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Abstract. Reflecting user query intent through Structured Query Language(SQL) to
answer questions on a knowledge base has been the focus of research in natural language
processing and human-computer interaction. For complex relational database Q&A tasks
in cross-lingual scenarios, we propose a semantic parsing model DBSQL. First, the shared
features of natural language queries and database schemas are extracted. Next, to solve
the problem of imbalance of minimal semantic units in cross-lingual text sequences, lex-
icon features are fused into character-level semantic representations by alignment atten-
tion mechanism. Then, the relationship features in database schema are captured through
a relationship-aware attention mechanism, thus improving the ability to model complex
queries. Ultimately, a hybrid pointer network is used to guide the generation of more flex-
ible SQL statements. Experimental results on a public dataset shows that the proposed
method can effectively improve the exact match accuracy of generated SQL statements
and better parse the query intent.
Keywords: cross-lingual question and answering, structured query language, database
schema, semantic parsing, attention mechanism
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1. Introduction. With the deep integration of artificial neural networks and natural
language processing tasks, how to establish a more natural human-machine interaction
between humans and machines has gradually become an emerging research hotspot. Espe-
cially for user questions on structured knowledge such as tables and relational databases
across domains, an effective solution is to transform natural human statements into generic
Structured Query Language (SQL) that can be executed on databases through semantic
parsing techniques, which can build an interactive bridge between non-technical people
and structured knowledge. This method can be applied to a variety of practical scenarios
such as cross-domain data retrieval [1], intelligent Q&A(Question and Answer) [2].

To achieve the conversion from natural human language to machine-understandable
logical queries, most approaches use an encoder-decoder structure similar to the transla-
tion tasks. The encoder is used to understand the query intent in natural language and
establishes a corresponding entity mapping with structured knowledge that is the object
of the query. The decoder generates SQL statements based on encoder’s understanding to
obtain answers. SQLNet [3] can generate corresponding SQL statements for a single table
query in English scenario. It takes into account the limitations imposed by the query scope
of a single table on the structure of SQL statements, in other words, SQL statements do
not involve complex syntactic operations such as multi-table joins. To this end, SQLNet
designs a generic SQL template that predicts the detailed information to form a complete
SQL statement. However, this approach cannot be effectively extended to common rela-
tional database scenarios, as more advanced and flexible SQL syntaxes are often required
to support the implementation of complex query intent when dealing with many database
tables with join relationships. Considering that simple SQL templates cannot support
the generation of complex query statements, SyntaxSQLNet [4] addresses the problem of
difficult semantic parsing of complex relational databases in English scenarios by defining
different syntax modules based on SQL syntax knowledge and recursively generating SQL
statements through a tree structure. IRNet [5] uses a similar idea to SyntaxSQLNet,
defining an intermediate transition layer between natural language and SQL statements,
which establishes mapping relationships and guides the generation of SQL statements.
RYANSQL [6] follows the idea of SQL templates in SQLNet and enhances the ability
to generate complex SQL queries by introducing recursive methods. However, although
existing approaches have been achieved some important advances in the task of semantic
parsing on structured data, they suffer from three limitations as follows.

First, most works have focused on scenarios where natural language queries and data-
base structures are in same language [6-9], while in-depth studies for cross-lingual scenarios
are lacking. In practice, most widely used database management systems, such as Oracle,
SQL Server, Access, etc., often use English to represent the names of tables and fields
in relational databases, while the natural language used for querying can be a language
other than English, such as Chinese. Figure 1 gives an example of converting a natural
language query to a SQL statement in a multilingual scenario. For the Chinese query “返
回抵达哈尔滨市的航班数量(Return the number of flights arriving in Harbin)”, we need
to generate the corresponding SQL statement based on the English database “Flight”.
The key to achieving this goal is, on the one hand, to establish a cross-lingual entity
mapping between natural language queries and database tables and fields, such as “航
班(Flight)” in the example, which corresponds to the database table “FLIGHES”, “抵
达(Arrival)” is an omitted expression for “抵达机场(Arrival Airport)” and corresponds
to the field “DestAirport” in table “FLIGHES”, “哈尔滨市(Harbin City)” corresponds
to the field “City” in table “AIRPORTS”, which specifies the value information “哈尔



444 R. H. Liu, X. Ye, Z. Y. Yue, J. J. Zhang and C. H. Zhu

Figure 1. Example of converting a natural language query to a SQL state-
ment in multilingual scenario.

滨(Harbin)”. On the other hand, it is also necessary to parse the query logic and convert
it to the corresponding SQL operations. The “航班数量(Number of Flights)” in example
indicates to count all flight information of the query, i.e. “COUNT(*)”, and connecting
two tables (“FLIGHES” and “AIRPORTS”) that related to the query by “JOIN” opera-
tion. However, most of the existing semantic parsing methods for same language use string
matching to obtain entity mapping relationships between heterogeneous data [5,6,8,10],
which also means that these methods will not be applicable in cross-lingual scenarios.
Luo et al. [11] solve the cross-lingual entity linking problem by generating candidate en-
tities through translation and fusing entity features on different dimensions in web forms,
but the translation process not only requires additional task cost, but also inaccurate
translation results tend to cause error accumulation and propagation. Min et al. [12]
attempt a cross-lingual word embedding approach to compensate for the incompatibility
of word vectors between Chinese and English, but this approach only represents words
independently, extracts shallow text representations, and ignores their context, which is
not conducive to capturing long-term dependencies between entities.

Second, the syntactic differences between Chinese and English lead to the imbalance
of minimum semantic units. While words in English are separated by spaces, there is
no explicit lexicon boundary information in Chinese scenarios, and many approaches
ignore this important difference when dealing with multilingual texts. For example, when
processing text sequences containing Chinese and English, the WordPiece tokenization
[13] method in multilingual pre-trained model M-BERT [14] takes a word as the smallest
unit for English sequences and a character as the smallest unit for Chinese sequences.
Specifically, assuming that the mixed English and Chinese input contains the words “航
班(Flight)” and “Flight”, the WordPiece tokenization will split the Chinese word “航
班(Flight)” into “航(Sail)” and “班(Class)” characters, which loses the lexicon information
in Chinese text, and the English “Flight” retains the original lexicon form, resulting in
inconsistency between the minimal semantic units of two languages. For the semantic
parsing task in Figure 1, the Chinese word “航班(Flight)” in query corresponds to the
English word “FLIGHES” in database. However, after splitting the Chinese vocabulary,
it is difficult for a model to detect the mapping relationship between heterogeneous data
during contextual representation learning because the single Chinese characters “航(Sail)”
and “班(Class)” do not have complete semantic information. Lei et al. [15] also find that
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the model often confuses words with same semantic meaning due to different word splitting
methods of WordPiece tokenization in the process of building schema links.

Finally, most existing methods have difficulty in explicitly characterizing the primary
and foreign key relationships between different tables in a database. Unlike single table
Q&A scenario, when dealing with relational databases, the queries raised by users often
involve multiple tables, which are related to each other by fields with primary and foreign
key attributes. In the sample database(Flight) shown in Figure 1, the field attributes in
each table are marked using different colors and the relationships between the tables are
indicated by dashed lines with arrows. There are two fields with foreign key attributes
“SourceAirport” and “DestAirport” in table “FLIGHES”, both of them refer to the field
“AirportCode” which is the primary key in table “AIRPORTS”. From natural language
query and corresponding SQL statement in the example, we can see that although the
final answer of query comes from the table “FLIGHES”, it also needs to be combined
with the table “AIRPORTS” to form a conditional constraint, i.e. “AIRPORTS.City =
哈尔滨(Harbin)”, and the above primary and foreign key relationship ensure that SQL
query actions can operate consistently across tables. It is worth noting that only a simple
example is given in Figure 1. In a real scenario, a table can have multiple primary and
foreign keys, which means it can be associated with multiple tables at the same time, and
this poses a challenge for relational database modeling. Therefore, the model is required
to be able to accurately perceive the associated tables based on natural language queries.
BRIDGE [8] designs a meta-data method for representing table and field characteristics
in relational databases. However, this method simply distinguishes whether each field in
the table is a primary or foreign key, and ignores the specific relationships between them.

To overcome the above difficulties, we focus on the CSpiser dataset proposed in litera-
ture [12], a cross-lingual Q&A task based on a relational database, and propose a semantic
parsing model DBSQL based on Chinese lexicon enhancement and database schema re-
lationship awareness to generate SQL statements that reflect the user’s query intent. In
the process of encoding, in order to handle the cross-lingual semantic parsing scenario
where natural language query is in Chinese and database schema is in English. First, a
multilingual pretrained model M-BERT is used as an initialization encoder to unite two
heterogeneous data and represent table and field information in database schema by a
special tag-based serialization encoding method to obtain a global representation of dif-
ferent structural data. Then, a LSTM(Long Short-Term Memory) structure is used to
capture the long-term dependencies between contexts in the jointly encoded sequences and
obtain the common features of multilingual heterogeneous data, thus effectively avoiding
the local errors caused by word embedding and the semantic bias caused by translation.
Subsequently, with the common features, we design corresponding methods to further ex-
tract the private features of two kinds of heterogeneous data according to their syntactic
and structural characteristics, respectively, which compensate the limitations of existing
methods in multilingual semantic learning and database complex relationship modeling.
Experimental results show that DBSQL achieves 54.6% exact matching accuracy on the
publicly available dataset CSpider and achieves a 4.1% advantage over the existing state-
of-the-art methods. In this paper, we make four contributions.
(1) We design a relational database semantic parsing model DBSQL for cross-lingual
scenarios, which can effectively alleviate three limitations in most existing approaches,
including limited language scenarios, inconsistency of the minimum semantic units, and
the difficulty of characterizing complex tabular relationships in databases.
(2) We propose a heterogeneous data common feature extraction method. It obtains com-
mon features of cross-lingual heterogeneous data in same semantic space by combining
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serialized encoding of custom tokens, which effectively bridges the language and data for-
mat gaps in database-based Q&A tasks.
(3) We propose a Chinese query feature enhancement method. Through an alignment
attention mechanism, lexical information is incorporated into Chinese character repre-
sentations to alleviate the problem of imbalance in the minimum semantic units when
encoding multilingual sequences.
(4) We propose a relational database schema relationship-aware method. It explicitly
defines the connection relationships of database tables and obtains their relational rep-
resentations through a relational attention mechanism, which effectively describes the
complex feature in relational databases.

2. Related Work. With the development of deep learning techniques, the semantic pars-
ing task of transforming natural human utterances into machine-understandable logically
structured representations has been extended to generalizable Natural Language Interface
to Database(NLIDB) [16], which maps natural language queries posed by users to SQL
statements that can be executed on relational databases. The database used for inference
is not visible at the time of training, which requires the model to be generalizable and
expandable across different domain data.

This task is earlier focused on scenarios where the query’s knowledge base consisted
of a single table [7,17]. However, in practice, due to the widespread use of database
systems, people often expect to find answers directly from a database containing a large
number of tables. This work is considered challenging [10] because it must not only
be able to understand the intent of people’s spoken questions, but also establish accurate
mapping relationships between entities in queries and tables, fields, values in the database
to generate logical SQL statements.

Most of the current works on this task focus on monolingual scenarios where both
the user query and the database are in English or Chinese. RYANSQL [6] designs a
fillable template for complex SQL statements in the Spider dataset [18], using a recursive
approach to convert nested statements in SQL statements to a non-nested form. Instead,
we take a more general and flexible generative approach to building SQL statements, thus
not being bound by templates. To better establish mapping relationships between natural
language queries and database schemas, RAT-SQL [10] uses a relation-aware approach to
achieve explicit alignment of entities in natural language queries with database schemas
and decodes them with a SQL syntax tree structure. We also consider the important
aspect of relationship awareness, but unlike RAT-SQL, for cross-lingual scenarios we focus
more on the primary and foreign key relational features in database schema without
matching the entity relationships between queries and databases, and use a generative
decoding approach based on a hybrid pointer network. BRIDGE [8] matches strings
related to natural language queries from database table contents in the encoding process
to enhance the mapping relationships between heterogeneous data. To avoid the drawback
that string matching methods are not applicable to cross-lingual texts, we extract private
features of two heterogeneous data separately and construct hybrid feature sequences,
which can improve the semantic imbalance in cross-lingual scenarios and obtain more
detailed database schema representations.

Influenced by existing database systems, the names of database tables and fields are
usually expressed in English to improve compatibility during the construction of relational
databases, but the languages used to interact with them are diverse. For such cases, Min
et al. [12] constructed CSpider dataset, which is similar to Spider dataset. It requires the
model to generate SQL statements that can be executed on database based on user queries,
but the queries in CSpider are in Chinese and the database schemas retain the original
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English format to make it more compatible for actual Chinese application scenario. How-
ever, migration from monolingual to cross-lingual tasks is difficult. This is because in
addition to dealing with formatting differences between heterogeneous data, there is also
a semantic divide between texts in different languages to be overcome. More importantly,
in monolingual scenarios, most approaches tend to establish mapping relationships be-
tween queries and databases through explicit methods such as text matching [8,10,15,19],
which will no longer be applicable in cross-lingual scenarios. Released along with CSpider
is a cross-lingual model improved from SyntaxSQLNet, which obtains cross-lingual repre-
sentations of heterogeneous data in same semantic space by multilingual word embedding,
and decouples SQL statements into multiple components simultaneously combined with a
syntax tree structure to form a pipeline task. We instead perform representation learning
on cross-lingual heterogeneous data through a separate sequence-to-sequence task, thus
avoiding the problem of error accumulation in pipeline tasks. There are also some works
that use translation methods to unify different languages [11]. However, in the Q&A sce-
nario of this paper, user questions are often characterized by colloquial phrases and field
names in database lack contextual descriptions, which often produces poor translation
results and leads to ambiguities and errors. Instead, we study the cross-lingual Q&A
approach without introducing additional translation operations.

3. Methodology. A cross-lingual Q&A task based on a relational database can be de-
fined as follows. Given a Chinese natural language query Q and an English relational
database schema D =

{
T1, ..., T|D|

}
. The goal is to generate a SQL statement that satisfy

the query intent, where the query input Q = [q1, ..., q|Q|] is a Chinese sequence containing
|Q| characters, Ti refers to the name of the i-th table in database D, and i ∈ {1, ..., |D|}
, |D| is the number of tables in database D. For table Ti , we have Ti =

{
Ci

1, ..., C
i
|Ti|

}
,

where Ci
j refers to the name of the j-th field in table Ti . At the same time, according to

the database storage format, all fields are given a data type and denoted by TP i
j , which

includes numeric and text, and j ∈ {1, ..., |Ti|} ,|Ti| is the number of fields in table Ti. In
addition to this, there are a number of fields that are marked as primary and foreign keys
for indexing and joining tables.

The DBSQL model framework proposed in this paper is shown in Figure 2, which con-
sists of three stages in general: encoding layer, middle layer and decoding layer. Specifi-
cally, for natural language queries, we design a Chinese lexicon enhancement method to
solve the minimum semantic unit inconsistency problem in the encoding process of Chi-
nese and English heterogeneous data. Through an attention mechanism based on lexicon
alignment, each Chinese character is characterized by incorporating the semantic infor-
mation of the vocabulary in which the character is located. For relational databases, a
relationship-aware layer is designed to explicitly model the complex tabular relationships.
We define primary and foreign key relationships between different fields and add this fea-
ture to attention mechanism used to characterize the database schema. Finally, we use
the private features of two heterogeneous data to form a hybrid feature sequence which
guides the subsequent decoding operation. In the decoding process, in order to address
the limitation that the SQL template-based filler method cannot effectively generate SQL
statements containing complex syntactic structures such as multi-table joins and nested
queries, we use sequence generation to obtain more flexible forms of SQL statements
by improving the pointer network structure and dynamically selecting the appropriate
content from SQL proprietary vocabulary and mixed feature sequences.

The encoding layer jointly encodes two cross-lingual heterogeneous data to obtain com-
mon features(Section 3.1). The middle layer acquires private features(Section 3.2) of
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Figure 2. Framework of DBSQL.

natural language queries and database schemas respectively through Chinese vocabulary
enhancement and database schema awareness according to the characteristics of different
data formats. The decoding layer generates SQL statements by fusing private features of
heterogeneous data and using them as input to the hybrid pointer network. The decoding
layer fuses private features of heterogeneous data into a sequence of hybrid features and
generates SQL statements through an improved pointer network(Section 3.3). In this
section, we will describe the details of DBSQL from the bottom up, following the three
stages mentioned above.

3.1. Heterogeneous Data Common Feature Extraction. Pre-trained models [14,20-
21] have achieved better results on several natural language processing tasks by using a
large-scale corpus to learn generic semantic representations. M-BERT is a multilingual
pre-trained model [22] that uses the same architecture and training method as BERT [14],
with the difference that BERT is trained on a single corpus, while M-BERT is trained on
a corpus containing 104 languages, enabling multilingual shared contextual word embed-
ding representation. In the process of capturing mapping relationships between entities
in cross-lingual scenarios, in order to compensate for the inefficiency and high error of
translation means, we design a heterogeneous data modeling approach based on M-BERT
to jointly encode the Chinese query Q and the English database schema D. This method
could obtain their contextual representations, and capture the mapping relationships be-
tween them implicitly through multi-heads self-attention mechanism in Transformer [23].

Due to the differences in structure as well as language conventions between free text
and structured databases. It is also necessary to pre-process these two types of data
separately before encoding. In Chinese query Q, some English terms are still interspersed,
such as “返回VLDB会议的主页(Return to the home page of VLDB conference)”, where
“VLDB” is a rare term that does not exist in the vocabulary of M-BERT. For such
unregistered words, the WordPiece method slices them into two subwords “VL” and
“## DB” that exist in vocabulary. However, to facilitate subsequent lexicon alignment
operations(Section 3.2), we modify the original word splitting mechanism to still take a
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character-level segmentation for such words. In database schema D, we find that the fields
of different tables are similar or even identical. For example, fields such as “id”, “name”
appear in most tables, while there are also some fields such as “gender”, “sex” that are
difficult to distinguish. Therefore, we use the format “Table.Column|Type” to expand the
representation of each field in table, where “Column” indicates the field name, “Table”
is the table name where the field is located, “Type” indicates the data type of the field,
“. ” and “|” are special symbols used to separate different information of the field. The
entire input sequence S can be represented as follows.

S = [CLS], Q, [SEP], [T], T1, [C], T1.C
1
1 |TP 1

1 , ...,

T1.C
1
|T1||TP

1
|T1| , ..., [T], T|D|, [C], T|D|.C

|D|
1 |TP |D|

1

, ..., T|D|.C
|D|
|T|D||

|TP |D|
|T|D||

(1)

Where the special tags [T] and [C] are used to indicate table and field information
in database, respectively. The [CLS] and [SEP] tags defined by M-BERT are used to
represent the global information of the entire input and to distinguish between the two
formats of data, respectively.

Subsequently, the sequence S is fed into the M-BERT encoder with 12 multi-heads
self-attention layers, and the vector of the last layer is taken as the final output S . Next,
a Bi-LSTM(Bi-directional LSTM) is used to obtain the long-term dependencies in the
vector, which is calculated at each step as follows.

it = σ(W iSt +U iht−1 + bi) (2)

f t = σ(W fSt +U fht−1 + bf ) (3)

ot = σ(W oSt +U oht−1 + bo) (4)

z̃t = tanh(W zSt +U zht−1 + bz) (5)

zt = f t ⊙ zt−1 + it ⊙ z̃t (6)

ht = ot ⊙ tanh(zt) (7)

Where St denotes the input to the sequence vector S at moment t. it ∈ [0, 1], f t ∈ [0, 1]
, ot ∈ [0, 1] denote the input gate, forget gate and output gate, respectively. σ(·) refers
to a sigmoid function, and ⊙ denotes element-wise product. W , U and b with different
subscripts denote trainable parameters.

The common feature vector consists of the hidden layer vectors hQ and hD correspond-
ing to Q and D, respectively, which are represented as follows.

hS = [hQ,hD] = Bi - LSTM(S) (8)

Where Bi-LSTM denotes bi-directional LSTM calculation. hS ∈ R|S|×d , and |S| de-
notes the length of the input sequence S and d denotes the vector dimension.
To simplify the database schema representation, we extract the semantic vectors of all

tables and fields from hD , which are the hidden vectors corresponding to the special
tokens [T] and [C] as the final data-base schema representation, and NTC is the total
number of [T] and [C].



450 R. H. Liu, X. Ye, Z. Y. Yue, J. J. Zhang and C. H. Zhu

3.2. Heterogeneous Data Private Feature Extraction.
Chinese Lexicon Enhancement Based on Aligned Attention Mechanism. Li et

al. [24] demonstrate the effectiveness of incorporating lexicon information into character-
level vectors. To address the minimum semantic unit imbalance problem in cross-lingual
text encoding, inspired by their work, we introduce a Chinese lexicon enhancement mod-
ule based on an alignment attention mechanism. For the vector hQ ∈ R|Q|×d , which
corresponds to the natural language query Q in the common feature hS. The attention
distribution between characters is first calculated by scaling the dot product as follows.

Q = K = V = hQ (9)

α = softmax

(
(WQQ)T(WKK)√

d/H1

)
(10)

Where WQ and WK denote the trainable parameter matrix, and H1 denotes the num-
ber of heads of the attention mechanism.

In order to obtain the lexicon information of Chinese input sequences, for Chinese
natural language queries Q = [q1, ..., q|Q|], We divided Q into non-overlapping lexicon
chunks using the word division tool Hanlp, which is calculated as follows.

ϕ (Q) = [V1, V2, ..., V|V |] (11)

Where ϕ (•) refers to the Chinese word separation operation.Vi = [qs, qs+1, ..., qs+|Vi|−1]
denotes the i -th word in the query and the length of Vi is |Vi|, s is the index number of
the character in Q, |V | is the number of words after splitting, and |V | ≤ |Q| .

Subsequently, the attention distribution α is aligned with the word separation results
and the attention distribution in the same word is aggregated and calculated as follows.

ρ(α) = [α1
1, ...,α

|V1|
1 , ...,α1

|V |, ...,α
|V|V ||
|V | ] (12)

Where ρ(•) refers to word alignment and aggregation operations. αj
i refers to the

weight of the attention distribution corresponding to the j -th character in the word Vi

,and i ∈ [1, ..., |V |] , j ∈ [1, ..., |Vi|] .
To integrate the attention weights of individual characters in the same word, we use the

same hybrid pooling approach [25]. The attention weight αV
i of word Vi after integration

is calculated as follows.

αV
i =[α1

i , ...,α
|Vi|
i ] (13)

Ai = λp1(α
V
i ) + (1− λ)p2(α

V
i ) (14)

Where p1(•) and p2(•) denote the average pooling and maximum pooling operations,
respectively, and λ is a trainable parameter.

In the process of incorporating word information on character-level vectors, for the case
where a single character remains after splitting, we no longer consider applying influence
to it. Therefore, depending on the number of characters after separation, we design an
attention mask matrix η ∈ R|Q|×|Q| , which is initialized as an all-zero matrix. For any
word Vi, given the following mask strategy, to compute its corresponding ηi ∈ R|Q|×|Vi| .

ηi =


1 , |Vi| = 1

Ai

αV
i

, |Vi| > 1
(15)

Then, according to the mask strategy, the attention distribution A containing lexicon
information is incorporated into the character-level vector, and the fused character vector
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hA
Q ∈ R|Q|×d is calculated. hA

Q will be superimposed on the initial encoding vector hQ to

obtain the private feature hE
Q ∈ R|Q|×d of the query, which is calculated as follows.

hA
Q = (Aη)(W VV ) (16)

hE
Q = Concat(hQ,h

A
Q) = [hQ : hA

Q] (17)

Where η = [η1, ...,η|V |] , W V is a trainable parameter matrix, and Concat means
vector splicing operation.

Database Schema Representation Based on Relational Awareness. In a re-
lational database, tables are not independent of each other, but are connected by fields
with primary and foreign key attributes. Specifically, the primary key is used as a unique
identifier for each record, ensuring the uniqueness of the data, while the foreign key is
used to associate different tables, ensuring the consistency of the data. From the example
in Figure 1, we can find that a natural language query often involves multiple tables, and
in the corresponding SQL statement, these tables are connected by the “JOIN...ON...”
SQL operation based on the primary and foreign key relationships between them.

However, the database schema relationship is not explicitly defined in the process of
extracting common features of heterogeneous data, thus easily causing the model to over-
look this detail, which is not conducive to cope with query scenarios involving multiple
tables. Therefore, after obtaining the common features hS , to enable the model to per-
ceive such pre-existing relational features in encoding phase. Inspired by previous work
[10,26], we introduce a relationship-aware layer that explicitly incorporates the primary
and foreign key relationships to the feature vector hTC ∈ RNTC×d by a special attention
mechanism. Eventually, the private characteristics of the database schema D are further
obtained.

Table 1. Description of the database schema relationship.

Object x Object y Mark Description

Field Table
CT-x-PK-y x is a primary key of y.
CT-x-FK-y x is a foreign key of y.

Table Field
TC-y-PK-x y is a primary key of x.
TC-y-FK-x y is a foreign key of x.

Field Field
CC-x-FK-y x is a foreign key of y.(x and y are both fields)
CC-y-FK-x y is a foreign key of x.(x and y are both fields)

Table Table
TT-x-FK-y A foreign key for y exists in x.
TT-y-FK-x A foreign key for x exists in y.

In order to distinguish primary and foreign key relationships in relational databases
in detail, we define a binary relationship set R for different objects, which is described
as shown in Table 1. For any two objects x and y in the database schema, a trainable
relation matrix Rx,y = [r1

x,y, ..., r
NR
x,y ] is used to represent the unidirectional relation, where

ri
x,y denotes a trainable word embedding of the i -th binary relation in the set R of uni-

directional relations from x to y, and NR is the total number of relations in the set R.
It is worth noting that in the relation matrix Rx,y , if a relation does not exist in R, its
corresponding binary relation representation is assigned to zero.

Unlike the definition of RAT-SQL, the relationships defined here only consider the
primary and foreign key relationships, and not the containment and inclusion relationships
between tables and fields. This is because such relationships have been distinguished by
the special markers [T] and [C] during the common feature extraction. In addition to this,
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Figure 3. Example of database schema relationship-awareness.

the feature vectors corresponding to the special tokens [T] and [C] are used to represent
the table and field names in database schema, respectively, during the computation of
the relational awareness layer. Figure 3 gives an example of representing some of the
primary and foreign key relationships in a database schema. We use the same way as
the example in Figure 1 to distinguish database components with different colors, while
the relationships between them are pointed out using different types of lines according to
the definitions in Table 1(Only some of relationships are shown in Figure 3 to promote
readability of the graph).

The design of the relationship-aware layer is carried out based on a self-attention mech-
anism, which aims to incorporate relational characteristics as a priori knowledge when
calculating the attention weights between two objects in the database schema. Specif-
ically, the attention weight βm,n between the m-th object and the n-th object is first
calculated as follows.

βm,n = softmax

(
(WR

Qh
m
TC)(W

R
Kh

n
TC +RK

m,n)
T√

d/H2

)
(18)

Where m,n ∈ [1, ..., NTC ] , and hm
TC denotes the vector of hidden layers corresponding

to the m-th special label. WR
Q,W

R
K ∈ Rd are trainable parameter matrices, RK

m,n is a
trainable relationship matrix between m and n. H2 indicates the number of attention
heads.

And then the attention distribution zm for each object is calculated by using the scaled
dot product, which is calculated as follows.

zm =

NTC∑
n=1

βm,n(W
R
Vh

n
TC +RV

m,n) (19)

Where hn
TC denotes the vector of hidden layers corresponding to the n-th special label.

WR
V ∈ Rd is a trainable parameter matrix. RV

m,n is a trainable relationship matrix between

m and n, and RV
m,n = RK

m,n.
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The attention distribution of all objects is aggregated to the matrix z , which is then
concatenated with the input feature vector hTC to obtain the final database schema
private feature hE

TC

z = [z1, ...,zNTC
] (20)

hE
TC = Concat(hTC , z) = [hTC : z] (21)

Where Concat is the vector splicing operation

3.3. Hybrid Pointer Network Decoding. Unlike other languages, SQL is a standard
computer language with a rigorous logical structure and proprietary syntax rules. Inspired
by the existing work [8,27], we employ a hybrid pointer generation network to generate
SQL statements by mixing information from different sources during the decoding process.
In the example in Figure 2, we mark the source of the components with different colors
in SQL statement and show their usage in various parts of the model. It can be found
that the sources composing the SQL statements consist of two main parts, which include
mixed feature sequence and SQL vocabulary. The mixed feature sequence consists of
the natural language query and database information corresponding to the model input,
and it should be noted that the input to decoder is actually a vector form of the mixed
feature sequence, containing private features of the two heterogeneous data. The SQL
vocabulary contains 90 commonly used SQL keywords, functions and symbols, such as
“SELECT”, “WHERE”, and “GROUP BY”, as well as the sequence start/stop tokens
“<START>”and “<END>”. In each decoding step, an attention mechanism is used
to focus on the key information in input mixed sequence vector and to determine the
source of the generated sequence through control unit P gen

t . As shown in the SQL
statement in Figure 2, the sequences“<START>”, “SELECT”, etc. are from the SQL
vocabulary, while “FLIGHTS”, “AIRPORTS.City”, etc. are from the database schema-
related sequences in mixed feature sequence, and “哈尔滨(Harbin)” is from the natural
language query-related sequences in mixed feature sequence. The calculations in the
decoding process are explained in detail below.

First, two private features hE
Q and hE

TC of heterogeneous data are concatenated together

to obtain mixed feature hE
S = [hE

Q,h
E
TC ] ∈ RN×d , and N = |Q| + NTC . We also define

the output SQL sequence as Y = [y1, ..., yM ] , whose length is M. Subsequently, hE
S is fed

into a single-layer LSTM encoder, and each step t is computed as follows.

henc
t = Bi - LSTM(henc

t−1,h
E
t ) (22)

Henc = [henc
1 , ...,henc

N ] (23)

Where hE
t is the vector of hE

S input to encoder at step t, henc
t is the hidden state after

the encoding corresponding to hE
t , and Henc is the hidden state of all input sequences.

When decoding, the last moment hidden state of the LSTM encoder is taken as the
initial input of the decoder and hdec

0 = henc
N . In order to generate sequences with bi-

ased attention to decoder input, we use an attention mechanism to dynamically compute
context vector, and use another unidirectional LSTM as a decoder to generate output
sequence, which is computed as follows.

αt
i = softmax(

(W qh
enc
i )T(W kh

dec
t−1)√

d
) (24)

ct =
N∑
i=1

αt
ih

enc
i (25)

hdec
t = LSTM(hdec

t−1, [eyt−1 , ct]) (26)
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Where hdec
t denotes the hidden layer state of decoder at step t. eyt−1 refers to the word

embedding of predicted target sequence yt−1 at step t− 1 . At each step t, the decoding
action has two choices: copying information from the mixed feature sequence or selecting
components from the SQL vocabulary. The specific computation process is as follows.

P gen
t = σ(W cct +W hh

dec
t + b) (27)

P t
v = softmax(W 2(W 1[h

dec
t ,ct] + b1) + b2) (28)

P t
c =

∑
i:Xi=w

αt
i (29)

P (yt = w) = P gen
t Pv(w) + (1− P gen

t )P t
c (30)

Where W and b with different subscripts are trainable parameter matrices. P gen
t is a

control unit that decides the next decoding action and selects the source of next generated
sequence at moment t. P t

v(w) denotes the probability distribution of the sequence w gen-
erated from the SQL vocabulary at moment t. P t

c determines the probability distribution
of copying components from the mixed feature sequence at moment t by summing the
probabilities of all corresponding table and field positions in the attention distribution αt

. Xi refers to the special labels such as [T] and [C], which denote the table and field name
for database in the original input, respectively.

The loss function for whole training process is the negative log likelihood of target SQL
sequence gt , which is calculated as follows.

L = − 1

T

T∑
t=0

log(P (yt = gt)) (31)

To avoid greedy search from falling into local optimal solutions during decoding, in
inference stage, we use a beam search method to obtain a larger view at decoding time.
When generating each sequence, the top k sequences with the highest probability are
considered simultaneously.

4. Experiments.

4.1. Dataset. The dataset used for the experiments in this paper is CSpider, which is
the only known publicly available multilingual cross-domain Text-to-SQL dataset. The
construction of CSpider originated from the English dataset Spider, with the difference
that it uses Chinese natural language queries, while the database language is English.
CSpider contains more than 9600 natural language query and SQL statement pairs involv-
ing 166 databases, with an average of 5.28 tables per database, and the databases are not
cross-used in the process of dividing the train, development and test set. According to
the complexity of SQL statements, the difficulty is classified according to four levels, such
as Easy, Medium, Hard and Extra Hard. In this paper, we use same data classification
method as released version, and since the final test set is not publicly available, the
analysis is performed on development set to ensure the fairness of experimental results.

4.2. Evaluation Metric. The evaluation metric in this paper is exact match accuracy
of SQL statements. Assuming that the total number of test samples in the dataset is N,
exact match accuracy refers to the number of generated SQL statements that formally
match the ground truth exactly as a proportion of the total number of samples, which is
ACCex = Nem/N . To further investigate the performance of generated results on different
SQL components, we also evaluate the component matching accuracy, which is the F1
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score of each SQL keyword component in generated SQL statements. The calculation is
as follows.

PRE =
TP

TP + FP
(32)

REC =
TP

TP + FN
(33)

F1 =
2× PRE ×REC

PRE +REC
(34)

Where TP, TN, FP and FN denote true positive, true negative, false positive and false
negative, respectively. PRE and REC denote precision and recall, respectively.

4.3. Implementation Details. The model DBSQL proposed in this paper is developed
on pytorch, and the version of the pre-trained model used for common feature extraction
is bert-base-multilingual-uncased. Xavier [28] is used to initialize the model parameters,
Adam is used as the training optimizer and the learning rate is 0.0002. The loss function
is in the form of cross-entropy. The same practice as BRIDGE is used for training, which
is to randomly disrupt the order of tables in same database during encoding, and some
of the hyperparameters are set as shown in Table 2.

Table 2. Part of the model hyperparameter settings.

Hyperparameter Value
Maximum input sequence length / character 512

Common feature extraction vector / dimension 768
LSTM encoder hidden layer vector / dimension 400
LSTM decoder hidden layer vector / dimension 400

Chinese query lexicon enhancement attention head count H1 8
Database schema relationship-aware attention head count H2 8

Beam search size 16
Training step 200000
Batch size 8

4.4. Results and Discussion. In this paper, we mainly compare with 7 advanced meth-
ods. SyntaxSQLNet uses a sequence-to-tree architecture that enables awareness of gen-
eration history and fields in the table during the decoding process by building a network
of syntax trees. Min et al. [12] improve on it and use it as a baseline model for CSpider,
while the effects of different word separation and word embedding methods on the model
are also compared. To obtain a more detailed comparison, we retrain the model based on
their publicly available code.

RYANSQL defines a generic sketch structure for the generation of complex SQL state-
ments. To improve the sketch coverage of SQL statements, a recursive approach is used
and the statement location code is introduced to convert nested SQL statements into
non-nested form.

DG-MAML [29] improves model performance in zero-sample scenarios by designing a
meta-learning framework that reconstructs the train and test sets, and also proposes a
base parser that integrates schema linking [10] and multilingual word embedding.

RAT-SQL uses schema linking to explicitly align entities in user queries with table and
field names in the database to enhance relational mapping between heterogeneous data.
Since explicit text matching is not possible in multilingual scenario, schema linking is not
considered in this experiment.
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Figure 4. Comparison of results with different number of candidates.

BRIDGE enhances the mapping relationships between heterogeneous data by extracting
values involved in queries from database content through explicit text matching methods.
Since it is originally designed for English scenarios, we modify it by eliminating the value
extraction session and introducing M-BERT to accommodate multilingual scenarios.

Table 3. Performance comparison of different models on dev set.

Model ACCex

Word embedding
SyntaxSQLNet 17.6
Base Parser 31.0
Base Parser + DG-MAML 35.5
Pre-trained model(M-BERT)
RYANSQL 41.3
RAT-SQL 41.4
Base Parser + DG-MAML 50.1
BRIDGE 50.5
DBSQL(Ours) 54.6

Table 3 gives a comparison of the exact matching accuracy of the different models
on the dev set. It can be seen that the exact matching accuracy of DBSQL reaches
54.6%, which achieves an absolute advantage of 4.1% compared with the state-of-the-art
BRIDGE results. It is also found that the overall performance of the model is significantly
improved after the introduction of the pre-trained model compared to the approach using
word embedding

Since the sampling method of beam search is used in the decoding process, we further
explore the correct prediction of SQL statements with different number of candidate
results and denote the exact match-ing accuracy in the top k candidate results by P@k.
Figure 4 gives the variation of exact matching accuracy of the model on dev set with the
number of training steps in same training when the number of candidate results varies. It
can be seen that as the candidate range increases, the correct answer can still be matched
from other non-first candidates and when k = 10 , the exact match accuracy of the
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candidate results reaches more than 65%, which shows that DBSQL has the potential to
be further improved.

Table 4. Performance comparison of models on different SQL compo-
nents(dev set).

Component
SyntaxSQLNet BRIDGE DBSQL(Ours)

PRE REC F1 PRE REC F1 PRE REC F1
SELECT 44.1 44.0 44.0 73.4 72.6 73.0 75.7 75.1 75.4
SELECT(Without AGG) 45.0 45.0 45.0 74.4 73.6 74.0 76.6 76.0 76.3
WHERE 22.8 22.4 22.6 67.7 63.3 65.4 70.8 68.2 69.5
WHERE(Without OP) 29.6 29.2 29.4 71.3 66.7 68.9 74.3 71.6 72.9
GROUP(Without HAVING) 42.3 41.4 41.9 70.4 71.4 70.9 73.3 74.4 73.8
GROUP 34.1 33.3 33.7 65.7 66.7 66.2 69.0 70.0 69.5
ORDER 45.1 46.5 45.8 70.2 70.8 70.5 71.1 71.7 71.4
AND/OR 95.0 96.7 95.8 98.4 99.6 99.0 98.8 99.5 99.2
IUEN 6.8 4.2 5.2 29.0 25.4 27.1 42.6 32.4 36.8
KEYWORDS 71.0 69.4 70.2 82.1 79.9 81.0 85.8 82.3 84.0

To further investigate the specific performance of DBSQL on different SQL statement
components. We choose SyntaxSQLNet, the baseline model released with CSpider, and
the current state-of-the-art BRIDGE model as the comparison objects, and conduct de-
tailed comparison experiments on dev set, the results are shown in Table 4. It should
be noted that AGG refers to the aggregate operation functions in SQL statement, which
includes MAX, MIN, SUM, COUNT, AVG, and NONE for indicating no operation. INEN
evaluates a series of components used for nesting, which includes INTERCEPT, UNION,
EXCEPT, and NONE for indicating no nested relationships. KEYWORDS is used to eval-
uates keywords in each component of the SQL statement, such as SELECT, WHERE,
GROUP BY and ORDER BY.

From the experimental results, it can be seen that DBSQL achieves significant im-
provement compared with SyntaxSQLNet on some common SQL components such as
SELECT, WHERE, GROUP, ORDER, etc., and retains certain advantages compared
with the state-of-the-art BRIDGE. For some infrequent complex components, such as
IUEN which contains nested relationships, these components are usually found in diffi-
cult samples to reflect the complex query intent of users, and are one of the difficulties of
this task. The experimental results show that SyntaxSQLNet has significantly lower per-
formance on IUEN component compared to other components (PRE : 6.8%, REC : 4.2%,
F1 : 5.2%) and is barely able to organize nested statements efficiently. However, DBSQL
improves such phenomena, and achieves 35.8%, 28.2% and 31.6% improvement in three
evaluation metrics compared to SyntaxSQLNet in IUEN component, it also achieves a
more significant advantage compared to BRIDGE (PRE : 13.6%, REC : 7.0%, F1 : 9.7%).

Examples of SQL statements generated by DBSQL on dev set of different difficulty
levels are further given in Table 5 to understand the validity of DBSQL more intuitively.
We use same colors to mark entities in the query and corresponding mappings in the SQL
statements, which are generated by DBSQL. We also give the generated results for the
other two advanced models(SyntaxSQLNet, BRIDGE) in Table 4. The comparison shows
that DBSQL can establish more accurate mapping relationships between cross-lingual
entities and build more accurate SQL logic.

In Query 1, SyntaxSQLNet incorrectly interprets the entire query as a counting proce-
dure and fails to generate the correct logical operation based on “不超过(not exceed)”.
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BRIDGE incorrectly introduces the EXCEPT operation, which causes the entire query
logic to be incorrect. DBSQL correctly employs GROUP BY and HAVING operations
according to the query logic, and accurately establish the relationship between the “文档
类型的代码(code for document type)” and the corresponding field.

The definite article “作者和导师(author and tutor)” before “姓氏(last name)” is omit-
ted in Query 2. SyntaxSQLNet selects the wrong table and fails to match the “登录
名(login name)” correctly. BRIDGE creates an incorrect mapping between “登录名(login
name)” and “人名(personal name)”. DBSQL successfully captures the mapping relation-
ships between three entities.

Query 3 not only includes a multi-table join operation with three tables, but also omits
part of definite description of the value “致谢(Acknowledgement)”. SyntaxSQLNet selects
wrong table, resulting in a deviation in the multi-table join process. The multi-table
join process for BRIDGE is incorrect and does not correctly reason about the source
of “致谢(Acknowledgement)”. DBSQL generates correct result and extracts the value
“致谢(Acknowledgement)” from the query correctly instead of using the default alterna-
tive value “VALUE”. Although the matching accuracy of values is not included in the
evaluation metric, from the experimental results, it can be found that the text type
outperforms the numeric type in terms of the accuracy of extracting value information in
the query. The failure of DBSQL to extract the value “10000” in Query 1 may be due to
the fact that the numeric type was added to the SQL vocabulary, thus causing confusion
to model in predicting origin of the generated sequence.

Query 4 needs to return multiple entity query results at the same time, in addition
to calculating qualifiers based on entity mapping relationships. SyntaxSQLNet does not
recognize the entity “ID” and its multi-table join procedure has a broken component that
does not specify the fields to be joined between two tables. BRIDGE maps the entity
“ID” to a wrong field. DBSQL successfully establishes correct mapping of four entities as
well as a computational intent.
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Table 5. Partial SQL statement generation results for different mod-
els(dev set).

Easy

Query 1
返回总访问计数不超过10000的文档类型的代码。

Return codes for document types whose total access count
does not exceed 10000.

SyntaxSQLNet
SELECT COUNT(*) FROM Documents

WHERE document type code = terminal

BRIDGE

SELECT Documents.document type code FROM

Documents EXCEPT SELECT

Documents.document type code FROM Documents
WHERE Documents.access count >VALUE

DBSQL(Ours)

SELECT Documents.document type code
FROM Documents GROUP BY

Documents.document type code

HAVING SUM(Documents.access count) > VALUE

Medium

Query 2
作者和导师的登录名和姓氏是什么？

What are the author’s and tutor’s login

and last name?

SyntaxSQLNet SELECT middle name, family name FROM Students

BRIDGE

SELECT Course Authors and Tutors.personal name,

Course Authors and Tutors.family name FROM

Course Authors and Tutors

DBSQL(Ours)

SELECT Course Authors and Tutors. login name,

Course Authors and Tutors. family name

FROM Course Authors and Tutors

Hard

Query 3
查找具有功能区域“致谢”的文档的平均访问次数。
Find the average number of visits to documents

with the functional area ”Acknowledgements”.

SyntaxSQLNet

SELECT AVG(T2.access count)
FROM Document Structures AS T1 JOIN

Documents AS T2 ON

T1.document structure code = T2.document structure code
WHERE T1.document structure description = ’terminal’

BRIDGE

SELECT AVG(Documents.access count)

FROM Documents JOIN Document Functional Areas
ON Documents.document code =

Document Functional Areas.document code
WHERE Document Functional Areas.functional area code

= ”致谢”

DBSQL(Ours)

SELECT AVG(Documents.access count)
FROM Documents JOIN Document Functional Areas ON

Documents.document code = Document Functional Areas.document code

JOIN Functional Areas ON Document Functional Areas.functional area code
= Functional Areas.functional area code WHERE

Functional Areas.functional area description = ”致谢”

Extra

Query 4
账户最少的客户的名字、姓氏和ID是什么？

What is the first name, last name and ID of
the customer with the least number of accounts?

SyntaxSQLNet

SELECT T2.customer last name,

T2.customer first name, T1.account name
FROM Accounts AS T1 JOIN

Customers AS T2 GROUP BY T2.customer id
ORDER BY COUNT(*) ASC LIMIT 1

BRIDGE

SELECT Customers.customer first name,
Customers.customer last name,
Customers.customer email FROM

Customers JOIN Accounts ON Accounts.customer id

= Customers.customer id GROUP BY Accounts.customer id
ORDER BY COUNT(*) LIMIT 1

DBSQL(Ours)

SELECT Customers.customer first name,
Customers.customer last name, Customers.customer id
FROM Customers JOIN Accounts ON Accounts.customer id

= Customers.customer id GROUP BY Accounts.customer id

ORDER BY COUNT(*) LIMIT 1

Figure 5 gives a comparison of the overall performance of each model on samples with
different difficulty dev set. The number of corresponding samples is given after different
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difficulties. It can be seen that the overall performance of all models shows a decreasing
trend as the complexity of the tested samples increases. In particular, the performance
of SyntaxSQLNet drops to less than 10% on Extra Hard level, while DBSQL has a more
obvious performance advantage on this difficulty, and also shows some competitiveness
compared with BRIDGE.

Figure 5. Comparison of model performance with different sample difficulty.

In Figure 6, the multi-heads attention distribution of DBSQL between natural language
queries and generated SQL statements during the inference process is visualized to facil-
itate the observation of the model’s ability to establish mapping relationships between
heterogeneous data across languages. To improve the readability of images, we select
three smaller-scale examples to show their attention distribution of some heads and use
variable h to denote different heads.

The example in (a) of Figure 6 gives a confusing Chinese query “列出所有导演导
演的电影数量。(List the number of movies directed by all directors.)” The word “导
演(Direct)” appears twice in a row, but with different lexicon meanings, the former being
a noun and the latter a verb, and finally DBSQL still generates the correct result. We
can see that when h = 3, 4 , there is a strong mapping between “数量(Count)” in the
query and “count” in the SQL statement. When h = 1, 7 , there is a clear distinction
between “select” operation in the SQL statement and “导演(Director)” from “导演导
演的电影(Movie directed by director)” in the query. In particular, when h = 3, 5 , the
field “film.Directed by” after the “group by” operation in SQL establishes a significant
mapping to the noun “导演(Director)” of two consecutive “导演(Direct)”, which is the
correct logic.

In example (b) from Figure 6, the query is “什么是最不常见的教职员工职级？(What
is the least common faculty rank?)” When h = 1, 6 , “最不常见(least common)” has a
strong association with the SQL operation “count(*) asc limit 1”. When h = 4 , “教职员
工职级(Faculty rank)” has an obvious mapping with “select Faculty. Rank”.

The query in example (c) of Figure 6, “在2014年或之后举办的音乐会最多的体育场
名称和容量(Name and capacity of stadiums with the most concerts in 2014 or later)”
involves a multi-table join. When h = 6 , we can find that “体育场(Stadium)” and “音
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(a)

(b)

(c)

Figure 6. Query and SQL statement attention distribution visualization results.

乐会(Concert)” in the query create an obvious mapping to the tables “stadium” and
“concert” respectively. For the year keyword “2014”, DBSQL does not extract the cor-
rect content from the query, but uses the default “VALUE” token in SQL vocabulary,
which is consistent with our previous speculation that DBSQL tends to confuse numeric
types of value extraction. However, the distribution of attention in h = 3, 4, 5 shows that
“VALUE” still has a strong correlation with “2014”. A visual analysis of attention distri-
bution reveals that DBSQL is able to establish effective mapping relationships between
different types of entities in cross-lingual heterogeneous data.

4.5. Ablation Study. We further analyze the contribution of different methods to DB-
SQL by ablation. The impact of two private feature extraction modules on model perfor-
mance is mainly analyzed, as shown in Table 6, which gives their performance on different
difficulty dev set. It can be seen that when the Chinese lexicon enhance-ment module
is removed, the overall performance of the model decreases by 1.6%. At the same time,
this loss has the most pronounced effect on the Hard difficulty sample, whose perfor-
mance decreases by 2.1%, indicating the necessity of Chinese lexicon features. When the
relationship-awareness module is removed, the overall performance of the model decreases
by 2.2%, it can be found that database relationship-awareness achieves a significant gain
of 6.4% on the Extra Hard difficulty samples. This further indicates that explicitly mod-
eling relational features in database helps improve the model’s ability to parse complex
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query intent during Q&A. We also find that the approach of expanding field representa-
tion with table names and field types in Section 3.1 achieves a positive impact on the vast
majority of samples and brings a 1.7% improvement to the overall model performance.

Table 6. Ablation comparison experiment.

Model Easy Medium Hard Extra Hard ACCex

DBSQL 69.9 50.9 51.8 38.5 54.6
- Lexicon enhancement 68.7 48.9 49.7 38.5 53.0
- Relational awareness 67.1 50.4 49.2 32.1 52.4
- Database schema sequence 68.7 48.6 48.2 41.3 52.9

4.6. Error Analysis. We also randomly select 50 prediction error results from dev set
for detailed analysis to explore the causes of DBSQL prediction result errors. Some exam-
ples with different difficulty of prediction errors are given in Table 7, where Q, G, and P
denote natural language queries, correct SQL statements and predicted SQL statements,
respectively. Finally, the causes of these errors can be roughly classified into 3 categories.

(1) Query intent understanding bias. Such errors account for 48.3% of all samples
and are mainly reflected in predicted SQL statements deviate from original query intent.
The main reason for such errors is that the model fails to correctly parse the syntactic
structure of natural language queries. Meanwhile, the lack of explicit information in some
queries and underlying query intent make the parsing process difficult. In Example 1 of
Table 7, the model confuses tables with similar names “Courses” and “Subjects”, result-
ing in the connection of “Subjects” table being ignored. The query in Example 2 does
not explicitly mention the term “average” , but its implied intent contains the operation
of averaging the speed, which is not effectively recognized by the model at the time of
prediction. These errors suggest that how to combine table structure data to obtain richer
information from limited queries is a key aspect to improve the performance of semantic
parsing tasks.

(2) Table and query mapping errors. Such errors accounted for 40.2% of all samples,
which is summarized as predicted SQL statements are incorrectly predicted in the name
of table and table field. The main cause of this error is that the model does not correctly
capture explicit or implicit mapping relationships in the query. In example 3 of Table
7, the query implies a join query to the table “mill”, but the model misinterprets the
join object as the table “bridge”. In example 4, the model fails to find a correspondence
between “辅修(Minor)” and the table “Minor in”. These errors are closely related to the
query intent understanding bias, and are the main reason for the wrong final prediction
results.

(3) Other errors. It mainly includes samples with incorrect comments, unintelligible
queries, equivalent SQL statements and other types of errors, which together account
for 11.5% of the total samples. In example 5 of Table 7, the query “5张卡片(5 cards)”
can be interpreted in two different ways, one is to calculate the number of cards in the
field “card type code” after GROUP BY operation as shown in the correct result, the
other interpretation is to qualify the value of the field “Customers Cards.card number”
as shown in the prediction result. In Example 6, the difference between the predicted
result and the correct answer lies in the object of GROUP BY operation. However, the
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field “document code” and the field “document name” can achieve same result in general,
but in a strict sense the field “document code” is more rigorous.

Table 7. Partially incorrect prediction results.

Error Type
No.

(Difficulty)
Content

Query intent

understanding

bias(48.3%)

1
(Hard)

Q:
按课程计数的升序列出课程ID、课程名称和每个科目可用的课程数。

List the course ID, course name and the
number of courses available for each subject in ascending order of course count.

G:

SELECT T1.subject id , T2.subject name ,

COUNT(*) FROM Courses AS T1 JOIN Subjects AS T2
ON T1.subject id = T2.subject id GROUP BY T1.subject id

ORDER BY COUNT(*) ASC

P:
SELECT Courses.subject id, Courses.course name,
COUNT(*) FROM Courses GROUP BY Courses.subject id

ORDER BY COUNT(*) ASC

2

(Easy)

Q:
叫“刘明”的飞行员的速度是多少？
What was the speed of the pilot named ”Liu Ming”?

G: SELECT avg(velocity) FROM flight WHERE pilot = “刘明”
P: SELECT flight.velocity FROM flight WHERE flight.pilot = “刘明”

Table and

query mapping

errors (40.2%)

3

(Extra)

Q:
以米为单位桥梁的最大长度是多少？建筑师的名字是什么？

What is the maximum length of a bridge

in meters? What is the name of the architect?

G:
SELECT T1.id , T1.name , T1.nationality FROM
architect AS T1 JOIN mill AS T2 ON T1.id = T2.architect id

GROUP BY T1.id ORDER BY COUNT(*) DESC LIMIT 1

P:

SELECT architect.id, architect.name, architect.nationality

FROM architect JOIN bridge ON architect.id = bridge.architect id

GROUP BY architect.id ORDER BY COUNT(*) DESC LIMIT 1

4

(Extra)

Q:
找到辅修人数最多的系的名字。

Find the name of the department with the largest number of minors.

G:
SELECT T1.DName FROM DEPARTMENT AS T1
JOIN MINOR IN AS T2 ON T1.DNO = T2.DNO

GROUP BY T2.DNO ORDER BY COUNT(*) DESC LIMIT 1

P:
SELECT Department.DName FROM Department
ORDER BY Department.DName DESC LIMIT 1

Other

errors (11.5%)

5

(Medium)

Q:
显示至少有5张卡片的类型代码。
Displays the type code with at least 5 cards.

G:
SELECT card type code FROM Customers cards
GROUP BY card type code HAVING count(*) >= 5

P:

SELECT DISTINCT Customers Cards.card type code

FROM Customers Cards WHERE
Customers Cards.card number >= 5

6

(Extra)

Q:
拥有最多章节数的文档的名字是什么？

What is the name of the document with the most number of chapters?

G:

SELECT T1.document name FROM documents AS T1

JOIN document sections AS T2 ON T1.document code
= T2.document code GROUP BY T1.document code

ORDER BY COUNT(*) DESC LIMIT 1

P:

SELECT Documents.document name
FROM Documents JOIN Document Sections

ON Documents.document code

= Document Sections.document code
GROUP BY Documents.document name

ORDER BY COUNT(*) DESC LIMIT 1

5. Conclusions. In this paper, we propose a structured knowledge Q&A approach based
on lexicon enhancement and database relationship awareness for multilingual cross-domain
structured knowledge scenarios, which can transform natural language queries into SQL
statements. On the premise of extracting common features between natural language
queries and database schemas, private features of two heterogeneous data are considered
separately to bridge semantic gap between different languages and enhance the parsing
ability of structured knowledge. We also find that 1)multilingual pre-trained models im-
prove the ability to understand and map relationships between entities with heterogeneous
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data across languages. 2)The approach of incorporating Chinese lexicon information can
effectively solve the problem of inconsistent minimum semantic units in multilingual sce-
narios and further improve the model performance. 3)Explicit character-ization of knowl-
edge relationships in database can improve model’s ability to parse structured data and
help handle complex query intent. Experiments on public datasets show that DBSQL
model in this paper has better performance in generating SQL statements with exact
match accuracy, especially on difficult samples.
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