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Abstract. The meta-heuristic algorithm is used in the research of various complex
problems. Due to the limitations of the original meta-heuristic algorithm, many im-
proved meta-heuristic algorithms have been proposed, such as compact, adaptive, multi-
objective and parallel schemes. Among them, the parallel strategy may get a significant
improvement for related applications. This paper mainly studies the application of paral-
lel computing in meta-heuristic algorithms. There are two main types of parallelism: one
is absolute parallelism, using multiple processors which can solve optimization problems
with high computational costs and improve execution efficiency. The other is virtual par-
allelism (multi-grouping), which decomposes the population into multiple sub-populations,
and each sub-population communicates between species to generate better solutions. In
addition, the combination of parallel computing and meta-heuristic algorithms can solve
a wide variety of application problems: path planning, engineering design, large-scale
optimization, image segmentation, neural networks and prediction problems, etc. This
paper presents a comprehensive study and systematic survey of parallel meta-heuristics.
Keywords: Meta-heuristic, Parallel, Multi-grouping, Optimization algorithm

1. Introduction. In real life, there are many engineering problems to be solved, such as
deep learning, data mining, intelligent computing, etc [1, 2]. As a powerful tool, intelli-
gent computing can solve many problems that could not be solved in real life. Intelligent
computing mainly optimizes the problem of a specific target step by step until the optimal
solution is found. It can be seen that intelligent computing is compelling and widely used
in various fields. Some of the proposed meta-heuristic algorithms have been shown to
be effective: Genetic Algorithm (GA) [3, 4], which reflects the process of natural selec-
tion. Grenade Explosion Method (GEM) [5] is a new algorithm based on the principle
of the grenade explosion. The algorithm takes into account the damage caused to sur-
rounding objects when throwing a grenade. The greater the loss, the better the throwing
position. The Sine Cosine Algorithm (SCA) [6] uses the sine and cosine functions to
move the population in the direction of the best solution. Jaya optimization algorithm
[7] was proposed in 2016. It turns out that it is a powerful algorithm, and it is always
going to win. Ant Colony Optimization (ACO) [8, 9] is a very interesting and effective
discrete optimization algorithm. Ants move randomly or along the most traveled path
(containing the most pheromone). The Grasshopper Optimization Algorithm (GOA) [10]
is an algorithm inspired by nature. Grasshoppers have a small range of motion during
their juvenile years, which can be seen as a developmental stage. During adulthood, the
range of motion is relatively large and can be seen as the exploratory stage. Also, due to
external disturbances, the grasshopper will jump suddenly and randomly. QUasi-Affine
TRansformation Evolutionary (QUATRE) algorithm [11] is a swarm-based optimization
algorithm that uses affine transformation as an evolutionary method to optimize by us-
ing cooperative cooperation among particles. Phasmatodea Population Evolution (PPE)
algorithm [12] is inspired by nature, simulates the four growth modes of stick insects,
and divides them into four evolutionary stages: convergent evolution, path dependence,
population growth, and population competition. PPE passes beneficial genes to the next
generation, allowing them to survive better.

There are certain shortcomings because the meta-heuristic algorithm cannot balance
the relationship between exploration and development. So many improved meta-heuristics
have been proposed. Among them, the parallel strategy is a common improvement method
of the meta-heuristic algorithm. There are two types of parallelism: one is parallelism
on hardware [13, 14]; the other is grouping [15], which communicates current information
every certain number of iterations. At present, many researchers have used parallel strate-
gies to improve the meta-heuristic algorithm [16, 17], and the improved meta-heuristic
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Figure 1. Classification of meta-heuristics

algorithm has been widely used in various fields. For example, the Parallel Particle Swarm
Optimization (PPSO) algorithm with three communication strategies [15], parallel Multi-
Swarm Particle Swarm Optimization strategy for solving Multi-objective optimization
problems (MOPSO) [18], Enhanced Equalization Optimizer (EEO) [19].

The remainder of this paper is organized as follows. The second part describes four
common categories of meta-heuristics and some improved strategies. The third part
introduces absolute parallelism, mainly including the platforms and models needed to
realize parallelism. In addition, the parallel algorithm is described. The fourth part
summarizes the multi-grouping algorithms and divides them into six categories. The
fifth part sorts out the application problems involved in parallel and explains them in
detail. The last section summarizes the work of this paper and makes some substantive
suggestions for future research.

2. Meta-heuristics. This section presents a taxonomy of meta-heuristics and seven com-
mon improvement strategies.

2.1. Classification of meta-heuristics. Generally, metaheuristic algorithms can be di-
vided into four categories according to the source of inspiration: swarm intelligence, evo-
lutionary algorithms, physics-based algorithms, and human-based algorithms [20]. Figure
1 shows the classification of metaheuristics.

Swarm intelligence is a meta-heuristic algorithm generated by imitating the behavior
of animals or insects. For example, the most popular swarm intelligence algorithm, the
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PSO algorithm, is inspired by birds’ foraging behavior [21]. The Salp Swarm Algorithm
(SSA) was proposed by Mirjallili etc. [22], by simulating the swarming behavior of salps
when they move and prey in the ocean. SSA divides the population into two populations,
one is used for exploration, which it is responsible for guiding at the front of the team.
Another population is in charge of exploitation, following the guide searching for food.
The Dolphin Echolocation (DE) algorithm [23] was inspired by the unique echolocation
of dolphins. The dolphin can judge the distance to the object by the sound it makes,
and it can judge the direction of the object by the strength of the signal received by the
head. The Firefly Algorithm (FA) [24] is a traditional meta-heuristic algorithm based on
the flickering behavior of fireflies. Fireflies communicate through light, and the stronger
the light, the better the fitness value. All firefly individuals will follow the brightest in-
dividual. This category also includes some other algorithms: Tunicate Swarm Algorithm
(TSA) [25], Artificial Bee Colony (ABC) [26], Fish Swarm Algorithm (FSA) [27], Artifi-
cial Immune System (AIS) [28], Shuffled Frog Leaping Algorithm (SFLA) [29], Cat Swarm
Optimization (CSO) [30, 31], Ant Colony Optimization (ACO) [32], Fish Migration Op-
timization (FMO) [33], Cuckoo Optimization (CS) [34], Whale Optimization Algorithm
(WOA) [35] et al.

Inspired by biological evolution, evolutionary algorithms use the crossover and mutation
of groups to iterate. The most popular evolutionary algorithm is the Genetic Algorithm
(GA) [3], which imitates Darwin’s theory of evolution. Genetic Programming (GP) [36]
is different from GA in encoding method and encoding length. It uses tree form for
encoding and the encoding length is not fixed. Differential Evolution (DE) algorithm [37]
is also more common in evolutionary algorithms, which was proposed by Storn and Pirce.
Evolutionary algorithms also include: Paddy Field Algorithm (PFA) [38], QUasi-Affine
TRansformation Evolutionary (QUATRE) [11], etc.

Physics-based algorithms are inspired by physical phenomena in life. Such algorithms
are generated by simulating how physical phenomena occur. The most common is the
Simulated Annealing (SA) [39], which uses the heating phenomenon in thermodynamics
to simulate the changing process of cooling of an object. The Archimedes Optimization
Algorithm (AOA) [40] imitates the Archimedes principle in physics. AOA introduces the
formula for when objects sink and sink in water into the algorithm for iterative update.
Algorithms based on physical phenomena include: Henry Gas Solubility Optimization
(HGSO) [41], Equilibrium Optimization (EO) [42], Gravity Search Algorithm (GSA) [43],
Charged System Search (CSS) [44], etc.

The last category of algorithms is inspired by human behavior in social activities. The
Imperialist Competition Algorithm (ICA) [45] was proposed by Atshpaz-Gargari and
Lucas in 2007. A country consists of two kinds of individuals, colonial and imperial, who
compete with each other and eventually converge into a country, abstracting this process
into an ICA algorithm. Teaching–Learning-Based Optimization (TLBO) [46] is divided
into two processes: teacher teaching and student learning. This type of algorithm also
includes: Wealth and Poor Optimization (PRO) [47], Human Mental Search (HMS) [48],
Search and Rescue optimization algorithm (SAR) [49], etc.

2.2. Meta-heuristic improvements. The meta-heuristic algorithm cannot balance the
relationship between exploration and exploitation. To overcome this shortcoming, some
improved versions of meta-heuristics have been proposed. The main strategies for im-
provement are binary, self-adaptive, compact, multi-objective, hybrid algorithm, dis-
cretization, and opposition-based Learning.

(1) The binary optimization algorithm is mainly used to solve the optimization problem
of binary space (feature selection, knapsack problem). Hu et al. [50] proposed the binary
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Gray Wolf Optimization (BGWO), and used four transfer functions to Continuous values
are mapped to discrete binary values. The functions are applied to feature selection
problems to improve understanding schemes. Du et al. [51] proposed the Binary Symbiotic
Organism Search (BSOS) applied to the feature selection problem.

(2) Self-adaptive strategy is the most basic improvement method of evolutionary algo-
rithm. It can adjust parameters adaptively according to experience so that it can quickly
find the optimal value. Deb and Beyer proposed an adaptive genetic algorithm [52] in
2001. Xue et al. [53] proposed an adaptive artificial bee colony optimization algorithm in
2018. Zhao et al. proposed a hybrid algorithm based on an adaptive gravitational search
algorithm and differential evolution [54]. Meng et al. [55] proposed an improved differen-
tial evolution algorithm (PaDE) and used an adaptive scheme to control the parameters
to optimize the real-parameter single-objective problem.

(3) The compact strategy [56] is different from the traditional optimization strategy
in that it uses less memory and uses a probabilistic model to represent the distribution
of individuals. The Compact Genetic Algorithm (CGA) [57] was the first algorithm to
implement the compact strategy, and later Compact Differential Evolution (CDE) [58],
Compact Particle Swarm Optimization (CPSO) [59], Compact Cuckoo Search Algorithm
(CCSA) [60], Compact Bat Algorithm (CBA) [61], etc. Overall, the most used probability
model is the Gaussian distribution. Firefly Algorithm (FA) [54] introduces 12 chaotic
maps, and it is finally proved that the Gaussian map is used to optimize the coefficients.

(4) Multi-objective optimization involves multiple objective functions. Therefore, to
find the optimal solution, it is necessary to compare multiple objective functions to ob-
tain the global optimal value [62, 63, 64]. Common multi-objective meta-heuristic algo-
rithms are Multi-objective Particle Swarm Optimization (MOPSO) [65], Multi-objective
Whale Optimization Algorithm (MOWOA) [66], Multi-objective Ant Colony Optimiza-
tion (MOACO) [67], Multi-objective Ion Motion Optimization (MOIMO) [68].

(5) Hybrid algorithm combines two or more meta-heuristic algorithms and integrates
the advantages of multiple algorithms to solve complex application problems. Combining
TLBO with DE, an efficient hybrid algorithm is proposed [69]. Hu et al. [70] proposed a
novel hybrid algorithm, which integrates the advantages of SFLA and GWO, and effec-
tively solves the problem of daily power load forecasting .

(6) In order to solve discrete problems in the real world, the paper [71] proposed a
discrete fish migration optimization algorithm and introduced Hamming Distance (HD)
to solve the Traveling Salesman Problem (TSP). The paper [72] proposed a Discrete
Firefly Algorithm (DFA) to solve the formation problem of manufacturing cells. The
paper [73] proposed a Discrete Artificial Bee Colony (DABC) optimization algorithm,
which efficiently solves the discrete flow shop scheduling problem.

(7) Opposition-based Learning (OBL) [74] was first introduced in 2005, inspired by
real-life opposites. The paper [75] proposed an Opposition-based Learning Differential
Evolution (OBLDE), which accelerates the convergence of the original algorithm. The
paper [76] proposed an improved sine cosine algorithm, which increases the performance
of the meta-heuristic algorithm by finding the opposite position of its solution in the
search space. The paper [77] proposed an improved grasshopper optimization algorithm
using an adversarial learning strategy.

3. True parallelism. When combining parallel computing with meta-heuristic algo-
rithms, we need to consider many factors, such as which computing platform is im-
plemented, what model is used, etc., which will affect the algorithm’s execution time.
This section will introduce two parallel computing platforms, four parallelization models,
communication methods, and some common parallel metaheuristics.



Overview of Parallel Computing for Meta-Heuristic Algorithms 661

3.1. Implementation platform. When the parallel meta-heuristic algorithm is exe-
cuted, the implementation platform will significantly affect the execution efficiency of the
algorithm. The paper [78], according to the instruction and data flow, proposed four tra-
ditional classification methods: Single Instruction Single Data (SISD), Single Instruction
Multiple Data (SIMD), Multiple Instruction Multiple Data (MISD), Multiple Instruction
Single Data (MIMD). Currently, some typical implementation platforms are Graphics
Processing Unit (GPU), distributed computing platform, and Field Programmable Gate
Array (FPGA). This section mainly introduces two parallelization platforms.

3.1.1. GPU-based parallelization. Among many hardware platforms, GPU is one of the
most significant accelerators. It utilizes graphics processors to significantly improve the
computational efficiency of meta-heuristic algorithms. In [79], a new parallel method is
proposed, which increases the number of threads of CUDA. Finally, the parallel imple-
mentation of the algorithm on GPU is faster than the sequential execution of the CPU.
Since GPUs have more cores to run a large number of threads, it is not feasible to increase
the algorithm’s speed simply by increasing the number of individuals. A new optimization
algorithm is proposed in [80], which allows each subgroup to search in different neighbor-
hoods (multi-distance search strategy) to achieve the purpose of increasing the diversity
of the population.

The paper [81] applied a meta-heuristic search algorithm to discrete black-box problems
using a Graphics Processing Unit (GPU) platform. A GPU consists of multiple processors,
each with multiple cores. It is experimentally verified that the implementation in this
paper is ten times faster than an optimized multi-core CPU. The paper [82] used GPU
parallelism to improve the performance of local search algorithms. This paper proposed
a new distributed local search process specially designed for multi-core and multi-GPU
systems to achieve better performance. Due to the excellent performance of ACO after
parallelization, the paper [83] presented three different algorithms, all of which are GPU-
based ACO. The paper [84] researched the implementation, application, and development
of the parallel genetic algorithm, parallel particle swarm algorithm, parallel differential
evolution algorithm, and parallel simulated annealing algorithm on GPU. In order to
make full use of the resources provided by the parallel computing GPU platform, the
paper [85] processed a large number of particles through a fast GPU core and divided
them into several particle swarms. The paper [86] developed a parallel bee algorithm
running on GPU, and modified the local search process of the original algorithm, and
avoiding the waste of GPU computing power. At the same time, parity sorting and two-
stage communication are also used to achieve a better convergence effect. The paper [87]
parallelized the Improved Invasive Weed Optimization (IIWO) algorithm and applies it
to the GPU platform. At the same time, compared with the serial IIWO algorithm, the
parallelized algorithm runs fewer iterations and obtains better results. The paper [88]
used multi-core technology to parallelize and evaluate two algorithms, TLBO and Jaya.
Experiments show that the iteration time of TLBO is higher than that of Jaya, but the
former converges faster than the latter in a less iteration range. The paper [89] utilized
high-throughput accelerator GPUs to improve the performance of ACO.

3.1.2. FPGA-based parallelization. FPGA is a new chip technology between application-
specific integrated circuit chips and general-purpose chips. Its parallelism can improve
the real-time processing of data. Using the FPGA platform in [90] to deal with complex
algorithms has solved the risk of delay. The paper [91] used PSO to solve real-time op-
timization problems and applied the algorithm to FPGA, which improves the speed of
real-time processing of the algorithm. The paper [92] proposed a method that combines
three parallel PSOs and a communication operator on a GPGA chip, which improves the
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Figure 2. Master-slave mode

diversity and convergence of the algorithm. In order to improve the parallelism of intel-
ligent optimization algorithms, the paper [93] studied a parallel design method based on
FPGA. In order to verify the validity of the proposed method, two common optimization
algorithms (PSO and GA) are used for verification, and the results have good real-time
performance. Finally, the parallel simulated annealing algorithm (SA) is used to solve
the Job Shop Scheduling Problem (JSSP), which further verifies the effectiveness of the
proposed algorithm. Homomorphic encryption technology is also very challenging in re-
cent years, but there are specific problems. It runs for a long time on a general-purpose
computer and cannot be processed in real-time. Therefore, the paper [94] spent a year
designing a heterogeneous platform. The platform combines an FPGA processor with
an Arm processor and adds parallel processing to achieve desirable results. In order to
solve the communication and hardware problems when BP neural network processes big
data, the paper [95] proposed a PSO algorithm based on MapReduce, which makes the
classification accuracy rate reach 92%.

3.2. Parallelization model. Parallelization models are mainly divided into the follow-
ing four types: master-slave model, island model (coarse-grained), cell meta-model (fine-
grained) and mixed model [96, 97, 98, 99, 100, 101].

(1) Master-slave mode: The master-slave mode has one master processor and multiple
slave processors. All operations work in parallel on the slave processors and are
controlled by the master processor. As shown in Figure 2, the master-slave mode
structure is similar to the star [102]. The paper [92] used the master-slave mode PPSO
algorithm to solve the path planning problem. In order to shorten the running time,
three PSO slave processors and one master process are used for concurrent execution.
Every fixed number of generations, information is exchanged between the slave and
master processors, and a better solution has been obtained. The paper [103] proposed
a parallel Comprehensive Learning Particle Swarm Optimizer (PLCPSO) algorithm
and used the master-slave model to run each sub-swarm on different machines to
achieve the global optimum. Moreover, the various subpopulations regularly cooperate
in exchanging optimal solutions.
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Figure 3. Coarse-grained model

(2) Coarse-grained model: The coarse-grained model, also known as the island model, di-
vides a population into multiple sub-populations, each of which represents a processor
unit. As shown in Figure 3, each subpopulation communicates through an exchange
strategy, thereby exchanging some individuals. The paper [104] uses the island model
and immigration to solve the one-dimensional bin packing problem. This model al-
lows the islands to cooperate with each other and use the migration operation for the
initialization phase. The paper [105] proposes a parallelized evolutionary algorithm
and uses a multi-swarm island model. Within each population, fewer individuals
exchange.

(3) Fine-grained model: The fine-grained model, also known as the cell meta-model, di-
vides a population into multiple small sub-populations and maps the sub-populations
to a two-dimensional grid. Typically, each subpopulation contains four domain indi-
viduals. However, when exchanging information with domain individuals, it is faster,
and there are delays when communicating with other individuals. As shown in Figure
4, each subpopulation exchanges information with the surrounding four subpopu-
lations. In [106], a strategy based on asynchronous parallel meta-cellular genetic
algorithm is proposed, which divides the population into multiple populations, and
each population runs on a different processor. Individuals within the population are
grid-like and connected to each other.

(4) Hybrid model: A parallelized model composed of two or more models above is called
a hybrid model, as shown in Figure 5.

3.3. Communication method. In a parallel meta-heuristic algorithm, the population
is divided into multiple sub-populations, which are executed on multiple processors re-
spectively by parallelizing the model. The subpopulations should communicate with each
other to avoid falling into local optimum. Therefore, this section organizes four common
communication methods.

(1) Star: The star structure [107] is based on the master-slave model. The master group
in the middle transmits information with the surrounding subgroups, and there is no
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Figure 4. Fine-grained model

(a) (b)

(c)

Figure 5. Hybrid model

communication between the subgroups. The subgroup is responsible for updating and
iterating, and the final individual optimal value is handed over to the main group.

(2) Mobile: The moving mechanism is similar to the ring structure [108, 109, 110], and
each sub-population can only communicate with the adjacent population. In order
to collaborate between groups, the paper [111] combined migration and cooperation
strategies to increase the diversity of understanding.

(3) Broadcast: Different from the movement method, each sub-population of the broad-
cast strategy [112] can communicate with each other, forming a fully connected graph.

(4) Diffusion: The diffusion strategy [113, 114] is similar to the mobile strategy, except
that the number of communication sub-populations is different. In the move strategy,
the main population communicates with each subpopulation. However, in the diffu-
sion strategy, the main population intelligence exchanges information with the four
sub-populations up, down, left and right.
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(a) bidirectional ring topology (b) torus topology

Figure 6. Hybrid communication method

(5) Other: The random combination of the above four methods constitutes a hybrid com-
munication method [115]. A new parallel elite-biased framework is proposed [116],
which uses a different way to exchange information than before. The specific imple-
mentation is shown in the following Figure 6: bidirectional ring topology and torus
topology (each process has four neighbors)

3.4. Parallel meta-heuristics. More and more meta-heuristic algorithms are paral-
lelized to solve real-life problems. The following is a brief description of some parallel
meta-heuristic algorithms commonly used in recent years.

Parallel Genetic Algorithm (PGA):
Genetic algorithm is a meta-heuristic algorithm that simulates the theory of species evo-

lution. The combinatorial optimization problem is difficult and complex, and it is difficult
to find a suitable solution. A novel scalable parallel grouping genetic algorithm [117] is
proposed for this problem, which uses an island model. In [118], the most time-consuming
part is handed over to the parallel module for execution. These parallel modules are not
simple selection, crossover, and mutation. It is the calculation of the fitness value of the
initial population and the calculation of the fitness value of the offspring.

Parallel Simulated Annealing (PSA):
The SA algorithm is a physics-based algorithm that simulates the principle of solid-

state annealing. The vehicle routing problem has been widely concerned in order to solve
this problem better. A parallel SA algorithm is proposed, which introduces the Markov
process, and master-slave structure [119]. In [120], Markov chains are also introduced
to parallelize the original SA algorithm. Nevertheless, the difference from the former is
that the Monte Carlo algorithm is added to accelerate the convergence efficiency of the
algorithm.

Parallel Chaos Optimization Algorithm (PCOA):
The paper [121] used the master-slave model to improve COA and parallelize it to

solve the problem of parameter identification. Two carrier chaos searches are used in
the master process, and a migration and crossover structure is used in the slave process.
The paper [111] also improved the original algorithm in parallel, using two operations of
migration and merging, so that each sub-population will not be executed independently,
which improves the diversity of the algorithm. At the same time, the global and local
search of the algorithm is better balanced.

Parallel Particle Swarm Optimization (PPSO):
PSO is a popular algorithm developed by simulating the foraging behavior of birds.

There are more and more improved versions of PSO, and a new multi-swarm variant



666 Y. Sun, S.C. Chu, P. Hu, J. Watada, M.C. Si and J.S. Pan

particle swarm algorithm has been proposed, which has a greater advantage in execution
time than traditional algorithms [122]. At the same time, the paper [123] attempted to
parallelize the algorithm at the generation level for the first time. Some particles execute
the current operation formula, and other particles can execute new operations in the
next generation, which greatly shortens the running time. The paper [124] proposed a
new constrained optimization algorithm called Parallel Boundary Search Particle Swarm
Optimization (PBSPSO). In a global search, the algorithm uses a penalty function to
search. In local search, Sequential Quadratic Programming (SQP) is performed. Then
compare the results of this time with the results obtained from the previous global search,
and choose the best one.

Parallel Artificial Bee Colony (PABC):
The ABC optimization algorithm is generated to simulate the foraging behavior of bees.

The bee colony consists of three parts, the employed bees, bystanders, and scouts. To im-
prove the performance of the original ABC optimization algorithm, it is parallelized [125].
At the same time, the colony is divided into multiple subcolonies, and parallel operations
are performed in each sub colony. A dynamic migration operation is adopted between
each bee colony to improve the efficiency of the algorithm. The paper [126] also made
parallel improvements to the ABC algorithm. First, find the parts that can be executed
in parallel and design them. Then, the parallel ABC algorithm is implemented based on
the ternary light computer. Finally, the algorithm is applied to the function optimization
problem to verify the performance of the algorithm. The paper [127] used three models
(master-slave model, island model with migration, and hybrid model) to improve the ABC
algorithm and analyze the performance between the three algorithms. ASADZADEH im-
plements Parallel Artificial Bee Colony (pABC) [125] using three models: master-slave
model, fine-grained model and coarse-grained model. In the coarse-grained model, pABC
sets up a colony on each processor, a total of n, the domain topology used by each colony
is a cube, and the information communication between every two colonies is dynamic.

Parallel Ant Colony Optimization (PACO):
In order to study the dual-objective workshop scheduling problem, an improved ACO

algorithm is proposed. In order to reduce the search space, the algorithm provides a
variety of dynamic heuristic information to guide to finding the optimal solution [128].
Due to the ever-increasing complexity of computing, a new computing method is proposed,
which can distribute a large number of centralized operations to different PCs. Each PC is
executed in parallel, reducing the computational complexity [129]. The paper uses 3-Opt
and master-slave mode to improve the ACO algorithm. Finally, through experimental
comparison, the algorithm can avoid local minima and is more reliable [130].

Of course, there are some other parallel meta-heuristics (see Table 1). For exam-
ple, parallel random tree algorithm [131] [132], parallel multi-objective random search
algorithm [133], Parallel Discrete Lion Swarm Optimization Algorithm (PDLSO) [134],
Parallel Transition Evolution (PTE) [135], Parallel Hybrid Intelligent Algorithm [136],
Parallel Imperialist Competition Algorithm (PICA) [137], Parallel Low Memory Quasi-
Newton Optimization Algorithm (PP-LBFGS) [138], Parallel Tabu Search (PTS) [139],
Parallel Social Spider Optimization (PSSO) [140], Parallel Chaos Local Search Enhanced
Harmony Search (MHS-PCLS) [141], Adaptive Chaos Parallel Clonal Selection Algorithm
(ACPCSA) [142], etc.

4. Virtual parallelism (multi-grouping). This section presents multi-group variants
of some common algorithms in the following summaries. We introduce multi-group Cat
Swarm Optimization (CSO) in Section 4.1, Multi-group GA in Section 4.2, Multi-group
PSO in Section 4.3, Multi-group QUATRE in Section 4.4, and Multi-group in Section
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Table 1. Parallel meta-heuristics

Algorithm Reference Year Application

PEBGLS [116] 2018 traveling salesman problem (TSP)
PCLPSO [103] 2015
pABC [125] 2016 job shop scheduling problem (JSSP)
Parallel Bees Algorithm [86] 2014
PBSPSO [124] 2018 engineering design problem
PACO-3Opt [130] 2018 traveling salesman problem (TSP)
PIIWO [87] 2016 large scale global optimization (LSGO)
PSSO [140] 2018 data clustering problem
PT [120] 2014 probabilistic sampling
PTC [139] 2018 maximum vertex weight clique problem (MVWCP)
ACPCSA [142] 2016 weapon target assignment (WTA)
parallel cGA [106] 2009 MAXSAT, MMDP, and the p-median problem
PACO [128] 2017 the bi-criteria problem
IPGGA [117] 2018 1D Bin-Packing (1DBPP)
LS [82] 2018 minimum latency problem (MLP)
PPSO [143] 2014 global path planning
P3SO [123] 2020
GCSO [80] 2021
parallel ACO [89] 2018 traveling salesman problem (TSP)
PHAFB [136] 2016
Jaya [79] 2019
SS [81] 2017 black-box problem
MSM-PCOA [121] 2016 the parameter identifification
MsPMmPSO [122] 2015 the association rule extraction
multi-swarm PSO [85] 2015 quadratic assignment problem (QAP)
GA/DE/SA/PSO [84] 2014
GGAs [104] 2014 bin packing problem (BPP)
parallel random forest algorithm [131] 2020
PACO [129] 2006
MH-ES-ABC [127] 2011
MMO-PCOA [111] 2015 parameter extraction and identification
MHS–PCLS [141] 2019 engineering design problem
parallel IOA [93] 2018 job shop scheduling problem (JSSP)
PICA [137] 2018
PP-LBFGS [138] 2013
ParMOSS [133] 2015 bi-objective competitive facility location problem
PEA [135] 2019
PEAs [105] 2002
FRPSO [91] 2018 the optimal message-chain structure
TOC-PABC [126] 2019
hybrid ABC–TLBO algorithms [102] 2020 the multi-dimensional numerical problems
parallel-SA [119] 2016 vehicle routing problem (VRP)
pACS [83] 2016 traveling salesman problem (TSP)
PGA [118] 2019 parameter estimation
parallel random tree [132] 2019 evaluation of athletes’ competitive ability
PDLSO [134] 2020 traveling salesman problem (TSP)
PGA [144] 1991 the school timetabling problem
PGAs [145] 2001
Parallel metaheuristics [100] 2013
MOABC [146] 2020 software development
parallel GA [147] 2020 transportation planning and logistics management
pABC [125] 2016 job shop scheduling problem (JSSP)
PHGA [148] 2004 vehicle routing problem with time windows (VRPTW)
PGSO [149] 2020 training an Artificial Neural Network
multiple-population parallel GA [96] 1998
parallel GAs [97] 2000
PACS [17] 2003 traveling salesman problem
roposed ACS [150] 2004 traveling salesman problem
MOPSO [18] 2019 many-0bjective 0ptimization problems(MaOPs )
PBM [98] 2009
P-ABC-TLBO [151] 2020 multi-dimensional numerical optimization
parallel BSO [152] 2020 field programmable gate arrays (FPGAs)
PE-EFS [153] 2021
PPSO [101] 2019
GA parallel and distributed [154] 2020 cloud computing model
PWOA [155] 2018 Continuous Stirred Tank Reactor (CSTR)
QQIGSA [156] 2021 wireless sensor network(WSN)
PGA [157] 1996 VQ codevector index assignment for noisy channels
parallel ACO [99] 2011
PHOA [158] 2018 economic emission load dispatch (EELD)
P-SSO [159] 2017
PPSO [160] 2009 reactor core design (CD) and fuel reload (FR)
parallel ACO [161] 2018 traveling salesman problem (TSP)

4.5. The BA, in Section 4.6 introduces the multi-grouping DE. Some common multi-
group metaheuristics are organized in Table 2.
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Table 2. Multi-group metaheuristics

Algorithm Reference Year Application

PPSO [15] 2005

MPGA [162] 2008 traveling salesman problem (TSP)

PCSO [163] 2008

IMPGA-GPS [164] 2009

DMSDE [165] 2010 reactive power optimization of power system

mc-ACO [166] 2011 Parallel Assembly Line Balancing Problem (PALBP)

HGDMCPSO/DPSO [167] 2012 clinical pathway (CP)

PSO-2S [168] 2012

EPCSO [169] 2012 the aircraft schedule recovery problem

MCBA [170] 2014

PBA [171] 2016 economic load dispatch problem

IMPSO [172] 2017 cloud computing scheduling strategy

MGPSO [173] 2017 transmission expansion planning (TEP)

IMGFA [174] 2017 numerical optimization

FDA [175] 2017

PBA [176] 2018 job shop scheduling problem(JSSP)

SGA [177] 2019 Electromagnetic tomography technology (EMT)

P-QUATRE [178] 2019

AMG-QUATRE [179] 2019 wireless sensor network (WSN)

PaDE [180] 2019

pcFPA [181] 2019 wireless sensor network (WSN)

pcBA [182] 2019 wireless sensor network (WSN)

PGWO [183] 2019 the Prediction of Wind Power

CCMACO [184] 2019 traveling salesmen problem (TSP)

MM-QUATRE [185] 2020 wireless sensor network (WSN)

PSOEL [186] 2020 motion planning of redundant robotic manipulators

pcCS [187] 2020 three-dimensional path planning

pcDE [188] 2020 image segmentation

MGRR-PSO [189] 2020 black-box adversarial attacks

PMVO [190] 2020 multilevel image segmentation

MMSCA [191] 2020 capacitated vehicle routing problem (CVRP)

MG-GWO [192] 2021 photovoltaic (PV) solar cell model

PSCA [193] 2021 wireless sensor network (WSN)

PCCSP [194] 2021 wireless sensor network (WSN)

LDTACO [195] 2021 traveling salesmen problem (TSP)

AMSSA [196] 2021 wind power prediction

MOGOW [197] 2021

APAOA [198] 2021 robot path planning

4.1. Multi-grouping Cat Swarm Optimization. The original CSO algorithm was
proposed by Chu et al. [30], which was inspired by the behavior of cats. The CSO
regards the state of the cat at rest as the search mode of the algorithm. Once the cat
finds the target, the algorithm will enter another stage, the tracking mode. At the same
time, the execution ratio of the two modes is controlled by a certain probability. It is
worth noting that: in the search mode, a certain probability is used to select a position
from the memory pool to move.

The paper [163] proposed the parallelization of CSO, called Parallel Cat Swarm Opti-
mization (PCSO). PCSO executes a parallel strategy in the tracking process, and when
the communication conditions are met, it performs inter-group communication for the
grouped individuals. The specific parallel strategies in this paper are as follows:

First, a group of individuals is randomly selected, and the group of individuals is sorted
according to the size of the fitness value. The individual L with the smallest fitness value
is the individual L;
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Second, randomly select a group of individuals in the remaining group, and record the
local optimal solution P ;

Finally, use the local optimal solution P to replace the individual L with the worst
fitness value.

The paper [169], an improved version of the PCSO algorithm, proposed an improved
parallel cat swarm optimization algorithm (EPCSO). The intergroup communication
strategy is the same as that in PCSO, however, the Taguchi orthogonal method is used
to improve PSCO. The paper [194] combined the PCSO algorithm with three strategies
and a compact scheme, and applied it to the Wireless Sensor Network (WSN) positioning
problem.

Strategy one: Average replacement, where the local optimal solution of each group is
averaged to replace the worst solution in each group.

Strategy two: Best replacement, randomly select the best value of a group to replace
the worst solution of each group.

Strategy three: Weight replacement, replace the random solution of each group by
multiplying the optimal value of each group with the corresponding multiplication sum
of different weights.

4.2. Multi-grouping Genetic Algorithm. In [162], multiple populations are used in-
stead of a single population. The parameters used by each population are inconsistent.
Every certain number of generations, the optimal individual is transferred to each sub-
population one-to-one using the movement and crossover strategies. The paper [164]
proposed an improved adaptive and parallel GA. In the initial stage, each population
performs GA steps independently and adaptive operations on the crossover and mutation
stages to get a better individual for the next update. In [167], a two-layer multi-group
cooperative hybrid PSO algorithm and a discrete PSO algorithm (HGDMCPSO/DPSO)
are proposed. The algorithm divides the population into a top layer and a bottom layer.
The top layer is divided into five groups, one of which is the main population, and the
other four are sub-populations. The five populations move in different directions and
update their respective speeds. At the same time, every certain number of generations,
replace the worst individual in each group with the best individual in any of the other
three groups. The bottom layer contains three groups, and each group has a specific func-
tion. Among them, the subgroup G1 is responsible for a large-scale search for the current
best position and the global best position for exploration. Subgroup G2 is responsible
for local search and improves the convergence ability of the algorithm. The subgroup G3
is an equilibrium state. In [177], the population is divided into multiple groups, and the
parameters of each population are adaptive and independently evolved within a specific
range, and individuals with lower fitness values are given a higher probability of crossover
and mutation. Each group is linked through migration operations, and every few gen-
erations, the best individuals in each group are moved to other populations to achieve
inter-group communication.

4.3. Multi-grouping Particle Swarm Optimization. The original PSO algorithm
was proposed in 1995, which imitated the foraging behavior of birds by assigning each
bird the two attributes of position and speed. Each time, the individual optimal value
and the global optimal value are used to guide the flock to move to the optimal position.
Parallel Particle Swarm Optimization (PPSO) was proposed [15] in 2005. The algorithm
divides the flock into groups, each group uses the same update algebra, but after every
fixed number of generations, individuals are updated using three different communication
strategies. The three communication strategies are as follows:
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(1) Every R1 generation, mutate and update the particles. First, calculate the global
optimal value Gt when the number of iterations is t, and mutate it; then, replace the
worst particle in each group.

(2) Every R2 generation, the best particles in each group are Git moved to the adjacent
group, and some poor particles in the adjacent group are replaced.

(3) The third strategy is a combination of the first two strategies, using strategy one every
R1 generation and strategy two every R2 generation.

The paper [168] used a main group and multiple auxiliary groups to realize the paral-
lelization of the PSO algorithm. Among them, the main group saves the best individual
among all auxiliary groups. In [172], a multi-group PSO (MGPSO) is proposed based on
a discrete PSO framework. The algorithm is initialized with a unique Sobol sequence and
achieves good results. To increase the diversity of the population, this algorithm divides
the population into multiple groups and changes the updated formula of particle velocity.
As shown in Eq.(1) and Eq.(2).

vg+1
ik = λ

[
αvik + β1 (xkP − xi) + β2 (xiG − xik) + β3 (xG − xik)

]
(1)

λ = 2/(2− ϕ−
√
ϕ2 − 4ϕ), ϕ = β1 + β2 + β3 (2)

Where g is the number of iterations, vik represents the i-th individual in the k-th group.
and xkP and xiG represent the k-th particle’s individual optimal and the k-th group’s
optimal particle, respectively. xG is the global optimal particle, β belongs to a constant
between [0,1], λ is the influence coefficient. The paper [189] added random distribution on
the basis of MGPSO. Two opposing acceleration coefficients are used simultaneously, one
for exploration and one for development. The paper [186] also adopts a multi-group form,
proposing PSO’s improved version, using elite groups and children’s groups, using better
particles in children to update poor particles in elite populations. The paper [173], to
solve power system load problems, Multi-group Particle Swarm Optimization (MGPSO)
algorithm is proposed under the framework of discrete PSO. At the same time, the Sobol
sequence initialization and multi-set coordination policies and mutation strategies are
introduced.

4.4. Multi-grouping QUasi-Affine TRansformation Evolutionary. Since the up-
date method of the QUATRE algorithm is guided by the global optimal particle, it will
occur in a local optimal situation. In order to avoid this, it introduces parallelization
[178]. Each of the algenesses, the adjacent populations exchange part of the particles
(using a preferred particle to replace a poor portion). A good way is made in a good
way to confirm which two sub-populations communicate with each other. However, to
improve the diversity of algorithms, a Multi-group QUasi-Affine TRansformation Evolu-
tionary (AMG-QUATRE) is proposed [179]. The algorithm divides the population into
three groups, each group adopts different mutation strategies and applies the results to
the localization problem of wireless sensor networks. At the same time, during the search
process, an adaptive strategy is used to control the range of parameters to better balance
the performance of exploited and exploration. The paper [185] proposed three update
strategies to update this group of poor particles. Each time, choose one of three update
strategies to replace. As shown in Eq.(3) to (5).

Strategy one : Xbadi,j = ωXbadi,j + r1(Xbestm −Xbadi,j) (3)

Strategy two : Xbadi,j =ωXbadi,j + r2((Xbestm+Xbestn)/

2−Xbadi,j)
(4)
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Figure 7. PBA communication strategy

Strategy three : Xbadi,j =ωXbadi,j + r3(( Xbest m+

Xbestn +Xbest t)/3−Xbadi,j)
(5)

Among them, Xbadi,j represents the individual of the j-th teaching poor in the ith
group, and Xbestm represents the global optimal individual in the m-th group. r1, r2 and
r3 are continuous values with intervals 1 to 0.3, 0.3 to 0.7 and 0.7 to 1, respectively.

4.5. Multi-grouping Bat Algorithm. Obviously, BA [199] is inspired by the unique
echolocation features of bats. It was proposed in 2010. In BA, three methods are mainly
used to update the position of the bat. The first is the echolocation behavior of bats;
the second is that bats emit corresponding frequencies through which distances can be
judged; the third is the process of bats looking for prey. In [171], in order to solve the
scheduling burden of sharing the economic load, the original bat algorithm is grouped. It
enables independent individuals to run on the processor, which speeds up the convergence
and accuracy of the algorithm. At the same time, the paper [176] also grouped BA. The
difference from the previous one is that a random key encoding strategy and a unique
communication strategy are introduced, which are applied to the shop floor scheduling
problem. The communication strategy is to replace the poorly taught bats in the group
with better bats in other groups. The specific implementation process is shown in Figure
7.

The paper [182] proposed an improved bat algorithm based on grouping and com-
paction. Among them, the grouping strategy is to exchange their information between
groups, and the ways of exchanging information include moving, copying and replacing.
This paper adopts three methods: ① Randomly select the best of a group to replace the
worst of the current group. ② The best of all groups replaces the worst of the current
group. ③ The two groups are exchanged with each other: replace the poor one in the
current group with the good one in the other group.

4.6. Multi-grouping Differential Evolution. The original DE algorithm [37] was pro-
posed by Storn and Price in 1997. The DE algorithm uses fewer parameters and achieves
the best effect, which is very suitable for parallel computing. The DE algorithm has the
following main processes: mutation, crossover and selection. In [180], an improved DE
algorithm is proposed, which improves the original DE algorithm in three aspects:

(1) Adopt a grouping strategy and use an adaptive strategy for the parameters of each
group. For example, the control parameter F of each individual obeys the Cauchy
distribution, the crossover probability CR obeys the normal distribution, and the
selection probability P (j) = 1/j.

(2) A parabolic population scheme is proposed, and the number of populations in each
group is dynamically reduced. The detailed reduction formula is as follows:
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pst+1 =round[(psmin − psini)/(nfemax − psini)
2

× (nfe− psini)
2 + psini]

(6)

In Eq.(6) psmin represents the minimum value of the population, and the psini
represents the initial value of the population size. The nfe represents the current in-
dividual’s adaptivity value, the nfemax represents the maximum value of the function,
nfemax represents the maximum value of the function, and the final result is rounded
to obtain the number of individuals in the t+ 1 generation pst+1.

(3) In the main three processes of DE algorithm, mutation is the key process. This paper
proposed a mutation scheme based on timestamp.

The paper [165], dynamically divided the population into three groups, and individuals
in each group are sorted by the adaptivity value. Then, the top three individuals in
each group, randomly replace the three solutions in other groups. In the next iteration,
reconnect into a large group, then divided into three subproducts. The papers [188]
proposed a Parallel Compact Differential Evolution (PCDE) with two communication
strategies. The first is an elite policy that replaces the best solution in all groups into
global optimal solutions. The second is a mean elite policy that replaces the global optimal
solution for the optimal demand average in all groups.

5. Application of parallel optimization algorithms. In this section, we review the
application of parallel computing to metaheuristic algorithms.

Power systems: How to keep the total power generation cost less affected by the outside
world is a major research problem. To this end, an Adaptive Parallel Seeker Optimization
Algorithm (APSOA) [200] is proposed to solve the problem of energy utilization. The
paper [201] parallelized the Multi-agent Coordination Optimization (MCO) so that it can
solve large-scale problems (load balancing, multi-body formation control, fragile power
system). In [165], the multi-group adaptive DE algorithm is applied to the reactive power
optimization of the power system. Reactive power optimization means that the active
power losses in the network are minimized.

Design issues: The main discussion here is engineering design and network design.
Engineering design problems mainly include the following: welded beam design, rolling
element bearing design, pressure vessel design, compression spring design, three-bar truss
design, reducer design, Belleville spring design problems, etc. In [202], in order to verify
the effectiveness of the proposed algorithm, the improved algorithm (OPSOS) is applied
to four engineering design problems. The results demonstrate the accuracy and low com-
plexity of OPSOS. The importance of web design in our daily lives is unmistakable. The
goal of network design is to survive network failures. In [203], the chaos-based Jaya algo-
rithm effectively solves seven engineering optimization problems. Chaotic Jaya algorithm
uses multi-level parallelism (coarse-grained and fine-grained parallelism). The paper [204]
proposed a general parallelized hybrid algorithm to solve network design problems. The
paper [141] not only optimized several engineering problems but also designed a side-
impact vehicle with a negative impact. In [124], the parallelized PSO algorithm is used
to optimize five engineering problems.

Structural optimization: In [205], constraint processing mainly includes penalty func-
tions, special representations, and operators, repair algorithms, separation of goals and
constraints, Lagrange multipliers, etc. In [206], the frame structure is optimized while
considering the cross-sectional area of the structure.

Prediction problems: There are many kinds of forecasting problems, including wind en-
ergy forecasting, ship forecasting, etc. Among them, the predictive control of ships in the
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ocean is crucial. Because there are too many factors to consider, such as the disturbance
of wind and waves. In [207], the most common parallel programming technology-OpenMp
is used, which can effectively solve the problem of ship predictive control. Wind energy
is a medical renewable resource, and the effective use of wind energy can generate con-
siderable economic benefits. In [183], four propagation strategies are proposed to predict
wind power effectively. The paper [196] used three communication strategies to improve
the multi-group salps algorithm. Strategy one: Update within groups. Take the average
of the k best individuals in the group to replace the k poor individuals in the current
group. Strategy two: Update between groups. Take the average of the best individuals
in each group to replace the k poor individuals in other groups. Strategy three: Combine
strategies one and two, and divide the number of groups equally, one part uses strategy
one, and the other uses strategy two.

Large scale optimization problems: Although intelligent computing can effectively solve
most problems of large-scale problems [208, 209], there are still some shortcomings. The
paper [210] proposed a divide-and-conquer method of intelligent computing, which im-
proves the algorithm’s solving ability. The paper [211], based on three strategies (adver-
sarial learning, smoothing techniques, parallelization) improved the performance of the
harris hawks optimization algorithm. The parallelization here is different from the previ-
ous one. It first sorts the entire population and takes the part with better results as the
initialization population. The parallelization here is different from the previous one. It
first sorts the entire population and takes the part with better results as the initialization
population. The populations are then grouped, one using DE to update and the other
HHO to update individuals. Finally, experiments are carried out on the re-entry orbit
problem of reusable launch vehicles, and the results show that the practicability of the al-
gorithm is strong enough. In [143], a parallel PSO algorithm is proposed based on FPGA.
The proposed algorithm solves the problem of robot path planning very well, which is a
global problem (relatively large scale).

Neural networks: In recent years, meta-heuristics have been widely used in the op-
timization of machine learning models. Among them, the most commonly used neural
network model is the multi-layer perceptual model. It consists of input layer, output
layer, and hidden layer. The paper [212] used the parallel cuckoo optimization algorithm
to train neural networks. At the same time, the algorithm is compared with the PSO
algorithm, and good results are obtained. The paper [149] taken full advantage of a new
algorithm (parallel galaxy group optimization algorithm GSO) to train neural networks.
The algorithm is also used to solve churn prediction and predict whether a player can
play for several years in a row, showing the algorithm’s efficiency through various proofs.

Atomic potential fit: Since there are various potential energies between atoms, calcu-
lating the reduction of the potential energy between atoms is a topic of research. The
paper [213] combined PSO with the global optimization algorithm and introduced a multi-
dimensional search, which can effectively solve the problem of reducing atomic potential
energy.

Image segmentation: Image segmentation is the most basic operation in the field of
computer vision, and it has been widely used in various fields, such as medicine, trans-
portation, and surveillance. For example, the paper [188] regarded the image as a two-
dimensional grayscale image and used a parallel compact differential evolution algorithm
to solve the problem of image threshold segmentation. The paper [190] used the mini-
mum crossing threshold method to segment complex images. The threshold is the region
boundary that divides the image into multiple valid parts.

Path planning: Path planning is one of the research hotspots in the field of automotive
engineering. In path planning, various obstacles may be encountered. In path planning,
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various obstacles may be encountered. Then, how to find a suitable solution becomes the
topic of research. For example, the paper [198] used an improved Archimedes optimization
algorithm to plan robot paths. They are considering the situation with obstacles, finding
the optimal movement path without encountering obstacles. The paper [191] planned the
path that restricts the vehicle and also ensures the carrying capacity of the vehicle. The
paper [147] used a fine-grained model to parallelize GA, which is then applied to route
planning in transportation and logistics.

6. Conclusions. In recent years, there has been increasing research on meta-heuristic
algorithms. This paper begins with an introduction to meta-heuristic algorithms and
divides them into four categories based on their origins: human-based, physics-based,
swarm intelligence, and evolutionary algorithms. Secondly, the improved methods of
meta-heuristic algorithms are introduced, mainly including parallel, binary, self-adaptive,
compact, hybrid algorithm, multi-objective, discretization, and opposition-based learning.
Among them, the parallel improvement strategy has obvious advantages. This paper
divides parallelism into two types: true parallelism and multi-grouping. Regarding the
real parallel metaheuristic algorithm, the paper mainly introduces two parallel platforms
(GPU and FPGA), four parallelization models (master-slave model, coarse-grained model,
fine-grained model, and hybrid model), and four kinds of communication modes (star,
mobile, broadcast and diffuse). At the same time, the parallel meta-heuristic algorithm
is classified according to the algorithm, and the application of parallel computing in
the meta-heuristic algorithm is introduced in detail. Since parallel meta-heuristics are
widely used in various fields, the paper concludes with an overview of the applications in
the surveyed literature. In future work, various parallelization models can be combined
with meta-heuristic algorithms to apply to multi-objective problems, effectively improving
efficiency and performance.
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[170] Ş. Akpinar and A. Baykasoğlu, “Multiple colony bees algorithm for continuous spaces,” Applied
Soft Computing, vol. 24, pp. 829–841, 2014.

[171] C.-F. Tsai, T.-K. Dao, T.-S. Pan, and J.-F. Chang, “Parallel bat algorithm applied to the economic
load dispatch problem,” Journal of Internet Technology, vol. 17, no. 4, pp. 761–769, 2016.

[172] Z. Chun-na and L. Yi-ran, “Cloud computing scheduling strategy based on multi-group parallel
particle swarm optimization,” International Journal of Multimedia and Ubiquitous Engineering,
vol. 12, no. 2, pp. 195–204, 2017.

[173] S. Huang and V. Dinavahi, “Multi-group particle swarm optimisation for transmission expan-
sion planning solution based on lu decomposition,” IET Generation, Transmission & Distribution,
vol. 11, no. 6, pp. 1434–1442, 2017.

[174] N. Tong, Q. Fu, C. Zhong, and P. Wang, “A multi-group firefly algorithm for numerical opti-
mization,” in Journal of Physics: Conference Series, vol. 887, no. 1. IOP Publishing, 2017, p.
012060.

[175] P.-W. Tsai, T.-T. Nguyen, J.-S. Pan, T.-K. Dao, and W.-M. Zheng, “A parallel optimization
algorithm based on communication strategy of pollens and agents,” in Advances in Intelligent
Information Hiding and Multimedia Signal Processing. Springer, 2017, pp. 315–324.

[176] T.-K. Dao, T.-S. Pan, T.-T. Nguyen, and J.-S. Pan, “Parallel bat algorithm for optimizing makespan
in job shop scheduling problems,” Journal of Intelligent Manufacturing, vol. 29, no. 2, pp. 451–462,
2018.

[177] C. Guo, Z. Yang, X. Wu, T. Tan, and K. Zhao, “Application of an adaptive multi-population parallel
genetic algorithm with constraints in electromagnetic tomography with incomplete projections,”
Applied Sciences-Basel, vol. 9, no. 13, p. 2611, 2019.

[178] B.-Q. Jiang and J.-S. Pan, “A parallel quasi-affine transformation evolution algorithm for global
optimization.” Journal of Network Intelligence, vol. 4, no. 2, pp. 30–46, 2019.

[179] N. Liu, J.-S. Pan, J. Wang, and T.-T. Nguyen, “An adaptation multi-group quasi-affine transfor-
mation evolutionary algorithm for global optimization and its application in node localization in
wireless sensor networks,” Sensors, vol. 19, no. 19, p. 4112, 2019.

[180] Z. Meng, J.-S. Pan, and K.-K. Tseng, “Pade: An enhanced differential evolution algorithm with
novel control parameter adaptation schemes for numerical optimization,” Knowledge-Based Sys-
tems, vol. 168, pp. 80–99, 2019.

[181] T.-T. Nguyen, J.-S. Pan, and T.-K. Dao, “An improved flower pollination algorithm for optimizing
layouts of nodes in wireless sensor network,” IEEE Access, vol. 7, pp. 75 985–75 998, 2019.

[182] T.-T. Nguyen, J.-S. Pan, and T.-K. Dao, “A novel improved bat algorithm based on hybrid parallel
and compact for balancing an energy consumption problem,” Information, vol. 10, no. 6, p. 194,
2019.

[183] J.-S. Pan, P. Hu, and S.-C. Chu, “Novel parallel heterogeneous meta-heuristic and its communica-
tion strategies for the prediction of wind power,” Processes, vol. 7, no. 11, p. 845, 2019.

[184] H. Zhang and X. You, “Multi-population ant colony optimization algorithm based on congestion
factor and co-evolution mechanism,” IEEE Access, vol. 7, pp. 158 160–158 169, 2019.

[185] Z.-G. Du, J.-S. Pan, S.-C. Chu, H.-J. Luo, and P. Hu, “Quasi-affine transformation evolutionary
algorithm with communication schemes for application of rssi in wireless sensor networks,” IEEE
Access, vol. 8, pp. 8583–8594, 2020.

[186] Z. Feng, L. Chen, C.-H. Chen, M. Liu, and M.-e. Yuan, “Motion planning for redundant robotic
manipulators using a novel multi-group particle swarm optimization,” Evolutionary Intelligence,
vol. 13, no. 4, pp. 677–686, 2020.

[187] P.-C. Song, J.-S. Pan, and S.-C. Chu, “A parallel compact cuckoo search algorithm for three-
dimensional path planning,” Applied Soft Computing, vol. 94, p. 106443, 2020.

[188] X. Sui, S.-C. Chu, J.-S. Pan, and H. Luo, “Parallel compact differential evolution for optimization
applied to image segmentation,” Applied Sciences-Basel, vol. 10, no. 6, p. 2195, 2020.



Overview of Parallel Computing for Meta-Heuristic Algorithms 683

[189] N. Suryanto, H. Kang, Y. Kim, Y. Yun, H. T. Larasati, and H. Kim, “A distributed black-box
adversarial attack based on multi-group particle swarm optimization,” Sensors, vol. 20, no. 24, p.
7158, 2020.

[190] X. Wang, J.-S. Pan, and S.-C. Chu, “A parallel multi-verse optimizer for application in multilevel
image segmentation,” IEEE Access, vol. 8, pp. 32 018–32 030, 2020.

[191] Q. Yang, S.-C. Chu, J.-S. Pan, and C.-M. Chen, “Sine cosine algorithm with multigroup and
multistrategy for solving cvrp,” Mathematical Problems in Engineering, vol. 2020, 8184254, 2020.

[192] M. AlShabi, C. Ghenai, M. Bettayeb, F. F. Ahmad, and M. E. H. Assad, “Multi-group grey wolf
optimizer (mg-gwo) for estimating photovoltaic solar cell model,” Journal of Thermal Analysis and
Calorimetry, vol. 144, no. 5, pp. 1655–1670, 2021.

[193] F. Fan, S.-C. Chu, J.-S. Pan, Q. Yang, and H. Zhao, “Parallel sine cosine algorithm for the dynamic
deployment in wireless sensor networks,” Journal of Internet Technology, vol. 22, no. 3, pp. 499–512,
2021.

[194] J. Li, M. Gao, J.-S. Pan, and S.-C. Chu, “A parallel compact cat swarm optimization and its
application in dv-hop node localization for wireless sensor network,” Wireless Networks, vol. 27,
no. 3, pp. 2081–2101, 2021.

[195] S. Li, X. You, and S. Liu, “Multiple ant colony optimization using both novel lstm network and
adaptive tanimoto communication strategy,” Applied Intelligence, pp. 1–21, 2021.

[196] J.-S. Pan, J. Shan, S.-G. Zheng, S.-C. Chu, and C.-K. Chang, “Wind power prediction based on neu-
ral network with optimization of adaptive multi-group salp swarm algorithm,” Cluster Computing,
pp. 1–16, 2021.

[197] C. Wang, J. Li, H. Rao, A. Chen, J. Jiao, N. Zou, and L. Gu, “Multi-objective grasshopper
optimization algorithm based on multi-group and co-evolution.” Mathematical Biosciences and
Engineering: MBE, vol. 18, no. 3, pp. 2527–2561, 2021.

[198] R.-B. Wang, W.-F. Wang, L. Xu, J.-S. Pan, and S.-C. Chu, “An adaptive parallel arithmetic
optimization algorithm for robot path planning,” Journal of Advanced Transportation, vol. 2021,
3606895, 2021.

[199] X.-S. Yang, “A new metaheuristic bat-inspired algorithm,” in Nature Inspired Cooperative Strategies
for Optimization (NICSO 2010). Springer, 2010, pp. 65–74.

[200] M. B. Shafik, H. Chen, G. I. Rashed, and R. A. El-Sehiemy, “Adaptive multi objective parallel
seeker optimization algorithm for incorporating tcsc devices into optimal power flow framework,”
IEEE Access, vol. 7, pp. 36 934–36 947, 2019.

[201] H. Zhang and Q. Hui, “Parallel multiagent coordination optimization algorithm: implementation,
evaluation, and applications,” IEEE Transactions on Automation Science and Engineering, vol. 14,
no. 2, pp. 984–995, 2016.

[202] A. Panda and S. Pani, “An orthogonal parallel symbiotic organism search algorithm embodied with
augmented lagrange multiplier for solving constrained optimization problems,” Soft Computing,
vol. 22, no. 8, pp. 2429–2447, 2018.

[203] H. Migallón, A. Jimeno-Morenilla, H. Rico, J. Sánchez-Romero, and A. Belazi, “Multi-level parallel
chaotic jaya optimization algorithms for solving constrained engineering design problems,” The
Journal of Supercomputing, vol. 77, no. 11, pp. 12 280–12 319, 2021.

[204] I. Diarrassouba, M. K. Labidi, and A. R. Mahjoub, “A parallel hybrid optimization algorithm for
some network design problems,” Soft Computing, vol. 23, no. 6, pp. 1947–1964, 2019.

[205] G. T. Pulido and C. A. C. Coello, “A constraint-handling mechanism for particle swarm opti-
mization,” in Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.
04TH8753), vol. 2. IEEE, 2004, pp. 1396–1403.

[206] B. Yang, K.-U. Bletzinger, Q. Zhang, and Z. Zhou, “Frame structural sizing and topological opti-
mization via a parallel implementation of a modified particle swarm algorithm,” KSCE Journal of
Civil Engineering, vol. 17, no. 6, pp. 1359–1370, 2013.

[207] A. Borisov and J. Siek, “A parallel optimization algorithm for predictive control of marine vessel,”
in Journal of Physics: Conference Series, vol. 1333, no. 4. IOP Publishing, 2019, p. 042004.

[208] S. Santander-Jimenez and M. A. Vega-Rodriguez, “Parallel multiobjective metaheuristics for infer-
ring phylogenies on multicore clusters,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 6, pp. 1678–1692, 2014.

[209] H. F. Sheikh, I. Ahmad, and D. Fan, “An evolutionary technique for performance-energy-
temperature optimized scheduling of parallel tasks on multi-core processors,” IEEE Transactions
on Parallel and Distributed Systems, vol. 27, no. 3, pp. 668–681, 2015.



684 Y. Sun, S.C. Chu, P. Hu, J. Watada, M.C. Si and J.S. Pan

[210] P. Yang, K. Tang, and X. Yao, “A parallel divide-and-conquer-based evolutionary algorithm for
large-scale optimization,” IEEE Access, vol. 7, pp. 163 105–163 118, 2019.

[211] Y. Su, Y. Dai, and Y. Liu, “A hybrid parallel harris hawks optimization algorithm for reusable
launch vehicle reentry trajectory optimization with no-fly zones,” Soft Computing, vol. 25, no. 23,
pp. 14 597–14 617, 2021.

[212] A. A. Kawam and N. Mansour, “Metaheuristic optimization algorithms for training artificial neural
networks,” International Journal of Computer and Information Technology, vol. 1, no. 2, pp. 156–
161, 2012.

[213] C. Voglis, P. E. Hadjidoukas, D. G. Papageorgiou, and I. E. Lagaris, “A parallel hybrid optimization
algorithm for fitting interatomic potentials,” Applied Soft Computing, vol. 13, no. 12, pp. 4481–4492,
2013.


	1. Introduction
	2. Meta-heuristics
	2.1. Classification of meta-heuristics
	2.2. Meta-heuristic improvements

	3. True parallelism
	3.1. Implementation platform
	3.2. Parallelization model
	3.3. Communication method
	3.4. Parallel meta-heuristics

	4. Virtual parallelism (multi-grouping)
	4.1. Multi-grouping Cat Swarm Optimization
	4.2. Multi-grouping Genetic Algorithm
	4.3. Multi-grouping Particle Swarm Optimization
	4.4. Multi-grouping QUasi-Affine TRansformation Evolutionary
	4.5. Multi-grouping Bat Algorithm
	4.6. Multi-grouping Differential Evolution

	5. Application of parallel optimization algorithms
	6. Conclusions
	Acknowledgment
	REFERENCES

