
Journal of Network Intelligence ©2022 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 7, Number 3, August 2022

Nonlinear Energy Harvesting-based Available Energy
Evolution Model for Cognitive Radio Sensor

Networks

Ji-Hong Wang∗

School of Electrical Engineering
Northeast Electric Power University

169 Changchun Road, Jilin, 132012, China
wangjihong07@126.com

Chang Liu

School of Electrical Engineering
Northeast Electric Power University

169 Changchun Road, Jilin, 132012, China
liuchang202@126.com

Yeh-Cheng Chen

Department of Computer Science
University of California
Davis, CA, 001313, USA

ycch@ucdavis.edu

∗Corresponding author: Ji-Hong Wang

Received March 1, 2022, revised April 22, 2022, accepted May 27, 2022.

Abstract. Energy harvesting (EH) technology is a promising solution to solve the en-
ergy efficiency problem in cognitive radio sensor networks (CRSNs). However, imper-
fections of energy storage unit, such as storage inefficiency and energy leakage, limit
its potential. Due to the complementary characteristics of battery and super capacitor,
they are combined to constitute a hybrid energy storage unit. Current literature generally
assumes unlimited capacity of battery or considers about linear EH. These assumptions
are beneficial for mathematical derivation and performance evaluation, but they are un-
realistic and cannot be applied in practice. In order to solve above problems, a hybrid
energy storage unit with limited capacity and storage imperfections is considered in this
paper, and an effective available energy evolution model based on nonlinear EH is pro-
posed to manage its energy storage and usage. Simulation results show that our proposal
gains obvious advantages over benchmark schemes in prolonging node lifespan and it lays
foundations for future protocol and scheme design in EH-based CRSNs.
Keywords: Cognitive radio sensor networks, Nonlinear energy harvesting, Hybrid en-
ergy storage, Available energy evolution model

1. Introduction. Wireless sensor networks (WSNs) are composed of a large number of
collaborated sensors and they have been widely recognized as a promising paradigm for
future Internet of Things [1, 2]. Cognitive radio sensor networks (CRSNs) are smart com-
binations of cognitive radio (CR) technology and WSNs [3]. Based on CR, idle licensed
spectrum of primary users can be opportunistically leveraged to solve the spectrum con-
straint and interference problem faced by legacy WSNs [4]. However, CRSNs nodes are
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powered by limited-capacity battery [5] and they should consume extra energy to perform
CR functions, such as spectrum sensing, which results in more severe energy consump-
tion [6]. Energy harvesting (EH) technology allows nodes to harvest energy from ambient
or dedicated sources and store the harvested energy into energy storage unit to cover
their energy consumption [7]. Therefore, EH becomes one promising solution to solve the
energy efficiency problem in CRSNs [8].

Current research on CRSNs generally adopts the energy storage unit which is solely
composed of rechargeable battery or super capacitor (SC). Storage imperfections such as
storage inefficiency and self-discharging are neglected, that is, storage efficiency is assumed
to be 100 percent and there is no energy leakage. Therefore, they cannot be applied in
practice. To be specific, the SC suffers low energy storage capacity and β (0<β<∞)
amount of its stored energy gets leaked per round due to self-discharging. The battery
suffers storage inefficiency, that is, η (0<η<1) portion of the harvested energy can be
charged into the storage unit and other parts are wasted. In a word, the energy storage
unit which is composed of the SC or the battery alone will limit the potential benefits
brought by EH. One possible solution is to adopt hybrid energy storage unit which is
composed of both the SC and the battery to take full advantages of their complementary
characteristics [9]: (1) leveraging the almost ideal storage of the SC to temporarily store
the harvested energy to help reduce the impact of storage inefficiency of the battery; (2)
transferring the residual energy to the battery after data transmission to avoid the impact
of energy leakage from the SC.

In terms of hybrid energy storage unit, current literature usually assumes unlimited
capacity of battery [10] or considers about linear EH [11], which is inconsistent with prac-
tice, correspondingly, the obtained results cannot be applied. The unlimited capacity
assumption is beneficial for simplifying mathematical derivation, as the harvested energy
can be totally stored into the storage unit and the evolution of available energy can be
easily obtained. However, there is a capacity limit for the battery in practice, when the
harvested energy is more than its remaining capacity, the excessive portion will overflow
and cannot be stored. In this case, we need to compare the amount of harvested en-
ergy with the maximum amount of energy which can be stored, therefore, the evolution
of available energy becomes more complicated. On the other hand, linear EH does not
consider about the nonlinear characteristics of end-to-end energy conversion introduced
by nonlinear components such as diodes in practical EH circuits [12]. Therefore, it en-
ables the output power of the EH circuits Pout to increase linearly with input power Pin.
Actually, Pout will gradually become saturated as Pin increases. In order to capture this
phenomenon, nonlinear EH model should be adopted to quantify the actual amount of
harvested energy. Many scholars have proposed various nonlinear EH models to measure
the harvested power, but their effectiveness has not been verified and compared.

Motivated by the limitations of current research, a practical hybrid energy storage
unit which is composed of limited-capacity battery and SC with storage imperfections
is applied to EH-based CRSNs nodes. Based on carefully selected nonlinear EH model,
an effective available energy evolution model is proposed to manage the energy storage
and usage of CRSNs nodes. As energy is one of the most valuable resources of CRSNs
nodes, effective and accurately-measured energy storage and usage are vital to protocol
and scheme design for EH-based CRSNs. The innovations of our proposal are listed below:

(1) In order to select the most reasonable nonlinear EH model to accurately quantify
the output power of EH circuits, various nonlinear EH models are evaluated and compared
from qualitative and quantitative aspects. In terms of quantitative evaluation, the field
data in [13] and Matlab fitting tool are leveraged to obtain their parameter values, based
on which their fitting performance is compared to determine the most appropriate model.
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(2) Based on the carefully selected nonlinear EH model, a practical hybrid energy
storage unit and corresponding available energy evolution model are proposed for EH-
based CRSNs. The model takes the impact of limited capacity and storage imperfections
into consideration to reasonably quantify and manage the energy storage and usage so
that the potential benefits of EH can be fully leveraged.

(3) The proposal is applied to a typical clustering protocol of CRSNs, i.e., cognitive
low energy adaptive clustering hierarchy (CogLEACH) [14], and node-level and network-
level simulations are carried out to validate the effectiveness of our proposal. Simulation
results show that the proposed hybrid energy storage unit and corresponding available
energy evolution model are robust to the variations of network parameters, and they can
reasonably schedule the energy storage and usage to prolong node lifespan.

2. Related Works. We will review and analyze related works from two aspects: EH
models and commonly used EH and usage protocols, as they are closely related to available
energy evolution model.

2.1. Nonlinear EH models. According to the relationship between input and output
power of EH circuits, nonlinear EH models can be divided into two types: curvilinear
EH models and piecewise linear EH models. Piecewise linear EH models [15-18] are
characterized by simple formulas and convenient mathematical derivation, but they suffer
low matching degree with field data. Instead, curvilinear EH models [19-23] can model
the relationship between practical input and output power more accurately. Among them,
the model proposed in [19] has been widely used, and its expression is:

Pout =
Ψj −MjΩj

1− Ωj

(1)

where Ψj =
Mj

1+exp(−aj(Pin−bj))
; Ωj = 1

1+exp(ajbj)
; Mj is the maximum output power when

the EH circuit is saturated; aj and bj are parameters related to circuit specification, and
their values can be obtained by standard curve fitting tool.

In order to analyze the actual performance of wireless relay and wireless energy trans-
mission, a nonlinear EH model is proposed in [20], and its expression is shown below:

Pout =
p2P

2
in + p1Pin + p0

q3P 3
in + q2P 2

in + q1Pin + q0
× Pin (2)

where p0, p1, p2, q0, q1, q2, and q3 are fitting parameters. Among them, q3=1 and other
values are obtained by curve fitting tool.

A feasible nonlinear EH substitution model is proposed in [21], and its specific expres-
sion is:

Pout = α1P
2
in + α2Pin + α3 (3)

where parameters α1, α2, and α3 are determined by data fitting method based on mean
square error.

In order to solve the problem of neglecting sensitive characteristics of actual circuit
in [19], a nonlinear EH model is proposed in [22] as shown below:

Pout =

[
Pmax

exp(−τP0 + ν)
×
(
1 + exp(−τP0 + ν)

1 + exp(−τPin + ν)
− 1

)]+
(4)

where Pmax is the saturation threshold of input power; τ and ν control the steepness of
the model; P0 is the sensitivity threshold of input power, [·]+ indicates that the expression
in parentheses is positive.
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To simplify the model in [20] and make it more suitable for mathematical calculation,
a nonlinear EH alternative model is proposed in [23] as below:

Pout =
aPin + b

Pin + c
− b

c
(5)

where a, b, and c are constants calculated by curve fitting tool.
Above models are compared by approximating field data, and more details can be found

in Section 3.

2.2. EH and usage protocols. At present, three kinds of EH and usage protocols
are commonly used in literature, that is, harvest-use, harvest-store-use and harvest-use-
store protocols [24]. Harvest-use protocol is suitable for nodes without energy buffer
temporarily storing their harvested energy. These nodes can only transmit data if they
have harvested enough energy to cover their energy consumption. This means that these
nodes are totally powered by harvested energy. Harvest-store-use protocol and harvest-
use-store protocol are both suitable for nodes with energy buffer, and they are powered by
stored energy and harvested energy together. They differ in whether the harvested energy
can be immediately used for data transmission. In harvest-store-use protocol, the energy
harvested by nodes is temporarily stored into their buffer and can be used at next time
instance. Therefore, their data transmission is limited by available energy which excludes
the harvested energy at current time instance. By using harvest-use-store protocol, the
harvested energy is temporarily stored in the energy buffer and can be immediately used
for data transmission if the energy consumption can be covered. After data transmission,
the residual energy will be stored for future use. In general, harvest-use-store protocol
achieves better performance than harvest-store-use protocol, and they deliver the same
performance if the storage efficiency is 100 percent. This motivates us to apply the
harvest-use-store protocol to our proposal.

3. Available Energy Evolution Model for Hybrid Energy Storage Unit.

3.1. Comparison and evaluation of various nonlinear EH models. As our pro-
posed available energy evolution model is based on nonlinear EH model, we need to select
the most appropriate one to ensure accurate measurement of harvested energy. In this
subsection, we will compare various nonlinear EH models listed in Section 2 from qual-
itative and quantitative aspects, and use statistical indicators to evaluate their fitting
performance in approximating the field data in [13].

First, these nonlinear EH models are evaluated from qualitative aspects, such as match-
ing degree with practical relationship between input and output power, ease of mathe-
matical derivation and so on. Detailed comparison results are shown in Table 1 below,
in which “✓” represents corresponding property can be satisfied while “Ö” denotes the
opposite situation.

Second, curve fitting tool in Matlab and field data are leveraged to evaluate the per-
formance of various curvilinear EH models from quantitative aspect. The fitting results
are shown in Figure 1.

In order to evaluate their fitting performance, two statistical indicators, i.e., root mean
square error (RMSE) and R-squared (R2) are utilized and their definitions are shown in
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Table 1. Qualitative comparison results of various nonlinear EH models

Model characteristics

Models
Matching
degree with
field data

Easy for
mathematical
derivation

Convenient
for convex

optimization

Considering
circuit

sensitivity

Unrestricted
Pin

Model in [15] Poor ✓ × × ✓
Model in [16] Excellent × × ✓ ✓
Model in [17] Poor ✓ × ✓ ✓
Model in [18] Poor ✓ × ✓ ✓
Model in [19] Excellent × ✓ × ×
Model in [20] Excellent ✓ ✓ ✓ ✓
Model in [21] Medium ✓ ✓ × ×
Model in [22] Excellent × ✓ ✓ ✓
Model in [23] Medium ✓ ✓ × ✓

Figure 1. Fitting results of various curvilinear EH models

Equation (6) and Equation (7), respectively.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (6)

R2 =

∑n
i=1(ŷi − y)2∑n
i=1(yi − y)2

(7)

where n is the total number of data points; yi is the ith original data point, and ŷi is
the corresponding data point after curve fitting. y is the mean value of original data.
RMSE is obtained by calculating the square root of the sum of squares of fitting errors,
and the closer the RMSE is to 0, the better the model works. R2 ranges from 0 to 1,
and R2 moves close to 1 as fitting curve approaches original data. By utilizing these two
indicators, the fitting performance of various curvilinear EH models is compared and the
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results are presented in Figure 2. We can observe that the RMSE value of the model
in [20] is the smallest and its R2 value is the closest to 1. This means that it achieves
the best fitting performance, therefore, the nonlinear EH model in [20] is leveraged to
describe the relationship between input and output power of EH circuits in this paper.
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Figure 2. Comparison results of various curvilinear EH models in terms
of RMSE and R2

3.2. Available energy evolution model based on nonlinear EH model. SC can
store energy almost ideally, but it suffers low energy storage capacity and self-discharging
which means that β amount of energy in SC gets leaked per round. Battery has high
energy storage capacity but is inefficient in storing energy. Here, storage inefficiency
of battery means that every E units of energy is stored, only ηE units can be drained
from it while other parts are lost. Therefore, SC and battery are combined together as
a hybrid energy storage unit to boost storage efficiency. As shown in Figure 3, each
EH-based CRSNs node has two energy queues which correspond to the battery and the
SC components of the hybrid energy storage unit, and they are with limited size Emaxb

and EmaxSC (Emaxb>EmaxSC), respectively. Harvest-use-store protocol is adopted in this
paper. In order to limit the impact of storage inefficiency of the battery on available
energy, whenever harvested energy Ein arrives, it is temporarily stored in the SC first and
can be immediately used. To avoid energy overflow, the excessive portion of harvested
energy is stored in the battery if it has residual capacity. After data processing and
transmission, the remaining energy is transferred from the SC to the battery and stored
for future use, which can help improve self-discharging problem.

As the hybrid energy storage unit is charged by the harvested energy and discharged
by energy consumption of active operations such as control information exchange, data
transmission and so on, the stored energy evolves over time. Therefore, the available
energy evolution model is exploited here to manage the evolution of the stored energy
over time. In particular, the available energy evolution processes of the two energy queues
from time instance t to t+1 are summarized in Equation (8) and Equation (9), and the
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Figure 3. Hybrid energy storage unit of EH-based CRSNs nodes

total energy available at node n En res(t+ 1) is calculated through Equation (10).

ESC
n res(t+ 1) =

⌊⌊
ESC

n res(t) + ESC
in − ESC

out − Etransf

⌋+ − β
⌋+

(8)

EBattery
n res (t+ 1) =

[⌊
EBattery

n res (t) + η × EBattery
in −

⌊
Eout − ESC

out

⌋+⌋+
+ η × Etransf

]+
(9)

En res(t+ 1) = ESC
n res(t+ 1) + EBattery

n res (t+ 1) (10)

where ⌊x⌋+=max(0,x), [x]+=min(⌊x⌋+, Emax). ESC
n res(t + 1) and ESC

n res(t) are residual
available energy of the SC at time instances t+1 and t, respectively. Similarly, EBattery

n res (t+
1) and EBattery

n res (t) are residual available energy of the battery at time instances t+1 and
t, respectively. ESC

in is the actual amount of radio frequency (RF) energy harvested by
the SC, and it can be obtained by using Equation (11).

ESC
in = min(Ein, EmaxSC − ESC

n res(t)) (11)

where Ein is the maximum amount of RF energy which can be harvested by node n. In
this paper, signal attenuation is assumed to follow free-space path loss model, and Ein is:

Ein = f(PT × GTGRλ
2

16π2d2tosink
)× tEH (12)

where PT is the transmission power of the sink; GT and GR are the gains of transmitting
antenna and receiving antenna, respectively; λ is the wavelength of transmission signal;
dtosink is the Euclidean distance from node n to the sink; tEH is the time duration for
EH. f(x) is the nonlinear energy harvesting model proposed in [20], and its expression is
given by Equation (2).

Eout is the total energy expenditure of signal processing, data transmission and so on,
which depends on node identity and its activity. ESC

out portion of Eout drains from the SC
and the remainder comes from the battery. ESC

out is determined by total available energy
in the SC and total energy consumption, as shown in Equation (13).

ESC
out = min(Eout, E

SC
n res(t) + ESC

in ) (13)
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Etransf is the total amount of energy transferred from the SC to the battery, and it can
be calculated according to Equation (14).

Etransf =min(
⌊
ESC

n res(t) + ESC
in − ESC

out

⌋+
, Emaxb−⌊

EBattery
n res (t) + η × EBattery

in −
⌊
Eout − ESC

out

⌋+⌋+
)

(14)

where EBattery
in is the amount of RF energy which can be collected by the battery, as shown

below:

EBattery
in = min(Ein − ESC

in , Emaxb − EBattery
n res (t)) (15)

4. Simulation Results and Analysis. In order to validate the effectiveness of hybrid
energy storage unit and our proposed available energy evolution model, they are compared
with the energy storage unit which is solely composed of rechargeable battery. In the
competitor, the available energy evolution process from time instance t to t+1 is shown
by Equation (16).

EBattery′

n res (t+ 1) =
⌊
EBattery′

n res (t) + η ×min(Ein, Emaxb − EBattery′

n res (t))− Eout

⌋+
(16)

These two energy evolution models are applied to single EH-based CRSNs node and
the whole EH-based CRSNs which run CogLEACH protocol [14], i.e., they are compared
in both node level and network level. To be specific, if these models are applied to single
EH-based CRSNs node, this node is set as cluster head (CH) or cluster member (CM)
randomly in each round for simple calculation purpose, and the corresponding energy
consumption is calculated from statistical perspective according to CogLEACH protocol,
as shown in Equation (17) or Equation (18). The harvestable energy of this node is
determined by its Euclidean distance to the sink, as shown in Equation (12). While if
they are applied to the whole EH-based CRSNs, the harvestable energy of each node is
determined by its individual distance to the sink, and its energy consumption depends
on its role (CH or CM) in current round which is up to CogLEACH protocol, detailed
control information exchange, data delivery and so on.

ECH
out =

[
(Eelec + εfsR

2
t )× L1 × 3 + Eelec × L1 × 2× (πR2

t × ρ− 1)
]
+[

Eelec × L× (πR2
t × ρ− 1) + EDA × L× πR2

t × ρ+ (Eelec + εfsd
2
tosink)× L

] (17)
ECM

out = Eelec × L1 × 3 + (Eelec + εfsd
2
toCH)× L1 × 2 + (Eelec + εfsd

2
toCH)× L (18)

where Eelec is the energy consumption of electronic circuits for sending or receiving one
bit of data; εfs is the energy consumption coefficient of power amplifier per bit; Rt is the
maximum transmission range of CRSNs nodes; ρ is node density; dtoCH is the average
Euclidean distance from all CMs to their CH; L1 is the control packet size and L is the
length of data packets in bits. The simulation parameter settings are given below: the
initial residual energy of the SC is set as 0 for fair comparison and the initial residual
energy of the battery is 0.5J; β=0.015mJ, η=0.6; Emaxb=1J and EmaxSC=0.2J. The EH
duration is set as 0.2s while one round lasts for 0.5s. The size of control packets and
data packets are set as L1=200bits and L=1024bits. In order to show the simulation
parameters more explicitly, they are listed in Table 2 below.
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Table 2. Simulation parameter settings

Simulation
scenarios

Common parameters Variations of parameters

dtosink=10m, ρ=1/(100π),
E0 SC=0J, E0 battery=0.5J, PT=40W∼100W.

Node-level dtosink=10m, PT=100W,
simulation Emaxb=1J, EmaxSC=0.2J, ρ=1/(100π)∼1/(25π).

ρ=1/(100π), PT=100W,
β=0.015mJ, η=0.6, tEH=0.2s, dtosink=10m∼50m.

N=100, ρ=1/25, PT=100W, dtosink is
T=0.5s, Rt=50m, L1=200bits, obtained according to node position.

Network-level N=100, PT=100W, dtosink is
simulation L=1024bits. obtained according to node position,

ρ=1/50∼2/25.

4.1. Node-level simulation results and analysis. Node residual energy gradually
decreases as the increase of round number, and this mainly results from the fact that the
harvestable energy at this node is less than its energy consumption. In order to validate
the effectiveness of our proposal, energy consumption ratio REC(t) is leveraged and it is
defined as the ratio between node energy consumption under our proposal and that under
battery storage unit in round t, as shown in Equation (19).

REC(t) =
E0 − En res(t)

E0 − EBattery′
n res (t)

(19)

where E0 is the initial energy of this node. The variation of energy consumption ratio
versus round number under different transmission power of the sink PT is shown in Figure
4 and it is obtained with the following parameter settings: dtosink=10m and ρ=1/(100π).
We can observe that energy consumption ratio shows a declining trend as PT increases,

0 2 4 6 8 10
0.970

0.975

0.980

0.985

0.990

0.995

1.000

En
er

gy
 C

on
su

m
pt

io
n 

Ra
tio

Round Number

 PT=40W
 PT=60W
 PT=80W
 PT=100W

Figure 4. Impact of PT on energy consumption ratio



568 J.H. Wang, C. Liu and Y.C. Chen

which means the gap between these two competitors enlarges as PT increases. The rea-
sons are analyzed below: when node position is fixed, according to Equation (12), the
harvestable energy will increase as PT improves. Consequently, more energy can be left
with unchanged node energy consumption. In addition, by utilizing hybrid energy storage
unit and corresponding available energy evolution model, node residual energy is always
higher than that using battery storage unit. Therefore, the energy consumption ratio is
always below 1. The performance improvement of our proposal comes from effective com-
bination of the battery and the SC and reasonable management of these two components.
Therefore, energy storage efficiency can be significantly enhanced and energy leakage can
be reduced, which contributes to smaller energy consumption ratio.

Energy consumption ratio versus node density ρ is observed by setting dtosink=10m and
PT=100W, and the comparison results are shown in Figure 5. Energy consumption ratio
declines as ρ decreases, and the reason is: if node position and PT are kept unchanged,
the harvestable energy is fixed. However, according to Equation (17), node energy con-
sumption is reduced as ρ decreases. Additionally, similar to the results in Figure 4, node
energy consumption with hybrid energy storage unit and proposed energy management is
still less than that under battery storage unit, which again demonstrates the effectiveness
of our proposal.
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In order to analyze the impact of Euclidean distance to the sink, dtosink is increased
from 10m to 50m while ρ=1/(100π) and PT=100W. The variation of energy consumption
ratio versus round number is presented in Figure 6. According to Equation (12) and
Equation (17), dtosink imposes double influence on node residual energy. To be specific,
the harvestable energy can be improved if dtosink decreases while PT is unchanged. At
the same time, less energy is required for sending data to the sink. Therefore, more
node residual energy is saved. The simulation results in Figure 6 are in accordance with
above analysis, and hybrid energy storage unit with reasonable management gains obvious
advantages over battery storage unit.

4.2. Network-level simulation results and analysis. In order to further illustrate
the effectiveness of our proposal, we apply it to a representative clustering protocol for
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CRSNs, that is, CogLEACH. 100 CRSNs nodes are randomly and evenly distributed in
a 50mÖ50m area, i.e., node density is ρ=1/25. The sink is located at the center of the
network with transmission power PT=100W. The Euclidean distance to the sink dtosink
is varied among CRSNs nodes and it can be obtained according to their positions or
received signal strength. The variation of node remaining energy as network operation
goes on is recorded and the relationship between total residual energy of all CRSNs nodes,
network lifetime and round numbers is presented in Figure 7 and Figure 8, respectively.
When reasonable management of hybrid energy storage unit is achieved, total residual
energy of all CRSNs nodes is dramatically improved. The rounds in which the first-death
node appears under the two competing models are round 1493 and 1386, respectively.
This means that network lifetime can be extended, and network surveillance capability is
significantly enhanced.

In addition, 4 random rounds are selected to observe node residual energy, i.e., round
1000, 1500, 1700 and 2000, and the simulation results are shown in Figure 9. In Figure
9(a), residual energy of all CRSNs nodes is higher than 0, which means that all CRSNs
nodes are alive in round 1000. However, residual energy fluctuates among nodes. The rea-
sons are analyzed as follows: Different Euclidean distance to the sink results in distinction
in harvestable energy; Nodes may play different kinds of roles, and the energy consump-
tion of CH and CM varies greatly. As network operation continues, a large number of
CRSNs nodes die due to lack of energy, and only a small number of nodes are still alive,
as shown in Figure 9(b)∼ Figure 9(d). The advantage of our proposal is still obvious,
for example, there are 73 nodes alive under hybrid energy storage unit while there are
only 64 under battery storage unit in round 1500. Node 16 is close to the sink, so its
harvestable energy from the sink is nearly the same with its energy consumption, which
results in nearly unchanged residual energy. This results from the random deployment of
CRSNs nodes and the random CHs selection of CogLEACH protocol.

In order to further validate the robustness of our proposal to the variations of network
parameters, node density ρ is changed by varying the number of CRSNs nodes deployed
in the area. The number of living nodes versus round number is shown in Figure 10.
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From Figure 10, we can observe that the hybrid energy storage unit with corresponding
available energy evolution model still gains obvious advantages over its competitor. As
node density ρ increases, more energy can be conserved by using our proposal, therefore,
more nodes can survive longer. From above results, we can conclude that our model is
robust to the variations of network parameters.

As stated above, our proposal is influenced by parameters such as PT , ρ and dtosink, and
its performance is superior to battery storage unit, no matter in node level or network



Nonlinear EH-based Available Energy Evolution Model for CRSNs 571

0 20 40 60 80 100

0.25

0.50

0.75

1.00

0 20 40 60 80 100

0.25

0.50

0.75

1.00

0 20 40 60 80 100

0.25

0.50

0.75

1.00

0 20 40 60 80 100

0.25

0.50

0.75

1.00

N
od

e 
Re

sid
ua

l E
ne

rg
y/

J

Node Number

 hybrid storage
 battery solely

(b) Round 1500

(c) Round 1700 (d) Round 2000

N
od

e 
Re

sid
ua

l E
ne

rg
y/

J

Node Number

 hybrid storage
 battery solely

N
od

e 
Re

sid
ua

l E
ne

rg
y/

J

Node Number

 hybrid storage
 battery solely

N
od

e 
Re

sid
ua

l E
ne

rg
y/

J

Node Number

 hybrid storage
 battery solely

(a) Round 1000

Figure 9. Node residual energy in 4 randomly selected rounds
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Figure 10. Robustness of our proposal to variation of node density ρ
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level. Therefore, our proposal lays foundations for future protocol and scheme design in
EH-based CRSNs.

5. Conclusions. Current research on EH-based CRSNs usually adopts rechargeable bat-
tery or SC to store the harvested energy and ignores the storage imperfections. Even hy-
brid energy storage unit is utilized, it is assumed to possess unlimited capacity or linear
EH model is applied to quantify the amount of harvested energy. The potential benefits
of EH are restricted and the obtained results cannot be applied in practice. Aiming at
solving above problems, a hybrid energy storage unit with practical constraints and cor-
responding available energy evolution model are proposed for EH-based CRSNs. First, in
order to identify the most reasonable nonlinear EH model and guarantee accurate mea-
surement of harvested energy, qualitative and quantitative evaluation are leveraged to
compare various nonlinear EH models and test their fitting performance. Second, based
on the carefully selected nonlinear EH model, the impact of limited capacity and storage
imperfections are taken into consideration to model the evolution process of available node
energy over time. In this case, the energy storage and usage can be effectively quantified
and reasonably managed. Third, the effectiveness of our proposal is validated through
node-level and network-level simulations, and it is robust to the variations of network
parameters. In our future work, we will design clustering routing protocols and resource
allocation schemes for EH-based CRSNs based on our proposed hybrid energy storage
unit and corresponding available energy evolution model.
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