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Abstract. With the rapid development of social insurance in China, medical insurance
fraud is increasing, seriously threatening the stable operation of the medical insurance
system. Traditional machine learning, anomaly detection, and other medical insurance
fraud detection methods focus only on feature attributes, ignoring the rich behavioral at-
tributes in the medical process. Considering the behavioral attributes, medical insurance
fraud mainly comprises two domains: spatial and temporal, corresponding to gang fraud
and individual anomaly, respectively. Therefore, this paper proposes a medical insur-
ance fraud detection method utilizing a spatiotemporal constraint graph neural network
(StGNN). Specifically, we first construct multiple medical insurance heterogeneous graphs
based on the medical insurance dataset. Next, groups with the same behavioral trajectory
are sampled using multi-semantic metapaths, while a two-layer attention mechanism as-
signs neighboring nodes and different behavioral trajectory weights. Then we use Bi-
LSTM to detect individual anomalies during the patients’ treatment process. Finally, the
proposed model is trained end-to-end, employing a cross-entropy loss function. Extensive
experiments on two real datasets show that StGNN outperforms the existing methods on
the anomaly detection task.
Keywords: Medical Insurance, Fraud Detection, Graph Neural Network, Spatiotempo-
ral

1. Introduction. Medical insurance generally involves stakeholders, i.e., the insured,
designated medical institutions, e.g., hospitals and pharmacies, and doctors. Given the
many links, long chains, and risk points in the medical insurance system, it is easy to breed
health insurance fraud problems. A survey of 33 institutions in six European countries
found that health care fraud loss rates ranged from 3.29% - 10.0% (5.59% on average),
and health care fraud rates ranged from 0.47% - 7.1% (4.23% on average). Annual health
insurance fraud amounts to ¿180 billion, equivalent to 6% of global health spending [1].
As China’s health insurance coverage expands, several unscrupulous individuals engage in
health insurance fraud for personal gain. In 2020 alone, 40,700 defaulting institutions and
26,100 participants were investigated and punished, recovering $3,487 million in health
insurance funds [2]. Therefore, identifying fraudsters from the complex health insurance
data is an urgent issue requiring attention to ensure the vigorous operation of the health
insurance system and the proper use of health insurance funds.

Traditional fraud detection methods usually rely on handcrafted rules designed by ex-
perts that filter anomalous data. However, new fraud methods emerge as time passes,
and it is difficult for the existing rules to detect new frauds. Hence, constant human
effort is required to update the rules and ensure timeliness. With the rise of machine
learning, several supervised [3] and unsupervised learning [4] methods have been applied
to detect medical insurance fraud. Supervised learning methods require many labeled
samples commonly labeled by experts. Supervised learning is a relatively well-performing
scheme. On the contrary, the unsupervised learning approach does not require sample
labels and focuses on finding outliers in the sample. For example, it aims to find outliers
considering the number of drugs, the amount spent, and the number of doctor visits.
Nevertheless, its effect is poor compared with supervised learning. Overall, each of these
methods (supervised and unsupervised) has its strengths and limitations. However, they
all solely focus on the sample’s feature level, ignoring the behavioral attributes of the
patient throughout the visit, which can also be an essential credential for fraud detection.
For example, fraudulent patients swiped medical insurance cards from multiple hospitals
to receive a large number of the same drugs during the same period or prescribed many
drugs unrelated to a hospital’s department. Nevertheless, these behavioral interactions
are challenging to produce features.
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Considering the behavioral attributes, health care fraud comprises two dimensions,
space and time. Many frauds involving large amounts of money in medical insurance
fraud are gang frauds. The fraudulent techniques may differ between each gang, but
fraud may be similar or even identical within the same gang. This is because fraud gangs
usually study several fraudulent methods, and the more people and times they use a
method, a fraud pattern is created. In addition, researching a new fraud method requires
a lot of time and effort, and due to cost and time considerations, fraudsters will not
utilize a new method every time. As long as their existing fraudulent methods are not
discovered, they use them continuously. For example, members of the fraudulent gang
will often go to the same hospital to buy drugs from the same doctor, which indicates
that the medical treatment trajectory of the fraudulent members is similar in the spatial
dimension. The temporal dimension can detect abnormalities in individual patients during
the entire treatment course. For example, a disease that can be cured in only half a year
has been prescribed for a year continuously, or chronic disease with a stable treatment
pattern presents a steep increase in drug spending during a particular month. Thus, the
probability of detecting fraud can be improved by adding spatiotemporal constraints.

However, medical insurance data is intricate, comprising tables containing personal
information, medical information, and medical details. Hence, it is difficult to mine
behavioral attributes directly from tabular data, and this is where graph network analysis
provides a new direction for mining behavioral attributes. Graph network techniques [5, 6]
have previously achieved good results on citation networks [7, 8], social networks [9], and
movie networks. Moreover, graph structures are also widely available in medical insurance
datasets. The latter datasets can be viewed as a heterogeneous graph [10] consisting of
patients, hospital departments, drugs, and visit dates. The edges in the heterogeneous
graphs are the relationships between entities, while the heterogeneous graph itself can also
be regarded as the mapping of relationships in the real-world medical insurance dataset.
Once the graph network is generated it is possible to mine the behavioral anomalies
employing techniques related to graph neural networks. In this way, we consider feature
attributes and fuse them to detect anomalies in conjunction with the topology of the
graph network.

Nevertheless, several critical challenges must be considered to solve the above problem.
First, constructing heterogeneous graphs by extracting different entities and relationships
from medical insurance data. Second, finding groups with the same spatial medical tra-
jectory, distinguishing real fraudsters from innocent ordinary patients within the groups,
and identifying essential behaviors. Third, how to effectively add temporal constraints.
Hence, this study proposes a medical insurance fraud detection method called StGNN
that relies on a spatiotemporal constraint graph neural network. Our method includes
four steps: (1) Construct a heterogeneous graph with many entities and relationships
based on a medical insurance dataset. (2) Employ a multi-semantic metapath to sample
groups with the same behavior trajectory. (3) Use spatial constraints on the behavioral
trajectories of patients. The corresponding weights and behavioral trajectories are given
to different patients according to the attention mechanism. (4) Apply temporal con-
straints to patients’ treatment processes. Excessive comparison of our method against
several baseline methods on two real medical insurance data sets proves our method’s
effectiveness.

In summary, StGNN presents the following contributions:
(1) Given that current methods consider only the characteristics at a feature level, the

proposed method considers the feature attribute and effectively integrates the feature and
the topological information.
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(2) This paper designs an embedding method based on a spatiotemporal constraint
graph neural network, which affords to detect gang fraud in the spatial dimension and
individual anomalies in the temporal dimension.

(3) This paper exploits attention mechanisms, which can adaptively assign the weights
of neighboring nodes with the same medical visit behavior and the weights of different
behavioral trajectories.

2. Related work.

2.1. Traditional method. Traditional fraud detection methods can be divided into rule-
based, supervised, and unsupervised learning methods. Rule-based learning relies on the
expert’s domain knowledge, who sets a priori thresholds for different metrics to filter
anomalous data. Supervised methods can be regarded as a binary classification problem
of unbalanced samples appropriate for anomaly detection. Two common solutions to the
sample imbalance problem are: giving positive samples more weight and achieving sample
balance through upsampling or downsampling. Unsupervised learning does not require
labels and aims to find outliers within the samples by utilizing a variety of statistical, dis-
tance, and quantitative density indicators to describe the degree of estrangement between
the data sample and other samples to find abnormal points with a significant deviation.

Sadiq et al. [11] developed the Patient Rule Induction Method (PRIM) based on the
bump hunting method to identify the spaces of higher modes and masses that indicated
the peak anomalies in the CMS 2014 dataset. Zhang et al. [12] proposed an improved
LOF algorithm, considering the patient’s Class A, Class B, non-basic, and payment ex-
penses as features. To solve the drawback that the LOF algorithm cannot recognize small
clusters [13], the DBSCAN method was introduced to check and adjust the anomaly score
according to the cluster size. Liu et al. [14] proposed a financial fraud detection model
that combined random forest for financial fraud detection, feature selection, variables’ im-
portance measurement, partial correlation analysis, and multidimensional analysis. The
results showed that combining eight variables afforded the highest accuracy. Maranzato
et al. [15] optimized the logistic regression model utilizing a stepwise regression scheme
and used real data from a large Brazilian electronic market to compare the detection
model relying on the fraud feature and the logistic regression model. The results indi-
cated that logistic regression achieves high accuracy when the model is optimized. Yusuf
et al. [16] proposed a new cost-sensitive decision tree method that minimizes the sum of
the classification costs while each non-terminal node chooses to split. In this method,
the misclassification cost is considered to be variable. A fraud detection system utilizing
this method significantly reduces the financial losses caused by fraudulent transactions.
Wang et al. [17] proposed a method for automatically searching for robust and efficient
neural network structures for AIoT systems. By introducing a skip connection structure,
a feature map with reduced front-end influence can be used for calculations during the
classification process. Chen et al. [18] proposed an algorithm to discover potential high
utility-occupancy patterns in uncertain databases. This algorithm divides user preferences
into three factors, including support, probability, and utility occupancy.

Nevertheless, current methods only use the original features to train the model, ignoring
the interaction between the entities in the fraud process. Hence, the model’s performance
largely depends on the selected features, requiring excessive feature engineering, while the
behavior attributes themselves are difficult to depend on the features.

2.2. Graph-based approach. With the popularity of graph neural networks (GNN) [19,
20], more and more GNN methods have been applied to anomaly detection. The GNN
inputs are the adjacency and the feature matrices, simultaneously considering the sample’s
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feature and topology information. GNNs aim to learn an informative low-dimensional
vector representation for each node and then apply it to diverse downstream tasks.

Luan et al. [21] proposed the NSLPA algorithm, which improved the SLPA algorithm
against the medical industry’s background. In NSLPA, the initial label assignment ex-
ploits the patient’s existing information, with new labeling rules based on specific medical
data being formulated to suit medical data. Peng [22] developed a method for detect-
ing irrational drug use accounted in medical insurance. This method constructs a graph
network comprising diseases and drugs, uses the Bron-Kerbosch algorithm to find the
maximal clique and employs the association rule algorithm for the maximal clique to
obtain the most frequent itemset. Finally, by comparing the frequent itemset with the
existing treatment mode, the algorithm judges whether the patient is taking medication
abnormally. Li et al. [23] proposed AddGraph to detect the dynamic graphs’ character-
istics of abnormal users that generate false data to obtain potential benefits. AddGraph
uses time windows and attention mechanisms to obtain short-term features. The GCN
model obtains long-term features and finally uses GRU to merge short-term and long-term
features to check false edges. Dou et al. [24] proposed the CARE-GNN model. Aiming at
the feature and relationship camouflage of fraudsters in the graph, the authors proposed a
similarity measure for label perception and designed a similarity Degree neighbor selector
to select similar neighbors of the center node. In addition, reinforcement learning is used
to find the optimal neighborhood threshold adaptively.

Since the heterogeneous graph is a natural manifestation of the relationship between dif-
ferent entities, it is more flexible in complex relationship analysis and can better discover
the abnormal relationship between entities, providing a new direction for fraud detection
research. The node embedding learned by graph network technology on the medical in-
surance heterogeneous graph contains both feature and topological information enhancing
its robustness for downstream tasks compared to solely utilizing feature information.

3. Methods. The overall StGNN structure is illustrated in Figure 1. First, we build mul-
tiple heterogeneous graphs G based on medical insurance data of different periods. Then
we employ multi-semantic metapaths to sample groups with the same behavior trajectory
on the heterogeneous graphs and use spatial constraint aggregation group information.
Then we use temporal constraints on the entire medical time axis to obtain the final em-
bedding representation X of the node. X has a better expressive ability than the original
node feature due to fusing temporal and spatial information. Finally, the model passes
through a multilayer perceptron and is optimized using cross-entropy loss. The following
subsections introduce in detail how the model operates. The proposed method can be
divided into four steps:

(1) Constructing a heterogeneous graph with many entities and relationships based on
the medical insurance dataset.

(2) Using a multi-semantic metapath to sample groups with the same behavior trajec-
tory.

(3) Employing spatial constraints on the patients’ behavioral trajectories and assigning
weights to different patients within the group and different behavioral trajectories through
the attention mechanism.

(4) Utilizing temporal constraints on the patients’ treatment process.

3.1. Construct heterogeneous graphs. The heterogeneous medical insurance graph
is illustrated in Figure 2. The medical insurance dataset involves millions of patient
transaction records, which we transform into a heterogeneous medical insurance graph to
understand better the patients’ behavior. Precisely, we extract for the selected patients
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all visit records and construct four node types: patient, hospital department, date, and
medicine. For further spatial refinement, we treat hospitals and departments as a whole,
i.e., departments of the same name in different hospitals are treated as different nodes.
Date nodes are refined to days, and considering the medicine nodes, we eliminate nodes
with drug unit prices less than ¥20 to avoid the graph being too dense.

Figure 1. The overall architecture of StGNN.

Figure 2. Medical insurance networks.

3.2. Sampling patient groups based on multi-semantic metapath. Figure 3 high-
lights that after obtaining the medical insurance heterogeneous graph, we design multi-
semantic metapaths to sample neighbors from the heterogeneous graph and obtain dif-
ferent patient groups. For ease of illustration, we only show four types of nodes in the
heterogeneous graph: patient, fraudster, hospital department, and medicine. As illus-
trated in Figure 3(a), patients P1, P2, and P3 were prescribed medicine M at hospital
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H1, and patients P4 and P5 were also prescribed medicine M but from hospital H2.
The multi-semantic metapath PHMHP (patient-hospital department-medicine-hospital
department-patient) is presented in Figure 3(b). Sampling neighbors using the multi-
semantic metapath PHMHP starts from the patient node in the heterogeneous graph,
travels among different node types according to the metapath order, and returns to the
patient node. For example, starting from fraudster P2, passing through hospital H1,
medicine M, then hospital H1, and finally returning to fraudster P3. By analogy, we get
the two groups depicted in Figure 3(c). The semantic information of the multi-semantic
metapath PHMHP can be understood as the patients prescribed the same drugs in the
same hospital department. The patient groups eventually obtained are all groups with
the same behavioral attributes in the spatial dimension.

Due to the nodes’ heterogeneity, different node types belong in different feature spaces
in the medical insurance heterogeneous graph. Although a one-hot encoding scheme can
construct the features of dates, drugs, and hospital departments and then use the weight
matrix to map them into a unified feature space, due to the characteristics of the het-
erogeneous graphs, forcibly integrating different node types may cause ”incompatibility”
between the features. Thus, we construct the medical insurance heterogeneous graph to
reflect the behavioral attributes through the topological structure and learn helpful infor-
mation, while the medical insurance fraud only considers the patient nodes. Therefore,
we only need to exploit the patient’s features without employing the features of other
node types within the heterogeneous graph. Using multi-semantic metapaths can trans-
form complex medical insurance heterogeneous graphs into homogeneous patient graphs
containing only the critical nodes and simplify the calculations while preserving the topo-
logical information of the original heterogeneous graph as much as possible.

Multiple metapaths can be used simultaneously, and the semantic information contained
in each metapath can be regarded as a behavioral attribute in the spatial dimension. In
addition to PHMHP, there can also be PDMDP (patient-date-medicine-date-patient),
PHP (patient-hospital department-patient), or PDP (patient-medicine-patient) metap-
aths. Among them, PDMDP refers to patients who were prescribed the same drug on
the same date, PHP refers to patients treated in the same hospital department, and PMP
refers to patients who use the same medicine. The reason for using the multi-semantic
metapath is because it contains more information. For example, compared with the single-
semantic metapath, such as PMP and PHP, the extra part of the relationship between
the department and the medicine in PHMHP provides finer constraints assisting in dis-
covering the disorderly prescripted drugs in departments. Thus, multiple metapaths can
capture groups of the same behavior trajectory from multiple aspects.

3.3. Spatial constraint. Combining the features of neighboring nodes within the group
is the most effective way to obtain the behavioral attributes in the spatial dimension. This
is because the members of each group have similar medical behavior trajectories, which
can provide better mining information from the perspective of the entire group. The
process of combining the features of neighboring nodes is named aggregation. Through
the aggregation operation, the target node can integrate the feature of the entire group.

The entire spatial-constraint process is illustrated in Figure 4 below, highlighting that
first, multiple multi-semantic metapaths are used to sample neighbors, and then the node
features in each group are aggregated to the target node. During node-level aggregation,
we may encounter a special situation depicted in Figure 3(c), where not all fraud patients’
neighbors within a group with the same behavior trajectory are fraud patients. In general,
the neighbors of fraud patients are more likely to be fraud patients, and the neighbors of
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Figure 3. Neighbor sampling process.

ordinary patients are more likely to be ordinary patients. Thus, aggregating the neigh-
bors directly reduces the node representation’s performance due to noise. Therefore, we
use the attention mechanism to assign different weights to different node neighbors. Fi-
nally, we aggregate the target node representation through semantic level aggregation.
Since, at this time, the target node has no neighbors with the same behavior trajectory
after node-level aggregation, we group the target nodes of other behavior trajectories to
achieve aggregation. In this way, the target node representation contains information
with different semantics. Similarly, we will also use an attention mechanism to measure
the importance of different behaviors.

Figure 4. The spatial constraint process.

3.3.1. Node level aggregation. After sampling a node’s neighbors through the multi-semantic
metapath, the new patient’s node representation is aggregated from these neighboring
nodes. However, each neighbor node contributes differently and cannot be treated equally.
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For example, the proportion of gangs that defraud patients should be relatively large, while
the proportion of general patients is relatively small.

Given a node pair (i, j) connected via multi-semantic metapath P , the attention cross-
correlation coefficient epij is presented in Eq. (1), representing the importance of node

j to i. Here hi and hj denote the original features of node i and j, W ∈ RF
′×F is

the mapping matrix, attnode ∈ R2F
′
refers to the deep neural network performing the

node-level attention, and || is the concatenate operation. Since the weights between the
node pairs depend on their characteristics, different neighbors can be assigned different
importance.

ėpij = attnode [Whi||Whj] (1)

After obtaining the mutual attention coefficient epij, we employ a LeakyReLU activation
function, then use the softmax function to normalize all neighbors, and finally, we obtain
the normalized attention weight apij. The latter denotes the weight of neighbor node j
among all neighbors of node i, with the specific details of apij presented in Eq. (2). Among

them, NP
i denotes the set of all neighbor nodes of node i.

ȧpij =
exp(LeakyReLU

(
epij

)
)∑

s∈NP
i
exp(LeakyReLU (epis))

(2)

Finally, the node-level embedding representation hP
i of node i based on the multi-

semantic metapath P is shown in Eq. (3), where σ(·) denotes the activation function.
Since each node is aggregated by its neighbors, its embedding representation can capture
well the behavior of the entire group.

ḣp
i = σ

∑
j∈NP

i

apij · hj

 (3)

This attention mechanism can also be extended to multiple heads, stabilizing the learn-
ing process, i.e., we execute K independent attention mechanisms and then concatenate
their outputs, resulting in the following formulation:

ḣp
i =

K
||

k = 1
σ

∑
j∈NP

i

apij · hj

 (4)

3.3.2. Semantic level aggregation. Since different multi-semantic metapaths can repre-
sent different semantic information, we often use multiple multi-semantic metapaths to
extract more information from different aspects of the heterogeneous graphs. Suppose we
have m multi-semantic metapaths P0, P1, . . . , Pm, after the previous node-level aggrega-
tion, we obtain m semantic-level embedding representations H0, H1, . . . , Hm. Similar to
the node neighbors, the semantic level’s embedding representation importance obtained
by the node from different multi-semantic metapath is also different. Thus, to compre-
hensively obtain the nodes’ embedding representation, we need to integrate embedding
representations of different semantic levels and distinguish the importance of different
multi-semantic metapaths. Therefore, the semantic level aggregation will also introduce
an attention mechanism, which will automatically learn the weights of different multi-
semantic metapaths.
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The node vector that has undergone node-level aggregation is nonlinearly transformed,
and then the transformed vector is multiplied with the trainable semantic-level attention
vector q to obtain the importance of the semantic-level embedding representation. The
importance of each metapath SPi is given by:

ṠPi =
1

|V |
∑
i∈V

qT · tanh(W · hp
i + b

)
(5)

After obtaining the importance of each metapath, it is normalized by the softmax
function and the attention weight βPi of each multi-semantic metapath is obtained:

β̇Pi =
exp(SPi)∑m
i=1 exp(SPi)

(6)

Then, the attention weight of each multi-semantic metapath and the node-level em-
bedding representation are weighted and summed to obtain the semantic-level embedding
representation hpm

i . The larger the attention weight corresponding to the multi-semantic
metapath, the closer the final semantic level embedding representation.

ḣPm
i =

m∑
i=1

βPi · hp
i (7)

3.4. Temporal constraint. Spatial constraints use behavior trajectories to mine in-
formation from the group’s perspective. After performing node-level and semantic-level
aggregation, the new node representation contains various behavior attributes. Then we
employ temporal constraints to identify abnormalities on the entire timeline of the medical
treatment from the perspective of individuals. In order to construct time-series data, we
divide the heterogeneous graphs into T subgraphs, where each subgraph Gt represents the
heterogeneous graph constructed according to the medical records in the corresponding
time. In this way, after spatial constraints are applied to each subgraph, a node repre-
sentation is obtained, and all target node representations are serially connected to obtain
time-series data.

We use Bi-LSTM to mine the anomalies on the individual time axis. This strategy
combines contextual relations for bilateral reasoning to capture deep-level feature interac-
tions and obtain more powerful embedding expression capabilities. The entire temporal
constraint architecture is illustrated in Figure 5. Specifically, we input the output of
each subgraph’s target node into the Bi-LSTM model and splice the forward and back-
ward propagation results. The final target node embedding representation x′ is obtained
through the mean pooling layer:

ẋ
′
=

∑
t∈T

[ →
LSTM (xt)

⊕ ←
LSTM (xt)

]
|T |

(8)

where T denotes the set of all subgraphs, xt is the embedding representation obtained
by spatial aggregation in the t subgraph, ⊕ denotes the splicing operation, and the LSTM
is defined as:
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żt = σ (Uzxt +Wzht−1 + bz)

ft = σ (Ufxt +Wfht−1 + bf )

ot = σ (Uoxt +Woht−1 + bo)

ĉt = tanh(Ucxt +Wcht−1 + bc)

ct = ft ◦ ct−1 + zt ◦ ĉt
ht = tanh(ct) ◦ ot (9)

Figure 5. The temporal constraint process.

4. Experiments. This section demonstrates the StGNN’s efficiency through several ex-
periments aiming to address the following research questions:

RQ1. How does StGNN perform in node classification?
RQ2. How does StGNN perform in anomaly detection?
RQ3. What is the impact of the various components of StGNN?
RQ4. How sensitive is the StGNN model to parameter changes?
RQ5. How to understand the representation capabilities of different graph embedding

methods?

4.1. Dataset. We utilized two real datasets of a particular municipal medical insurance
bureau in 2018, involving more than 10,000 patients and more than 3 million detailed
records. The fraud samples in the Medical-1 and Medical-2 datasets are the same, consid-
ering abnormal patients detected by methods such as abnormal kidney disease, repeated
medication, and simultaneous outpatient hospitalization. The difference is that Medical-
1 considers a balanced sample with the positive to negative sample ratio being 1:2, and
medical-2 is an unbalanced sample with the corresponding sample ratio being 1:70. Fur-
ther information on both datasets is presented in Table 1.
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Table 1. Statistics of datasets.

Dataset Number of nodes Positive:negative Metapath

Medical-1

Patient:440
Hospital departments:708

Date:351
Medicine:2328

152:288

Single-semantic:
PHP,PDP,PMP
Multi-semantic:
PHMHP,PDMDP

Medical-2

Patient:10647
Hospital departments:2751

Date:364
Medicine:4718

152:10495

Single-semantic:
PHP,PDP,PMP
Multi-semantic:
PHMHP,PDMDP

4.2. Baseline. LR [25] This is a generalized linear regression analysis model, which
assumes that the data obey a distribution and then uses a maximum likelihood estimation
scheme to estimate the parameters.

RF [26] This is a classifier containing multiple decision trees, where a random forest
based architecture integrates all classification voting results and designates the category
with the most votes as the final output.

GCN [27] This is an extensible method for semi-supervised learning on graph structure
data. It is based on a convolutional neural network that performs convolution operations
on structured graph data. It aggregates neighbors through a local first-order approxima-
tion of spectral graph convolution. Since this model is used for homogeneous graphs, we
sample every semantic metapath and report the best result.

GAT [28] This GNN for homogeneous graphs uses an attention mechanism to effec-
tively aggregate neighbors to obtain node embeddings. Similar to GCN, we test GAT on
homogeneous graphs based on a single-semantic metapath and report the results of the
best metapath.

HAN [29] This is a heterogeneous graph neural network based on hierarchical attention
that includes node-level and semantic-level attention and fully considers the importance
of nodes and metapaths.

Metapath2vec [30] This is a traditional heterogeneous model, which generates node
embeddings by providing random walk sequences to the skip-gram model guided by meta-
path.

4.3. Feature engineering. Feature engineering includes two parts: local and global
features. To construct a time window per person, the local features are divided into
7 days, 15 days, and 30 days. Specifically, we select the time window in which the
person spends the most time and count the maximum, minimum, and average values
of various expenses within the window: nursing, examination, radiation, chemotherapy,
treatment, blood transfusion, surgery, examination, bed, meals, and other expenses, along
with registration expenses, western medicine, and traditional Chinese medicine. Global
features include the average interval between visits, the proportion of multiple hospitals,
total personal expenses, total personal fund expenses, and the number of personal visits.

4.4. Reproducibility. For the LR, Xgboost, and RF models, the weights are set ac-
cording to the proportion of positive and negative samples. Among them, the LR model
adds the L2 regular term, the Xgboost and RF models set the number of decision trees
to 256, and the maximum depth of the tree is set to six. For the Metapath2vec model,
we conducted a random walk for the patient nodes in the order of patient - medicine –
patient - date – patient - hospital department - patient. Each patient node is randomly
sampled 20 times, and the number of negative samples is set to five. For all graph-based



492 J.P. Chen, P. Lu, F. Yang, R.C. Chen and K.B. Lin

models, including GAT, GCN, HAN, and StGNN, we set the number of attention heads
to eight, dropout to 0.6, weight decay to 0.001, and employed the Adam optimizer. The
learning rate of our model on the Medical-1 dataset is set to 0.005. For Medical-2, it is set
to 0.003, and the subgraphs are divided according to months. Regarding the Bi-LSTM
temporal constraints, we set the dimension of the final embedding to 256. We train the
GNNs for 100 epochs and apply early stopping with a patience of 20.

4.5. Node classification. The experiments are conducted on the Medical-1 dataset, as
it guarantees that the diseases, departments, and amounts of the positive and negative
samples are the same and afford to compare the performance of different models on
the node classification task. The dataset is divided into training, verification, and test
set, considering three scenarios. The verification indicators employed are the F1-score,
accuracy, and recall. We use an end-to-end training method for all models by connecting
at the end of each model an MLP layer and utilizing a cross-entropy loss function to
optimize the model.

Table 2 highlights that all StGNN’s performance indicators are better than the com-
petitor baseline methods regardless of the training ratio and that our model achieves its
peak performance for a training set ratio of 20% and 40%. The overall effect of Metap-
ath2vec is quite different from the other models, inferring that solely employing structural
information in a small number of samples cannot learn a better embedding representation.
The three models of GAT, GCN, and HAN are all groups that use metapaths to find the
same behavior trajectory in the spatial dimension. Compared with them, StGNN has
additional temporal constraints affording anomaly detection in the temporal dimension
and achieving a 6% higher F1-score on average. This demonstrates that solely aggregat-
ing neighbors in the spatial dimension is not adequate, as the temporal dimension is also
significant.

Table 2. Experiment results on the Medical-1 datasets for the node clas-
sification task.

Train:Val:Test Metrics Metapath2vec GAT GCN HAN StGNN

1:1:3
f1 0.5595 0.7979 0.7914 0.791 0.8247
acc 0.7196 0.8523 0.8523 0.8598 0.8712
recall 0.5222 0.8556 0.8222 0.7778 0.8696

2:1:2
f1 0.5964 0.7273 0.7547 0.7455 0.8167
acc 0.7386 0.8295 0.8523 0.8409 0.875
recall 0.68 0.8 0.8 0.82 0.8305

3:1:1
f1 0.6349 0.72 0.7772 0.7407 0.8615
acc 0.7386 0.8409 0.8371 0.8409 0.8977
recall 0.7692 0.6923 0.8333 0.7692 0.875

4.6. Anomaly detection. In the subsequent trials, we use the Medical-2 dataset that
simulates a real medical environment appropriate to verify the performance of different
models on node anomaly detection tasks. We use the weighted cross-entropy loss function
for training and finally obtain the embedding representation of the model under different
training sets. In order to verify the representation learning capabilities of different graph
neural network models, after obtaining the low-dimensional embedding representation, we
use a random forest classifier to verify the performance. For fairness, the random forest
uses 256 trees uniformly, and the class weight is set to balance the subsamples.
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As shown in Table 3, the effect of GCN is significantly reduced on unbalanced samples.
This is because GCN treats all neighbors equally when aggregating neighbors, and since
ordinary patients account for a large proportion, GCN suffers from noise during aggre-
gation. Hence, the representation learned by GCN underperforms on anomaly detection
tasks. As the training set increases, the effects of logistic regression and random for-
est improve. This reveals that the more labeled data, the better the supervised model’s
effect. Moreover, StGNN and HAN introduce an attention mechanism, allowing nodes
to distinguish the neighbors’ importance. StGNN also introduces temporal constraints
based on HAN, achieving a 7% higher F1-score on average. The embedding representa-
tion of StGNN integrates structural and feature information. Compared with the effect
of the original feature on random forest, the performance of the StGNN model is highly
improved.

Table 3. Experiment results on the Medical-2 datasets for the node anom-
aly detection task.

Training size Metrics LR RF GCN HAN StGNN

20%
f1 0.7733 0.7517 0.5816 0.7708 0.8519
auc 0.8256 0.8143 0.7295 0.8315 0.8873

40%
f1 0.819 0.8269 0.4396 0.75 0.8319
auc 0.8581 0.8582 0.6654 0.8244 0.891

60%
f1 0.8387 0.8197 0.549 0.8 0.875
auc 0.8712 0.8569 0.6995 0.8426 0.8998

4.7. Ablation experiments. This section evaluates several StGNN variants, specifically
StGNN-LR, StGNN-RF, and StGNN-Xgb, revealing the effectiveness of StGNN embed-
ding logistic regression, random forest, and Xgboost classifiers, respectively. StGNN-S
and StGNN-M sample neighbors using only single semantic metapath and multi-semantic
metapath, respectively.

The performance comparison of the representations learned by the StGNN model under
different classifiers is illustrated in Figure 6. The abscissa represents the model’s name,
and the ordinate is the model’s performance, while the performance indicators are the
F1-score, recall, and precision. The following plots report the results utilizing a training
set of 20%, 40%, and 60% of the entire Medical-2 dataset. Figure 6 highlights that logistic
regression and the random forest perform slightly better than Xgboost, but random forest
and Xgboost are much better than logistic regression in terms of stability. This is because
logistic regression is relatively simple, while random forest and Xgboost use an integrated
method, which is more robust than logistic regression. Nevertheless, the embedding rep-
resentation learned by our model contains structural and feature information, which can
be better applied to downstream tasks than the original features.

The results comparing different metapaths by StGNN are depicted in Figure 7. The
abscissa represents the performance index, and the ordinate represents the model’s per-
formance. The results utilize a training set of 20%, 40%, and 60% of the entire Medical-1
dataset and reveal that using a multi-semantic metapath is better than using a single-
semantic metapath because the multi-semantic metapath contains more information about
the intermediate nodes than the single-semantic metapath. For example, compared with
the single-semantic metapath PHP and PMP, the multi-semantic metapath PHMHP has
more relations between departments and drugs, affording a better embedding representa-
tion than a single semantic metapath.
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Figure 6. The results of the characterization learning experiment of the
StGNN model.

Figure 7. The results of the metapath comparison experiment of the
StGNN model.

4.8. Parameter analysis. This section investigates the sensitivity of parameters and
reports the classification results (F1-score) on the Medical-1 dataset with various param-
eters in Figure 8. We uniformly divide the data into 60% training set, 20% validation set,
and 20% test set, and finally, we report the results on the test set.

We first test the effect of the dimension of the final embedding, with the corresponding
results illustrated in Figure 8(a). We can see that with the growth of the embedding
dimension, the performance raises first and then drops slowly. The effect is worst when
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the embedding dimension is 64 due to insufficient information. When the embedding di-
mension reaches 256, the representation already contains enough information and achieves
the best result. It is worth noting that although the effect of the 512-dimensional fea-
tures is comparable to the 256-dimensional features, the training time is exponentially
increased. Moreover, larger dimensions may introduce additional redundancy that can
lead to performance degradation.

In order to check the impact of multi-head attention, we explore the performance of
StGNN with various numbers of attention heads. The results are depicted in Figure 8(b),
where multi-head attention can be understood as using the attention mechanism multiple
times in one training session. Note that the multi-head attention is removed when the
attention head is set to 1. Based on the results, we conclude that the more the attention
heads, the more stable the training process, and the higher the performance of StGNN.

(a) Dimension of the final embedding (b) Number of attention head

Figure 8. Parameter sensitivity of StGNN w.r.t. Dimension of the final
embedding and Number of attention head.

4.9. Visualization. In order to intuitively compare the embedding representation capa-
bilities learned by different GNN models, we perform a visualization task, which represents
the nodes’ distribution in a low-dimensional space. We learn the node embedding of each
model on the Medical-2 dataset and use the t-sne method to project the learned em-
bedding onto a two-dimensional space. In order to facilitate observation, we consider all
positive samples and randomly select 500 nodes from the negative samples.

As shown in Figure 9, the embedding representation ability learned by the GAT and
GCN methods is not appealing. This is because a considerable number of positive and
negative samples are mixed, and thus HAN has a better effect than GAT and GCN, as
the HAN model employs multiple metapaths to obtain more semantic information. Fi-
nally, the proposed StGNN presents the best effect, better separating different classes.
Compared to HAN, StGNN’s intra-class distance is small, and the inter-class distance is
considerable, proving that StGNN can learn a good node representation, further illustrat-
ing the effectiveness of spatiotemporal constraints.

5. Conclusion and future work. Aiming at the problem of medical insurance fraud,
this paper proposes a graph neural network based on Spatio-temporal constraints. The
proposed StGNN can utilize multi-semantic metapaths to capture the behavioral at-
tributes behind the medical insurance heterogeneous graph and aggregate neighbor nodes
and different behavioral attributes through an attention mechanism. Finally, the spatial-
temporal constraints capture group anomalies from the spatial dimension and individual
anomalies from the temporal dimension. Experiments on two existing real data sets
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(a) GAT (b) GCN

(c) HAN (d) StGNN

Figure 9. Visualization of the learned node embeddings on the Medical-2
dataset.

demonstrate the StGNN’s superiority over current methods. Future work shall improve
StGNN in three aspects: (1) When aggregating neighbors, it can first evaluate the simi-
larity between nodes and neighbors to filter out neighbors with low similarity, improving
noise resistance. (2) We divided the subgraphs according to the month in this work.
However, targeting a single disease and dividing it according to its treatment cycle will
improve the model’s performance. (3) We divided the subgraph to construct time-series
data and mined individual abnormalities in this paper. Nevertheless, starting from the
perspective of a dynamic graph, capturing the structural change information of the graph
is also possible.
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