
Journal of Network Intelligence ©2022 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 7, Number 3, August 2022

TMAPath: A Knowledge Inference Method Based on
Transfer Learning and Multi-agent Deep

Reinforcement Learning

Dairao He

College of Information Science and Technology
Dalian Maritime University

No. 1 Linghai Road, Dalian, Liaoning, China
dairaohe2022@163.com

Jingfeng Hu∗

College of Navigation
Dalian Maritime University

No. 1 Linghai Road, Dalian, Liaoning, China
jingfenghu2022@163.com

∗Corresponding author: Jingfeng Hu

Received May 30, 2022, revised July 2, 2022, accepted July 25, 2022.

Abstract. Knowledge inference models aim to find the missing objects of user intent
from knowledge graph, and are widely used in systems such as intelligent recommenda-
tion, Question Answering over knowledge graph, and assisted decision-making. How-
ever, the three existing knowledge inference models have some problems that have not
been solved yet. Meanwhile, distributed knowledge inference models are unexplainable,
and overlook the impacts of other key path information on the inference outcome and
the correlations between entities in multi-hop paths, and hence do not have the ability
to infer relations. Secondly, the traditional path-based knowledge inference models may
suffer error accumulation in the face of large quantities of invalid paths, leading to a low
success rate of path mining. Besides, these traditional models show poor performance
when applied to paths of data sparsity, have high computation overheads. Finally, re-
inforcement learning-based inference models spend a lot of time on invalid or irrelevant
paths, making the model inference less efficient. In the present work, TMAPath, a novel
knowledge inference model based on transfer learning and multi-agent deep reinforcement
learning, is proposed. The TMAPath model consists of a source task module and a target
task module. First, during pretraining task in the source domain, single-step inference
learning is employed to adjust the model parameters; then, these shared parameters are
learnt through fine-tuned training in the target domain to realize multi-agent multi-step
inference through transfer learning; last, the proposed approach is compared with other
baseline models through tests on three public datasets, i.e., FB15K-237, NELL-995, and
WN18RR, and the test results revealed that the proposed approach has better performance
in knowledge inference than other baseline models.
Keywords: Transfer learning, Knowledge inference, Deep reinforcement learning, Re-
ward function, Multi-step inference.

1. Introduction.
Due to its weakness in the coverage of fact representations, the knowledge graph (KG),

a technology that relies on network-based automatic extraction or manual processing of
features, often suffers the problem of incompleteness, which makes it difficult to improve

574

TMAPath 575

the performance of downstream applications. The knowledge inference (KI) technique,
which infers unknown information from existing facts, has become a hot topic and chal-
lenge in the field of KG research. In the KG, the new knowledge obtained through KI
includes new entities and new relations, where the relation inference (link prediction) in-
cludes single-step inference and multi-step inference. The major methods of KI at present
are distributed KI, path-based KI, and reinforcement learning-based KI. Within these
approaches, there are three main challenges.

The mainstream models of distributed KI are the tensor factorization (TF) model and
the embedding representation model. The TF model lowers the computation complexity
by reducing the dimension of the high-dimensional KG. Moniruzzaman et al. [1] pro-
posed a new TF model for fine-grained type inference of KGs, which improved the KI
efficiency. Sedghi and Sabharwal [2] applied the idea of tensor factorization to knowledge
completion for generics. The embedding representation model maps the triple of network
semantic information onto a low-dimensional continuous vector space to learn the poten-
tial attributes of entities and relations; a smaller distance between the vectors indicates
a higher similarity between two objects, and the score function of the triple is calculated
to fulfill knowledge completion tasks like link prediction and fact prediction [3, 4, 5].
The first embedding representation model was proposed by Bordes et al. [6] in 2013,
followed by improved variants like TransH, TransR, and TransD, which have later seen
wide adoption in different fields and scenarios. Nie and Sun [7] proposed a new combined
model called text-enhanced KGembedding (TKGE), which combined TransE and LSTM
to learn KG embeddings from potential features of data to infer entities, relations, and
texts. Zhang et al. [8] proposed a novel framework IterE, which used rule-based inference
to improve the quality of sparse entity embeddings and the model’s performance for link
prediction. These distributed KI models boast such advantages as low complexity, strong
usability, simplicity, and high efficiency, but the shortcomings remain. The first challenge
is that distributed inference models do not adequately model relationships and are not
interpretable. First, most distributed KI models parse the information like entities and
relations in KGs merely from the numerical perspectives of vector and tensor, resulting
in non-explainability of the inference results. Second, these models overlook the deci-
sive impacts of other key path information on the inference outcome and the correlations
between entities in multi-hop paths, thus unable to infer relations.

Path-based KI is a method that introduces the information hidden in the path rules
between two entities into the KI process, in which the weights of relations between en-
tities in the path are calculated to redesign the semantic information to complete the
missing links between entities and improve the model’s inference performance. The most
classical path-based KI model adopts the path sorting algorithm [9], which explores the
set of paths of two entities to predict possible relations. After that, more path-based KI
models were developed. Vaigh et al. [10] interprets the indirect relations between enti-
ties by introducing property paths to the model and designed a novel entity correlation
measurement method, which improved the performance of entity linking. However, the
shortcomings of existing path-based approaches undermine the role of path information
in the inference task. The second challenge is that the traditional path inference model
treats each path equally, which is time-consuming and vulnerable to irrelevant paths,
while it cannot adequately capture the sparse object features that occur less frequently
and is less effective. First, these traditional methods may mine lots of invalid paths,
which leads to error accumulation and a low success rate of path mining. Second, when
applied to sparse paths, most of these models demonstrate poor performance, suffer a high
computation cost, and cannot learn multi-step inferences. In these years, introducing the
technique of reinforcement learning (RL) to path-based KI has drawn broad attention

576 D. He and J. Hu

from researchers. In 2017, Xiong et al. [11] proposed DeepPath, the first KI model that
incorporated deep reinforcement learning (DFL) to KI, which used a policy-based agent
to reason in the space environment of the KG, where the entities and relations in the KG
were used as the state space and the action space. However, RL-based KI approaches rep-
resented by DeepPath suffer a low success rate in path search. The third challenge is that
for spatially similar objects or when paths are encountered missing, reinforcement learn-
ing knowledge inference models need to learn the inference process repeatedly, consuming
resources on top of invalid actions. First of all, most RL-based KI models use a single
agent and are not efficient in the inference task; moreover, when the single agent fails to
work, the model needs to start learning all over again, which results in poor robustness of
the model. Second, there are many invalid actions in the action space of the agent, and
if these invalid actions are selected in single-step inference or multi-step inference tasks,
the model’s performance will decline.

To address these problems, we propose TMAPath, a knowledge inference model that
combines transfer learning and multi-agent deep reinforcement learning, which employs
transfer learning to perform KG inference and introduces multiple agents to improve
the model’s efficiency and robustness. First, in the pretraining module in the source
domain, single-step inference is achieved through a special reward mechanism; then, the
inference result is transferred to fine-tuned training in the target domain where multiple
agents perform multi-step inference; last, the proposed model is compared with other
baseline models through tests on three public datasets, i.e., FB15K-237, NELL-995, and
WN18RR, and the test results show that our model achieve a higher success rate of
knowledge inference than other models.

The major contribution of our work is as follows:

1) A novel KI method that combines transfer learning and multi-agent deep reinforce-
ment learning is proposed. In the source domain and the target domain, the infer-
ence task is converted into a sequential decision-making problem, which improves the
agents’ capacity for multi-step inference of relations in paths and the explainability
of the inference.

2) In the source domain, a special reward mechanism is designed, and an extra special
network is introduced to pretrain the triples. The reward mechanism allows the
model to learn more fact triples, and the network like TransE that trains the triples
can improve detection of the fact triples and representation of vectors. Ablation
experiments show that pretraining in the source domain improves the success rate
of single-step walk in the search of valid paths, and solves the problems of error
accumulation and high computation overheads.

3) In the target domain, a multi-agent collaborative prediction algorithm is put for-
ward so that the global agent collects the learning experience of other agents and
updates the global network parameters; then, the updated parameters are replicated
synchronously to other local agents to maximize the gains of the multi-agent system
and minimize the overall loss, which will improve the model’s robustness and effi-
ciency, and reduce the chance of selecting invalid paths by the agent in multi-step
inference.

2. Related Works.

2.1. Development of deep reinforcement learning and multi-agent learning.
There are different types of reinforcement learning (RL) methods. By the dependence

on the environment model, these methods can be classified into model-based RL and
model-free RL; by the policy updates, the methods can be classified into value-based

TMAPath 577

RL and policy-based RL. Value-based RL approaches like Q-learning [12] and deep Q
network [13] optimize the action value functions; whereas policy-based approaches directly
optimize the policy. Both methods can be combined to generate actor-critic algorithms
or QT-Opt algorithms.

Deep reinforcement learning (DRL) is a technique that relies on the strong function
approximation and feature representation capacity of deep neural networks (DNNs) [14,
15]to fit the functions of states, actions, policies, and values in reinforcement learning,
which solves the curse of dimensionality and has been widely applied to autopilot, e-sports,
machinery control, and recommender systems. Chen et al [16] combined reinforcement
learning and imitation learning, and designed an auxiliary network in the RL framework
to ensure stability of end-to-end autopilot. Ye et al. [17] designed a DL framework for
multi-player online battle arena (MOBA), which learns successfully the control policies
of complex actions in the game. Liu et al. [18] put forward a DL framework to model
interactive recommender systems, which improved the quality of recommendation. Wang
et al. [19, 20] proposed a trust reward and punishment method aims to achieve trust
incentive consensus.

Multi-agent deep reinforcement learning (MADRL) is a technique that applies DL to
multi-agent system control and implementation, and by the relation of the reward func-
tions, it can be divided into three categories: cooperative models, competitive models,
and mixed cooperative-competitive models. The cooperative models need collaborations
between multiple agents to achieve the maximum reward. Competitive models, however,
rely on the min-max theorem and entail games between agents to achieve the maximum
reward. The mixed models basically stay in a static state where the agents remain inde-
pendent from each other and there is no need to learn the actions of other agents.

Multi-agent reinforcement learning can be described by random games, the architecture
of which is shown in Figure 1. The alliance state of multiple agents serves as the envi-
ronment of the system, and the reward function is designed as per the field environment
and the learning objective. Overall, MADRL can improve the efficiency of task comple-
tion through multiple agents working in parallel, and when some agents fail to function,
other agents fill in, which improves the robustness of the model. Nonetheless, MADRL
models are not free from problems or challenges: as the number of agents increases, the
complexity of the system grows exponentially; besides, each agent is subject to multiple
impacts from the environment and other agents, which makes it difficult to define the
learning objective and converge to an optimal solution.

2.2. Transfer learning in reinforcement learning.
Transfer learning (TL) is a technique that obtains knowledge from the source domain to

address the problem of insufficient training data in the target domain. By the tasks in the
source domain and the target domain, TL methods can be divided into three types: induc-
tive transfer learning, unsupervised transfer learning, and transductive transfer. Transfer
learning in reinforcement learning tasks is called transfer reinforcement learning [10],
whose premise is the similarity between the source domain and the target domain for
knowledge transfer to avoid negative transfer.

Transfer reinforcement learning can accumulate rewards by enhancement of the three
targets: learning speed enhancement, progressive enhancement, and quick launch en-
hancement. The learning speed is improved by transferring sufficient prior knowledge in
the source domain and reducing the interactions between the target domain and the ex-
ternal environment. Progressive enhancement is to measure the improvement of the final
performance. Quick launch enhancement is measured by the performance enhancement
at the initial stage of learning.

578 D. He and J. Hu

Figure 1. The basic framework for multi-agent deep reinforcement learning

2.3. Development of reinforcement learning in knowledge inference.
Reinforcement learning-based KI relies on the strong decision-making capacity of RL

to model the search of relations in paths into sequential decision-making. Specifically,
the whole KG, as the environment for the RL agents, models the entities and relations
as the state space and the action space, and the agents walk on the KG and search
the paths towards the target entity. For RL-based KI, the DeepPath model [11] is the
first attempt that introduced DRL into KI. Das et al. [21] put forward the MINERVA
model, which performs efficient search from the initial entity to the target entity and
has strong performance in finding answers. The M-walk model proposed by Shen et
al. [22] encodes the historical relation paths by an RNN, and combines the Monte Carlo
tree search (MCTS) and the neural policy to forecast the target entity. In the Multi-
Hop model, Lin et al. [23] employed the soft reward mechanism to achieve multi-hop
reasoning. The DIVINE model proposed by Li et al. [24] used generative adversarial
imitation learning (GAIL) to adaptively learn the reasoning policy and reward function.
The collaborative policy learning (CPL) model put forward by Fu et al. [25] adopts a new
collaborative policy framework, which extracts facts and searches paths from the corpus.
Wang et al. [26] proposed the attention-based deep reinforcement learning (ADRL) model,
which infers the weights of entities and relations using the self-attention network and
uses the actor-critic method in reinforcement learning to improve the model’s reasoning
efficiency. Li et al. [27] put forward the model called MemoryPath, which introduces
a memory component that combines the long and short-term memory network and the
graph attention mechanism into the deep learning framework to solve the problem of
over-dependence of reinforcement learning-based knowledge inference on pretraining. The
DAPath model proposed by Tiwari et al. [28] addresses the memory of relations in the
path by combining the graph self-attention mechanism and GRU, thus eliminating the pre-
training or fine-tuning process. Instead of focusing on traditional reinforcement learning
path query optimization, the work in this paper focuses on employing multiple intelligences
and transfer learning to address the model’s ability to process similar and missing objects
quickly when inferring them, as well as to improve path relation inference by transforming
the inference task into a sequential decision problem.

3. Model Design.

TMAPath 579

3.1. Architecture of the reinforcement learning-based model. In the present
work, a knowledge inference method that incorporates transfer learning and multi-agent
deep reinforcement learning is proposed, the central idea of which is model-based cross-
domain transfer learning. Figure 2 shows the architecture of the TMAPath model, which
consists of two modules: the source task module and the target task module.

In the TMAPath model, the source task module and the target task module have
different state-action spaces, but the data sources corresponding to the source domain
environment and the target domain environment share high similarity. First, the model
parameters are adjusted constantly in the single-step inference task in the source domain,
and the shared parameters are learnt from the Markov decision-making process in the
source domain; then, the shared parameters are used to initialize the Markov decision-
making process in the target domain to optimize the learning capacity and efficiency of
multi-step inference in the target-domain task.

Figure 2. Architecture of TMAPath

3.1.1. Modeling of the deep reinforcement learning environment.
In deep reinforcement learning, the path search in KG inference is considered as a

Markov decision-making process. This process forecasts the next state and the expected
reward through the current state and action, and the next state does not necessarily
remain unchanged. The state transfer and action selection of the RL agents are completed
in the whole KG, so it is necessary to model the environment of DRL of theKG, and the
environment remains consistent in the whole training process. For a given relation r0, the
environment set consisting of the RDF triples is defined as follows:

Gr0 = {(h, r, t)|h, t ∈ E, r ∈ R, r ̸= r0, r ̸= r−1
0 }, (1)

580 D. He and J. Hu

where Gr0 represents the agent environment excluding the relation r0 and the inverse
relation r−1

0 . In the present work, a reverse path search algorithm is designed to convert
the reasoning process into a decision-making process:

DRL =< SM , AM , PM , RM , γ >, (2)

where SM represents the state space of the agent, which may be a finite set space or a
continuous infinite space; AM represents the action space of the agent; PM represents
the reward function of the agent; RM represents the state transfer policy of the agent; γ
represents the discount factor; and DRL represents the Markov decision-making process
in deep learning.

Specifically, reinforcement learning-based path inference can be described as follows.
The environment is modelled into a Markov decision-making process, where the action
space in the environment is the set of edges of the KG, and the decision-making agent
is set as a policy-based network. When the state space of the environment changes, the
agent selects the actions according to the set policy network to transfer the initial state of
the agent to a new state. At this time point, the reward function is used to judge whether
the new state has reached the target state. During iterative training, the agent gradually
improves its capacity to infer relations in the path. Through constant interactions between
the external environment and the agent, reinforcement learning generates a path decision-
making sequence from the source entity to the target entity, where the sequence contains
the entity-relation information between two entities.
(1) State Space

The state space of reinforcement learning refers to any information of the external
environment of the agent, including the primary perception data and the accumulated
data processed based on the primary perception data. Usually, the more sufficient the
valid state information is preserved, the stronger the agent’s learning capacity is. The
state information generally has Markov property, that is, at the time point t0 and when
the state information of the environment is known, the state distribution at the time point
t(t > t0) is irrelevant of the state before the time point t0. The state space of our model
SM is comprised of the entity set E in the KG, and the TransE model is used to represent
the character-level embeddings of entities, which is defined as follows:

s(t) = TransE(et), (3)

where et is the entity at the time point t, and s(t) is the state vector representation at
the time point t. In deep reinforcement learning models, the state information needs
to capture the entity position of the agent in the KG, and after one action is selected,
the state of the model changes, i.e., the path of the reliance relations between agents is
transferred to another entity position. Therefore, the change of state refers to a process
in which the agent moves from the position in the entity e0 at the start time t0 to the
position in the target entity etarget at the end time point ttarget, which is formalized into
the following:

SM = {TransE(e0), T ransE(etarget)}. (4)

(2) Action Space
An action refers to the feedback an agent provides after acquiring the state of the ex-

ternal environment, whose representations can be either discrete or continuous. For a KG
inference task, an action means the agent selects an output path in the set of relations
of KGs to move forward, and the number of action spaces relies on the number of neigh-
boring entities of the current entity. In a certain relation, an entity pair (esource, etarget)
is known, and the reinforcement learning agent walks amid the entities to achieve state
transfer and find the valid path of the optimal information quantity to link the pair of

TMAPath 581

entities, thereby fulfilling the inference task from the head entity to the target entity. In
the present work, an entity and its output relation are encoded into a candidate action,
and the correlation between the action of the current entity and the entity and relations
of the entity in the previous state is not considered. From the head entity esource, the
agent selects the relation r by the reward to link with the next entity, and through selec-
tions of multiple actions, the agent reaches the target entity etarget. It has been proved in
literature that introducing the inverse relations into the action space can allow the agent
not only to master reverse reasoning and uncover hidden inferences, but to revoke wrong
decisions automatically. Therefore, the reverse relations of all relations are introduced
into the action space, which is represented as follows:

AM = {r1, r−1
1 , r2, r

−1
2 , ..., r|R|, r

−1
|R|}, (5)

where r−1
i is the reverse relation of ri, and R is the quantity of actions. In the framework

of reinforcement learning, there are two different actions: valid actions and invalid actions.
Valid actions refer to extending the paths of the current entity based on the existing or
potential relations, whereas invalid actions mean the relations that are not present in the
current entity links.
(3) Reward Function

In reinforcement learning, the reward is the given to the agent when it perceives the
state change and responds with actions, and the reward mechanism is set as per the actual
scenario. The reward functions include the positive activation function and the negative
penalty function. In KG inference, once an agent succeeds or fails in completing a task,
the environment provides different rewards to the agent; the agent then updates its policy
as per the provided reward to maximize the reward. Our model comprises of pretraining
in the source domain and fine-tuned training in the target domain, and different reward
functions are adopted for these two tasks.
(4) State Transfer

State transfer refers to the probability distribution that an agent takes actions in re-
sponse to the current state and transfers to the next state. In the KG environment, the
agent stays at the position of the current entity et, and selects the relation linked to the
current entity et as the next action to transfer the agent to the position of the next entity
et+1. The state transfer function is defined as follows:

f : p{st+1|(st, a), s ∈ SM , a ∈ AM}, (6)

where st is the current state; st+1 is the new state of the next entity; and a refers to an
action the agent takes. A special stop action astop is set to indicate that the agent no
longer selects any new state and stops the state transfer.

3.1.2. Modelling Principle.
(1) Double Deep-Q Network

Be it for the single agent in the source domain or for the multiple agents in the target
domain, the TMAPath model adopts the double deep Q network for Q value generation.
When the nonlinear function approximator is used to represent the Q function, the tra-
ditional Q-learning algorithm shows unstable performance. The deep-Q network (DQN)
with an experience replay pool provides a solution to this problem. The agent stores the
samples with learning experience to the experience replay pool, and updates Q-learning
through small-scale samples obtained by uniform sampling. Meanwhile, the DQN updates
the parameters using the online network Q(s, a; θi) and the target network Q(s, a; θ−1

i).
These two neural networks have the same structure, and the target Q value is calculated

582 D. He and J. Hu

by the following equation:

yDQN
t = rt + γmax

a′
Q−(st+1, a

′, θ−). (7)

The loss function at the position i of each iteration is minimized to train the Q network,
and the loss function is defined as follows:

LDQN
i (θi) = Es,a∼ρ(·)

[
(yDQN

t −Q(s, a; θi))
2
]
. (8)

However, the traditional DQN suffers the problem of overestimation of the action value
in knowledge inference, which leads to poor performance of Q-learning. Therefore, the
double deep Q network (DDQN) is used in the present work so that two different networks
are used in selection and evaluation stages. In the calculation of the Q value function,
the parameter θ of the current Q network is based on to select actions, and then the
parameter θ−1 of the target Q network is used to assess the action. The target Q value
can be calculated by the following equation:

yDDQN
t = rt + γQ(st+1, argmax

a
Q(st+1, a

′; θ); θ′). (9)

The loss function is calculated by the following equation:

LDDQN
i (θi) = Es,a∼ρ(·)

[
(yDDQN

t −Q(s, a; θi))
2
]
. (10)

(2) Multi-Agent Deep Reinforcement Learning Module
This module performs multi-step inference training in the target domain, and adopts

a multi-agent collaborative prediction algorithm. Figure 3 shows the architecture of the
MADRL module.

Figure 3. Architecture of the MADRL module

The multi-agent collaborative prediction algorithm has a structure similar to that of the
“asynchronous advantage actor critic” algorithm, consisting a global agent and multiple
local agents. The agents in the global network and the local network are in the same
environment and parameters, but there are transfers between the local network and the
global network, and the triples collected by each agent differ. Specifically, multiple local
agents learn the model parameters in a distributed environment, and each local agent ex-
periences cyclic pauses in learning; the gradient information the agents learn from parallel
training is summarized to their own gradient and update the global network parameters.

TMAPath 583

Then, the global network parameters are copied to other local networks through asynchro-
nous updating to generate a “global-local” collaborative forecast reinforcement learning
algorithm.

The multi-agent collaborative forecast algorithm shows considerable advantages in fine-
tuned training in the target domain. First, it has strong stability. The instability of
reinforcement learning models, to a great extent, results from the correlations between
the series of data obtained through RL. The multi-agent collaborative forecast algorithm,
however, breaks the correlations between data through asynchronous replication: the
multiple agents randomly select an action in the exploration stage to learn experience,
and then rely on the experience to learn the optimal action; as the exploration and learning
processes differ, the sample correlation between agents is reduced. After that, different
agents adopt different parameters in the exploration stage, which increases the diversity of
global exploration, improves the model’s robustness and reasoning efficiency, and reduces
the selection of invalid paths in multi-step inference.

In collaborative forecast, the global agent serves as the test subject. Though the net-
work of the global agents and that of the local agents are the same, any agent, in theory,
can serve as the forecast subject; nonetheless, the parameters of the global agents are up-
dated more frequently than those of the local agents, and part of the gradient information
is from the aggregation of the individual agents, so the global agent performs better than
the local agents.

3.2. Training of the transfer learning-based model.

3.2.1. Pretraining in the source domain.
During pretraining in the source domain, the agent learns single-step inference to select

valid paths. In the generated training dataset, all triples (h, r, t) in the state space are
decomposed into a pair of two-tuples (h, r) and (t, r−1) to support forward path search
and backward path search. If an agent selects a valid path at the state s(t), a forward
activation reward 1 is given to the agent; otherwise, no reward is provided.

3.2.2. Pretraining in the source domain.
In fine-tuned training, the shared parameters learnt by the agent in the source domain

are transferred to the multi-step reasoning task in the target domain. Different from the
single-step reasoning task, multi-step reasoning starts from the head entity esource and
searches the path towards the target entity etarget through selection of multiple paths.
The reward function is set as follows:

PM =

{
1, ifsuccese
0, otherwise

. (11)

If the path is the correct target path, the forward activiation reward is set at 1; otherwise,
the reward is 0.

4. Experiment and Analyses.

4.1. Datasets.
In the present work, three public datasets used for knowledge inference, i.e., FB15K-

237, NELL-995, and WN18RR, are used in experiments to verify the performance of
the TMAPath model. The FB15K-237 dataset is a subset of the open-source link data-
base Freebase; obtained by deletion of redundant relations from the FB15K dataset, the
FB15K-237 dataset consists of 237 relations, 14,500 entities, and 310,000 fact triples.
The NELL-995 dataset is developed by Carnegie Mellon University after 995 iterations
of the structured comprehensive KGNELL, consisting of 200 relations, 7,500 entities, and

584 D. He and J. Hu

154,000 fact triples. The WN18RR dataset is a subset of the large lexical database of
English WordNet, which is obtained after deletion of redundant relations from the WN18
dataset, consisting of 11 relations, 4,000 entities, and 9,300 fact triples. Table 1 shows
the statistical specifications of these datasets.

Table 1. Statistical specifications of the three datasets

Dataset Relations Entities Fact triples Avg. degree Median degree

FB15K-237 237 14505 310116 19.74 14
NELL-995 200 75492 154213 4.07 1
WN18RR 11 40493 93003 2.19 2

4.2. Parameter settings.
All experiments in the present work are performed in the same environment and

on the same datasets to verify the performance of our model. The experiments were
performed based on the multi-agent deep reinforcement learning framework, and on
the Ubuntu18.04LTS operating system; the experiment software is Pycharm Commu-
nity2021.1, the GPU is NVIDIA Tesla K80, the computer memory is 8 GB, and the
Python model is Python 3.6.8. The training in the experiment was realized through
transfer learning, and during pretraining in the source domain, the learning rate was set
at 0.01, the embedding dimension of the KG was set at 128, and the batchsize was 64, and
10 epochs of training was performed. During fine-tuned training in the target domain, the
learning rate was set at 0.001, the embedding dimension of the KG was 128, the batchsize
was 64, and 200 epochs of training was performed.

In the present work, each of the three datasets was divided into two sets: a training
set and a test set, and repetitive optimization experiments were performed to achieve
the optimal result. In pretraining in the source domain, 80% of the dataset was used
for training, and the rest 20% was used for testing; in the fine-tuned training test in the
target domain, 70% of the dataset was used for training, and the reset 30% was used for
testing.

4.3. Baseline models.
Our model was compared with three types of baseline methods, i.e., distributed KI

models, path-based KI models, and RL-based KI models, to verify its effectiveness. To
be specific, the distributed KI models include TransE, TransH, TransR, and TransD;
the path-based KI models include the path-ranking algorithm (PRA); and the RL-based
KI models include DeepPath TransE, DeepPath TransD, DeepPath nop, DIVINE (Deep-
Path), AttnPath, and AttnPathForce.

TransE: a typical representation learning method which maps the entities and relations
in the KG onto a vector space according to translation invariance to store the internal
structural information of the KG.

TransH: to address the complicated many-to-one and many-to-many relations that
TransE cannot process, TransH represents the different relations of the same entity by
different representations.

TransR: it constructs entities and relations in the entity space and multiple relation
spaces, and realizes conversion in the corresponding relation space.

TransD: in the TransD model, each entity and relation are represented by two vectors,
among which one vector represents the semantic meaning of the entity or the relation,
and the other mapping vector is used to construct a mapping matrix.

TMAPath 585

PRA: Random walk is used to perform limited search of specific paths in the KG and
inquire the probability of correlations between two entities, which solves the problem that
the types of the edges cannot be differentiated in other models.

DeepPath TransE: it is a reinforcement learning model used for inference of multi-hop
relations in paths, which has a policy-based reward function (based on such indicators as
precision, diversity, and efficiency). As the primary DeepPath model, DeepPath TransE
has a state space initialized by TransE.

DeepPath TransD: Different from the primary DeepPath TransE, this model has a
state space initialized by TransD.

DIVINE: it is a GAIL reinforcement learning model, which allows the existing rein-
forcement learning methods to self-learn the reasoning policies and reward functions.

AttnPath: LSTM and the graph attention mechanism are used as the memory com-
ponent to alleviate the model’s reliance on pretraining, and fine-tuning of the model is
performed under the framework of reinforcement learning.

4.4. Comparative Experiments.
Three comparative experiments were performed and analyzed in the present work: path

search experiments, fact prediction experiments, and link prediction experiments.

4.4.1. Path search experiment.
Comparative experiments for path search were performed in the present work to verify

our model’s performance in path learning. The TMAPath model was compared with other
reinforcement learning models including the DeepPath model and the AttnPath model.
The sum success rate of path search is taken as the evaluation indicator, which is defined
as follows:

TSR =
sucedge
sumedge

, (12)

where sucedge represents the number of correctly predicted edges in the path search;
sumedge is the sum of edges in the path search; TSR is the total success rate of path
search, and a larger TRS indicates a better performance of the model. Table 2 shows the
results of the path search experiments.

Table 2. Total success rate of path search experiments (%)

Model FB15K-237 NELL-995 WN18RR

DeepPath 15.301 30.09 27.89
DeepPathNoPre 6.103 22.73 24.462

AttnPath 17.899 30.11 28.935
AttnPathForce 30.330 48.089 29.340
TMAPath 47.126 48.008 45.00

In Table 2, DeepPathNoPre is a DeepPath variant with the pretraining process removed;
AttnPathForce is an AttnPath variant with a forced walk mechanism introduced. The
result of path search experiments is analyzed as follows.

(1) Pretraining has improved the model’s path search performance. In the three datasets,
the DeepPath model achieved a far higher TSR than the DeepPathNoPre variant
in path search, which proved that learning the parameters and experience in the
pretraining module could improve the agent’s capacity in path inference.

(2) The forced walk mechanism has improved the agent’s efficiency in selecting valid
paths. AttnPathForce achieved a higher success rate in path search than the At-
tnPath model on all the three datasets, which indicates that introducing a special

586 D. He and J. Hu

walk mechanism could force the agent to avoid selection of invalid paths every step
forward and prevent the agent from being blocked at a node.

(3) Compared with other reinforcement learning models, the TMAPath model proposed
in the present work has considerably improved the success rate of path search, es-
pecially on the FB15K-237 and WN18RR datasets where it achieved a TSR 16.79%
and 15.66% higher than the AttnPathForce model. The major cause is that dur-
ing pretraining in the source domain, the method for detection of the fact triples
is introduced, which increased the success rate of the agent to mine effective path
by single-step walks and hence improved the capacity for multi-step inference in the
target domain.

4.4.2. Fact prediction experiment.
As a downstream task of knowledge inference, fact prediction is to judge whether the

fact is true or false. Specifically, fact prediction aims to predict whether the given triple
(eh, r, et) is correct, that is, to identify whether there is a relation r between the head
entity and the tail entity. The fact prediction task does not rank the target entities, but
ranks all the positive and negative samples of specific relations. In the experiments, three
datasets FB15K-237, NELL-995, and WN18RR have already provided negative samples
of triples, and the ratio of positive triples to negative triples is 1:10. Scores are given to
the triples as per whether they are consistent with the valid paths, and they are ranked
by the score in the test set; the mean average precision (MAP) is taken as the evaluation
indicator, and a higher MPA indicates a higher probability that the triple is a positive
sample.

In the present work, a new scoring mechanism based on transfer reinforcement learning
is proposed, which gives scores by the judgement results of both the edge and the tail
entity rather than by the mere judgement of the edge as other methods do. This new
scoring mechanism that focuses merely on the judgement of the triples is efficient, as it
allows the loss function to play a stronger role and make the model learn correct triples.
Table 3 shows the result of fact prediction experiments, where the numbers like 1 and 10
mean the rounds of tests in the experiment.

As Figure 4 shows, the TMAPath model outperformed other baseline models on all
the three datasets in fact prediction. As the rounds of tests increased, the performance
of fact prediction improved, reaching the optimum after 50 rounds of tests, achieving a
MAP of 0.467 on FB15K-237, 0.702 on NELL-995, and 0.609 on WN18RR. To conclude,
the TMAPath model improved the robustness and precision of the reinforcement learning
framework, which would enhance the performance of knowledge inference.

4.4.3. Link prediction experiments.
As an important task in knowledge inference, link prediction is to predict the target

entity. In link prediction, a head entity-relation two-tuple (eh, r) is provided to predict
the tail entity et , and the candidate tail entities are ranked by the scores they are given.
In the link prediction experiment, one two-tuple generates one fact entity and 10 false
entities, the dataset is divided into a training set and a test set, and the inferred path is
taken as a binary feature; a classifier is obtained by pretraining in the training set, and
is then used to give scores to the tail entities in the test set. Hits@10 is used another
indicator for performance assessment. If there is only one that hits the tail entity every
ten actions, then Hits@10 is considered correct. Table 4 shows the result of link prediction
experiments.

As Figure 5 and Figure 6 shows, our model achieved the best Hits@10 on the NELL-
995 dataset among all models, and it also performed well on other datasets. In sum, our
model performed better than other models in knowledge inference.

TMAPath 587

Table 3. Result of fact prediction experiments (measured by MAP)

Fact prediction result (MAP)

FB15K-237 NELL-995 WN18RR

TransE 0.276 0.383 0.293
TransH 0.298 0.385 0.320
TransR 0.301 0.406 0.288
TransD 0.301 0.413 0.310
PRA 0.215 0.275 0.198

DIVINE (DeepPath) 0.338 0.493 0.361
DeepPath TransE 0.310 0.493 0.373
DeepPath TransD 0.313 0.533 0.414
DeepPath nop 0.310 0.446 0.379

AttnPath 0.315 0599 0.451
AttnPathForce 0.381 0.692 0.512
TMAPath-1 0.356 0.478 0.385
TMAPath-10 0.391 0.512 0.468
TMAPath-20 0.408 0.524 0.594
TMAPath-50 0.467 0.702 0.609

Figure 4. Result of fact prediction experiments (measured by MAP)

4.5. Ablation experiment.
Ablation experiments were performed to verify the effect of different modules of the

model on the final result. Specifically, modules were removed from the model to retrain
the model.
(1) Removing the pretraining module in the source domain

To explore the impact of pretraining in the source-domain on the model’s performance,
we performed reinforcement learning training directly in the target domain to generate a
TMAPath-Target model, and path search experiments and single-step walk experiments
were then performed on the trained model.

588 D. He and J. Hu

Table 4. Result of link prediction experiments

Models
Results

FB15K-237 NELL-995 WN18RR

MRR Hits@10 MRR Hits@10 MRR Hits@10

TransE 0.240 0.471 0.371 0.671 0.488 0.892
TransH 0.285 0.585 0.375 0.713 0.488 0.867
TransR 0.257 0.655 0.406 0.772 0.486 0.917
TransD 0.241 0.742 0.315 0.801 0.487 0.925
PRA 0.311 0.792 0.442 0.844 0.479 0.911

DeepPath (DININE) 0.293 0.747 0.442 0.834 0.486 0.923
DeepPath TransE 0.442 0.809 0.467 0.881 0.482 0.910
DeepPath TransD 0.451 0.824 0.462 0.871 0.510 0.963
DeepPath nop 0.443 0.811 0.456 0.860 0.477 0.901

AttnPath 0.473 0.865 0.459 0.873 0.476 0.899
AttnPathForce 0.475 0.878 0.471 0.895 0.469 0.891
TMAPath-1 0.136 0.794 0.237 0.833 0.404 0.871
TMAPath-10 0.128 0.839 0.217 0.867 0.423 0.893
TMAPath-20 0.125 0.844 0.203 0.899 0.412 0.922
TMAPath-50 0.114 0.864 0.200 0.911 0.435 0.925

Figure 5. Result of link prediction experiments (measured by MRR)

(2) Removing the fine-tuned training module in the target domain
To explore the impact of the fine-tuned training in the target domain on the model’s

performance, we pretrained the model directly in the source domain to generate the
TMAPath-Pre model, and then path search experiments and single-step walk experiments
were performed on the model.

The two mutilated models (TMAPath-Target and TMPath-Pre) were compared with
the original TMAPath model in path search and fact prediction experiments on the NELL-
995 and FB15K-237 datasets. Table 5 shows the results of ablation experiments. In the

TMAPath 589

Figure 6. Result of link prediction experiments (measured by Hits@10)

path search experiment, the total success rate was taken as the evaluation indicator; in
the fact prediction experiment, the round of tests was set at 1.

Table 5. Result of ablation experiments of transfer learning

Models Source Task Fine-tunning Task
NELL-995 FB15K-237

TSR MAP TSR MAP

TMAPath-Pre ! % 0.231 0.301 0.102 0.119

TMAPath-Target % ! 0.310 0.371 0.253 0.213

TMAPath ! ! 0.480 0.478 0.471 0.356

As Table 5 shows, the TMAPath-Pre model demonstrated poor performance in all
experiments. The major cause is that pretraining in the source domain only provides
single-step inference training, but no training for multi-step inference, which leads the
model to poor performance in KI. That is to say, models relying merely on single-step
inference cannot have high efficiency in path search, and multi-step inference training
is necessary to improve the efficiency. Compared with the TMAPath-Target model, the
original TMAPath model achieved a TSR 17.0% and 21.8% higher on the two datasets in
the path search experiment, and an mPA 10.7% and 14.3% higher on the two datasets in
the fact prediction experiment. It indicates that the pretraining task for transfer learning
could improve the multi-step inference capacity of the reinforcement learning architecture
and hence enhance the model’s knowledge inference abilities.

5. Conclusions.
In the present work, TMAPath, a novel knowledge inference method based on transfer

learning and multi-agent deep reinforcement learning, is proposed, which converts the in-
ference tasks in the source domain and the target domain into a sequential decision-making
problem. First, a source task module that comprises of a triple pretraining network and
reward mechanism is introduced to equip the agent with the capacity to learn single-step
inference and adjust the model parameters; then, transfer learning is employed to train

590 D. He and J. Hu

the model to learn the shared parameters through fine-tuned training in the target do-
main; last, the proposed model is compared with other baseline models on three public
datasets through experiments of path search, fact prediction, and link prediction, and ab-
lation experiments of transfer learning are also performed. The experiment result proved
the good performance of our model in knowledge inference.

REFERENCES

[1] A. B. M. Moniruzzaman, R. Nayak, M. Tang, and B. Thirunavukarasu, “Fine-grained type
inference in knowledge graphs via probabilistic and tensor factorization methods,” in WWW’19:
Proceedings of the World Wide Web Conference. ACM, 2019, pp. 3093–3100. [Online]. Available:
https://doi.org/10.1145/3308558.3313597

[2] H. Sedghi and A. Sabharwal, “Knowledge completion for generics using guided tensor factorization,”
Transactions of the Association for Computational Linguistics, vol. 6, pp. 197–210, 2018. [Online].
Available: https://doi.org/10.1162/tacl a 00015

[3] F. Zhang, T.-Y. Wu, Y. Wang, R. Xiong, G. Ding, P. Mei, and L. Liu, “Application of quantum ge-
netic optimization of lvq neural network in smart city traffic network prediction,” IEEE Access, vol. 8,
pp. 104 555–104 564, 2020. [Online]. Available: https://doi.org/10.1109/ACCESS.2020.2999608

[4] J. M.-T. Wu, Z. Li, N. Herencsar, B. Vo, and J. C.-W. Lin, “A graph-based cnn-lstm stock
price prediction algorithm with leading indicators,” Multimedia Systems, pp. 1–20, 2021. [Online].
Available: https://doi.org/10.1007/s00530-021-00758-w

[5] J. M. Wu, L. Sun, G. Srivastava, and J. C. Lin, “A long short-term memory network stock price
prediction with leading indicators,” Big Data, vol. 9, no. 5, pp. 343–357, 2021. [Online]. Available:
https://doi.org/10.1089/big.2020.0391

[6] A. Bordes, N. Usunier, A. Garćıa-Durán, J. Weston, and O. Yakhnenko, “Translating
embeddings for modeling multi-relational data,” in NIPS’13: Proceedings of the International
Conference on Neural Information Processing Systems, 2013, pp. 2787–2795. [Online].
Available: https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-
Abstract.html

[7] B. Nie and S. Sun, “Knowledge graph embedding via reasoning over entities, relations, and
text,” Future Generation Computer Systems, vol. 91, pp. 426–433, 2019. [Online]. Available:
https://doi.org/10.1016/j.future.2018.09.040

[8] W. Zhang, B. Paudel, L. Wang, J. Chen, H. Zhu, W. Zhang, A. Bernstein, and H. Chen,
“Iteratively learning embeddings and rules for knowledge graph reasoning,” in WWW’19:
Proceedings of the World Wide Web Conference. ACM, 2019, pp. 2366–2377. [Online]. Available:
https://doi.org/10.1145/3308558.3313612

[9] N. Lao and W. W. Cohen, “Relational retrieval using a combination of path-constrained
random walks,” Machine Learning, vol. 81, no. 1, pp. 53–67, 2010. [Online]. Available:
https://doi.org/10.1007/s10994-010-5205-8

[10] L. Cai, P. Luo, G. Zhou, T. Xu, and Z. Chen, “Multiperspective light field reconstruction method
via transfer reinforcement learning,” Computational Intelligence and Neuroscience, vol. 2020, pp.
8 989 752:1–8 989 752:14, 2020. [Online]. Available: https://doi.org/10.1155/2020/8989752

[11] W. Xiong, T. Hoang, and W. Y. Wang, “Deeppath: A reinforcement learning method for knowledge
graph reasoning,” in EMNLP’17: Proceedings of the Conference on Empirical Methods in Natural
Language Processing, M. Palmer, R. Hwa, and S. Riedel, Eds. Association for Computational
Linguistics, 2017, pp. 564–573. [Online]. Available: https://doi.org/10.18653/v1/d17-1060

[12] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3, pp. 279–292, 1992.
[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015. [Online]. Available:
https://doi.org/10.1038/nature14236

[14] N. Feng, T. Wu, and Y. Liang, “A deep dynamic neural network model and its application for ECG
classification,” Journal of Intelligent & Fuzzy Systems, vol. 43, no. 2, pp. 2147–2154, 2022. [Online].
Available: https://doi.org/10.3233/JIFS-219314

[15] K.-K. Tseng, R. Zhang, C.-M. Chen, and M. M. Hassan, “Dnetunet: a semi-supervised cnn
of medical image segmentation for super-computing ai service,” The Journal of Supercomputing,
vol. 77, no. 4, pp. 3594–3615, 2021. [Online]. Available: https://doi.org/10.1007/s11227-020-03407-7

TMAPath 591

[16] S. Chen, M. Wang, W. Song, Y. Yang, Y. Li, and M. Fu, “Stabilization approaches for reinforcement
learning-based end-to-end autonomous driving,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 5, pp. 4740–4750, 2020. [Online]. Available: https://doi.org/10.1109/TVT.2020.2979493

[17] D. Ye, Z. Liu, M. Sun, B. Shi, P. Zhao, H. Wu, H. Yu, S. Yang, X. Wu, Q. Guo,
Q. Chen, Y. Yin, H. Zhang, T. Shi, L. Wang, Q. Fu, W. Yang, and L. Huang, “Mastering
complex control in MOBA games with deep reinforcement learning,” in AAAI’20: Proceedings
of the AAAI Conference on Artificial Intelligence, 2020, pp. 6672–6679. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/6144

[18] F. Liu, R. Tang, X. Li, W. Zhang, Y. Ye, H. Chen, H. Guo, Y. Zhang, and X. He, “State
representation modeling for deep reinforcement learning based recommendation,” Knowledge-Based
Systems, vol. 205, p. 106170, 2020. [Online]. Available: https://doi.org/10.1016/j.knosys.2020.106170

[19] K. Wang, S. P. Xu, C.-M. Chen, S. H. Islam, M. M. Hassan, C. Savaglio, P. Pace,
and G. Aloi, “A trusted consensus scheme for collaborative learning in the edge ai
computing domain,” IEEE Network, vol. 35, no. 1, pp. 204–210, 2021. [Online]. Available:
https://doi.org/10.1109/MNET.011.2000249

[20] K. Wang, C.-M. Chen, Z. Liang, M. M. Hassan, G. M. Sarne, L. Fotia, and G. Fortino, “A trusted
consensus fusion scheme for decentralized collaborated learning in massive iot domain,” Information
Fusion, vol. 72, pp. 100–109, 2021. [Online]. Available: https://doi.org/10.1016/j.inffus.2021.02.011

[21] R. Das, S. Dhuliawala, M. Zaheer, L. Vilnis, I. Durugkar, A. Krishnamurthy, A. Smola, and
A. McCallum, “Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases
using reinforcement learning,” in ICLR’18: Proceedings of the International Conference on Learning
Representations, 2018. [Online]. Available: https://openreview.net/forum?id=Syg-YfWCW

[22] Y. Shen, J. Chen, P. Huang, Y. Guo, and J. Gao, “M-walk: Learning to walk over
graphs using monte carlo tree search,” in NIPS’18: Proceedings of the International
Conference on Neural Information Processing Systems, 2018, pp. 6787–6798. [Online].
Available: https://proceedings.neurips.cc/paper/2018/hash/c6f798b844366ccd65d99bc7f31e0e02-
Abstract.html

[23] X. V. Lin, R. Socher, and C. Xiong, “Multi-hop knowledge graph reasoning with reward shaping,”
in EMNLP’18: Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii, Eds. Association for Computational
Linguistics, 2018, pp. 3243–3253. [Online]. Available: https://doi.org/10.18653/v1/d18-1362

[24] R. Li and X. Cheng, “Divine: a generative adversarial imitation learning framework for knowledge
graph reasoning,” in EMNLP-IJCNLP’19: Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing, 2019, pp. 2642–2651. [Online]. Available: https://doi.org/10.18653/v1/D19-1266

[25] C. Fu, T. Chen, M. Qu, W. Jin, and X. Ren, “Collaborative policy learning for open knowledge
graph reasoning,” in MNLP-IJCNLP’19: Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing, K. Inui, J. Jiang, V. Ng, and X. Wan, Eds. Association for Computational Linguistics,
2019, pp. 2672–2681. [Online]. Available: https://doi.org/10.18653/v1/D19-1269

[26] Q. Wang, Y. Hao, and J. Cao, “Adrl: An attention-based deep reinforcement learning framework
for knowledge graph reasoning,” Knowledge-Based Systems, vol. 197, p. 105910, 2020. [Online].
Available: https://doi.org/10.1016/j.knosys.2020.105910

[27] S. Li, H. Wang, R. Pan, and M. Mao, “Memorypath: A deep reinforcement learning framework for
incorporating memory component into knowledge graph reasoning,” Neurocomputing, vol. 419, pp.
273–286, 2021. [Online]. Available: https://doi.org/10.1016/j.neucom.2020.08.032

[28] P. Tiwari, H. Zhu, and H. M. Pandey, “Dapath: Distance-aware knowledge graph reasoning based
on deep reinforcement learning,” Neural Networks, vol. 135, pp. 1–12, 2021. [Online]. Available:
https://doi.org/10.1016/j.neunet.2020.11.012

