I. Khalil, D. Liu, S. Camtepe, and M. Atiquzzaman, A Trustworthy
Privacy Preserving Framework for Machine Learning in Industrial IoT Systems, IEEE Transactions
On Industrial Informatics, vol. 16, no. 9, pp. 6092-6102, 2020.

[11] T. Zhang, D. Ye, T. Zhu, T. Liao, and W. Zhou, Evolution of cooperation in malicious social
networks with differential privacy mechanisms, Neural Computing and Applications, vol. 2020, no.
4, pp. 156-168, 2020.

[12] T. Li, J. Li, Z. Liu, P. Li, and C. Jia, Differentially private Naive Bayes learning over multiple data
sources, Information Sciences, vol. 444, pp. 89-104, 2018.

[13] C. Yin, J. Xi, R. Sun, and J. Wang, Location Privacy Protection Based on Differential Privacy
Strategy for Big Data in Industrial Internet of Things, IEEE Transactions on Industrial Informatics,
vol. 14, no. 8, pp. 3628-3636, 2018.

[14] Y. Li, S. Liu, D. Li, and J. Wang, Release Connection Fingerprints in Social Networks Using Per-
sonalized Differential Privacy, Chinese Journal of Electronics, vol. 27, no. 5, pp. 1104-1110, 2018.

[15] C. Yan, Z. Ni, B. Cao, R. Lu, S. Wu, and Q. Zhang, UMBRELLA: user demand privacy preserving
framework based on association rules and differential privacy in social networks, Science China
Information Sciences, vol. 62, no. 3, pp. 205-207, 2018.

[16] S. Liu and Y. Zhu, Differential privacy protection for social network edge weights, Computer Engi-
neering and Design, vol. 39, no. 1, pp. 44-48, 2018.

[17] S.U. Dong, J.N.E. Cao, L.I. Ninghui, N.O. ELISA BERTI, M. Lyu, and H. Jin, Differentially Pri-
vate K-Means Clustering and a Hybrid Approach to Private Optimization, Acm Transaction on
Information & System Security, vol. 20, no. 4, pp. 11-16, 2017.

[18] F. Deldar and M. Abadi, PLDP-TD: Personalized-location differentially private data analysis on
trajectory databases, Pervasive and Mobile Computing, vol. 49, pp. 1-22, 2018.

[19] Z. Huo and X. Meng, A Trajectory Data Publication Method under Differential Privacy, Jisuanji
Xuebao/Chinese Journal of Computers, vol. 41, no. 2, pp. 400-412, 2018.

[20] Z. Wang, X. Pang, Y. Chen, H. Shao, Q. Wang, L. Wu, H. Chen, and H. Qi, Privacy-Preserving
Crowd-Sourced Statistical Data Publishing with An Untrusted Server, IEEE Transactions On Mobile
Computing, vol. 18, no. 6, pp. 1356-1367, 2019.



QPDPLP: A Novel Location Privacy Protection Method 409

[21] P. Zhang, C. Hu, D. Chen, H. Li, and Q. Li, ShiftRoute: Achieving Location Privacy for Map Services
on Smartphones, IEEE Transactions On Vehicular Technology, vol. 67, no. 5, pp. 4527-4538, 2018.

[22] D.Hu and Z.Liao, Differential privacy location privacy preserving method for irregular line segment
trees, Microcomputer system, vol. 41, no. 2, pp. 333-337, 2020

[23] X. Xiao, G. Wang and J. Gehrke, Differential Privacy via Wavelet Transforms, IEEE Transactions
on Knowledge & Data Engineering, vol. 23, no. 8, pp. 1200-1214, 2011.


