
Journal of Network Intelligence ©2022 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 7, Number 3, August 2022

Bad Smells Identification using Community Detected
based on Feature Envy Metric

Wan-Chang Jiang

School of Computer Science
Northeast Electric Power University

No.169 Changchun Road, Jilin, Jilin 132012, China
jwchang84@163.com

Jie-Tao Wu

School of Computer Science
Northeast Electric Power University

No.169 Changchun Road, Jilin, Jilin 132012, China
wchu@npu.edu.tw

Xiao-Xi Zhang

School of Computer Science
Northeast Electric Power University

No.169 Changchun Road, Jilin, Jilin 132012, China
zxxyx0711@163.com

Wei-Hua Zhu*

Department of Information Technology
Jilin Technology College of Electronic Information
No.65 Hanyang Road, Jilin, Jilin 132021, China

317010530@qq.com

∗Corresponding author: Wei-Hua Zhu

Received November 21, 2021, revised January 11, 2022, accepted March 30, 2022.

Abstract. Identifying feature envy bad smells plays a critical role in the software evolu-
tion, which can help the developer to refactor. In view of the complex scenes of identifying
feature envy bad smells, the bad smells identification algorithm using community detection
based on feature envy metric is proposed(BSICD). Different from other identification
algorithms, we design a directed weighted feature dependency software network. Based
on the software network, by considering the direction, weight and class which feature
originally belong to, Feature-Class Envy Factor and Class-Class Envy Factor are defined
to represent the envy degree of feature with class and the class cohesion. And then, fea-
ture membership parameters are calculated to measure the closeness of feature with its
source class and target class. Furthermore, feature envy metric is designed based on the
variation of feature membership parameters, which will be used to control community de-
tection by a series of feature-moving operations. By comparing the obtained communities
with nature ones, the feature envy bad smells can be identified. In order to evaluate the
effectiveness of BSICD, we design two group experiments on the open software Colt.
BSICD can identify the type of bad smells that the method more interested in classes
than the one it actually is in, which is better than FEED algorithm. In comparison to
JDeodorant, the criteria of false positive is used to show that BSICD can provide a
better identification accuracy.
Keywords: Bad smells, Software network, Feature envy metric, Community detection

779



780 W.C. Jiang, J.T. Wu, X.X. Zhang, W.H. Zhu

1. Introduction. The quality and longevity of a software is largely determined by its
internal structures. Then a good design of software internal structures indicates that low
coupling and high cohesion [1]. Software should constantly be corrected faults, improved
performance or adapted the changed environment in evaluation [2].

Bad smell is a typical symptom in the source code of an objected oriented software [3],
which indicates a violation of fundamental design principles that may possibly slow down
development in the future. Fowler et al. define 22 recurring bad smells by the elimination
of which one may increase the software maintainability [4].

The bad smells can affect the codes of one software on different levels, such as packages
[5], classes [6], and methods [7]. And feature envy is one method level bad smell, and the
feature envy bad smell is expressed as a method that seems more interested in a class
other than the one it actually is in. In other words, when a method of a particular class
overly uses the attributes or methods of another class, the method is a feature envy bad
smell.

Several approaches have been proposed to detect the feature envy bad smells. A famous
move-method-based approach [8] is proposed, and the distance metric between methods
and classes is used to identify the bad smells. In paper [9], an approach is introduced for
the detection of the Feature Envy design flaw at the level of blocks of code. In essence, a
method body is split into a hierarchical structure of blocks. The corresponding detection
strategy is applied to identify envious leaf blocks, and these envious blocks are extended in
order to localize the Feature Envy issue in the body of the analyzed method. However, the
method do not have a very high accuracy regarding the boundaries of these areas and can
not detect entire method body level. In almost all these situations, the involved methods
looked as feature envy instances at the entire method body level. Woei-Kae Chen et
al. propose a dataflow analysis approach for feature envy bad smells [10]. The approach
considers the level of blocks of code inside the method bodies. However, this approach is
difficult to detect the bad smells in open-source software projects for a large scale. In the
paper [11], it proposed a deep learning based feature envy detection approach. The key
insight is that deep neural networks. And deep neural networks have a large number of
parameters. Consequently, they often require a large number of training data to adjust
such parameters, and the training data generated based on such methods may be noisy,
and some of them are labeled incorrectly. As a result, the feature envy bad smells are
incorrect.

In order to represent one software as the dependency software network at the method
and attribute level, two approaches [12, 13] have been proposed. The following observa-
tion have been made: methods belonging to the same class tend to be cohesive, while
methods from different classes tend to be sparser. The feature envy bad smells increase
the coupling between classes and violate the characteristic of communities. Therefore, the
community detection approach can be applied to recondition class structures and detect
feature envy bad smells. The approach in [6] refactors class structures by using the com-
munity detection, however, it neglects the call direction and call times between methods
and attributes. Owe to the call direction and call times can better reflect the dependency
relationship, our paper will propose a directed weighted feature dependency software net-
work, design a novel feature envy metric and propose a bad smell identification approach
using community detection for identifying feature envy bad smells.

In this paper, we analyze the limitation of bad smells identification methods. In order
to improve the accuracy of feature envy bad smell identification, we design an algorithm
of BSICD. BSICD considers that the correlation between feature envy bad smells and



Bad Smells Identification using Community Detected based on Feature Envy Metric 781

the high cohesion and low coupling characteristics of community structures in software,
which affects the improvement of BSICD on the accuracy of feature envy bad smells.
Previous researches [12, 13] have proved that feature envy bad smells can be identified
using community detection, but the influence of weight on the accuracy of identifying
bad smells is not considered. Section 2 of this paper builds the directed weighted feature
dependency software network. Reference to the research [14] discover useful patterns in
an uncertain database, Section 3 designs an uncertain feature envy bad smells candidate
database and designs the feature envy metrics based on the feature membership to iden-
tify the certain feature envy bad smells. The bad smells identification algorithm using
community detection is proposed in Section 4. In Section 5, the experiment was conducted
on the Colt to evaluate effectiveness of our approach. Section 6 gives the final conclusion
and looks forward to the future work.

2. Directed Weighted Feature Dependency Software Network. In order to ac-
curately identify feature envy bad smells in one objected oriented software, two kinds of
dependency relationship are considered. Method-method and method-attribute will be
extracted for building software network. Apart from presence of dependency relationship,
multiplicity of dependency relationship is also considered. Thus, the directed weighted
feature dependency software network G(V,E,W ) is constructed to characterize internal
structures and feature dependency relationships of the software.

As features of class, both methods and attributes are extracted as nodes. And each
feature of every class is represented by one node. The feature k of class I is represented
as vIk, k=1,2,...,n and n is the number of features in the software, I = 1,2,...,N and N is
the number of classes in the software. Hence, V can be represented as the set of feature
level of nodes and V={vIk|k = 1, 2, ..., n and I = 1, 2, ..., N}. As well, V also can be
represented as the set of class level of nodes and V={VI |I = 1, 2, ..., N}, where VI is a
subset to represent the class I.

Further, when one method calls another feature or one method references another at-
tribute, the method and the feature have one dependency relationship, which is extracted
as one edge. The edge reflects the presence of dependency relationship. And direction
and weight of the edge reflects multiplicity of dependency relationship. That is to say,
if method k directly calls feature l, or method k references attribute l, there will be a
directed edge eIkJl from node vIk to vJl. And E={eIkJl} is the directed edge set in the
software network. Moreover, the calling or referenced times of the dependency relation-
ship can be extracted as the weight of the corresponding edge. And W = {wIkJl} is the
set of weight of each edge, where wIkJl denotes the weight of edge eIkJl.

3. Feature Envy Metric based on Feature Membership. In order to identify fea-
ture envy bad smells, this section designs a bad smells identification using community
detection approach based on feature envy matric. Firstly, In the directed weighted fea-
ture dependency software network G(V,E,W ), the XOR formula is used to determine a
feature envy candidate nodes set by considering whether two features belong to the same
source class or not. Secondly, considering that the feature belongs to the source class and
the target class, the weights is used to design Feature-Class Envy Factor, SourceClass-
Class Envy Factor, TargetClass-Class Envy Factor, and a feature envy metric based on
the three factors is defined. Finally, a bad smells identification approach using community
detection based on the feature envy metric is design.

3.1. Feature envy candidate nodes set analysis. In the G, owing to most features
are not the feature envy bad smells, and in order to narrow down the calculation and



782 W.C. Jiang, J.T. Wu, X.X. Zhang, W.H. Zhu

save time, a feature envy candidate nodes set V Can is defined to improve identification
efficiency.

Definition 3.1. (feature envy candidate nodes set): Two feature nodes that have an edge
but are defined in two different classes, the set of all nodes meet the characteristics in the
G is defined as the feature envy candidate nodes set V Can. The V Can is calculated by the
following steps.

Firstly, if feature k is defined in class I, it is represented as fc(vIk) = I, where vIk is
the node of feature k. Secondly, a method can directly call features of one class that it
belongs to and also features of other classes through references. As a result, there are two
types edges in the directed edge set E. The first type is that two nodes have an edge and
belong to the same class. The second type is that two nodes have an edge but belong to
different classes.

By using the XOR operation, which type of an edge of E is can be denoted as follows:

f(eIkJl) = fc(vIk)⊕ fc(vJl) = I ⊕ J (1)

Where fc(vIk) represents the class I that feature vIk originally belongs to. And fc(vJl)
represents the class J that feature k originally belongs to.
As a result, edges of E can be divided into two types by Formula (1). When f(eIkJl) is

equal to 0, the edge eIkJl belongs to the first type. When f(eIkJl) is equal to 1, the edge
eIkJl belongs to the second type.

We define an edge set ECan to represent the second type of edges in E. And ECan can
be denoted as follows:

ECan = {eIkJl|(eIkJl ∈ E) ∩ f(eIkJl) = 1} (2)

For all edges in ECan, the corresponding nodes constitute a candidate node set V Can.
And by using the candidate edge set ECan, the set V Can can be obtained as follows:

V Can = {vIk, vJl|((vIk, vJl) ∈ eIkJl) and eIkJl ∈ ECan} (3)

Once feature vIk in V Can is defined in class I, class I is named the source class of vIk.
When eIkJl ∈ ECan, once node vJl is defined in class J , class J is named the target class
of vIk.

For all feature nodes in V Can, their source classes and target classes constitute a can-
didate class set CCan. And the set CCan can be denoted as follows:

CCan = {VI , VJ |(e(vIk, vJl) ∈ ECan) ∩ (I = fc(vIk), J = fc(vJl))} (4)

3.2. Feature envy metric. To identify whether each feature node vIk of V Can is the
feature envy bad smell, the feature envy metric is designed, and the feature envy metric
value is calculated to control community detection.

For each node vIk of V Can, we traverse all the edges of G by XOR formula, and find
that there are two types of edges. The first type is that an edge between two nodes but
the two nodes are defined in the same class. We define an edge set Ein

Ik contains this type
edges. The second type is that an edge between two nodes but the two nodes are defined
two different classes. We define an edge set Eout

Ik contains this type edges. Ein
Ik and Eout

Ik

are denoted as follows:



Bad Smells Identification using Community Detected based on Feature Envy Metric 783

Ein
Ik = {eIkJl|(eIkJl ∈ E) ∩ (fc(vIk)⊕ fc(vJl) = 0)} (5)

Eout
Ik = {eIkJl|(eIkJl ∈ E) ∩ (fc(vIk)⊕ fc(vJl) = 1)} (6)

By using the two kinds of edges and the corresponding weights, the Feature-Class Envy
Factor is defined and calculated.

Definition 3.2. (Feature-Class Envy Factor): For each node vIk of V Can, owing to dif-
ferent types and different strengths of dependency relationships, the envy degree of vIk and
its source class can be affected. By utilizing the information that vIk calls features belong-
ing to the source class I or other classes, a Feature-Class Envy Factor (F CEF (vIk)) is
defined to assess the calling ratio of features,and F CEF (vIk) can be calculated as follows:

F CEF (vIk) =

∑
(wIkJl∈W in

Ik )
(wIkJl)∑

(wIkJl∈W in
Ik )

(wIkJl) +
∑

(wIkJl∈W out
Ik )(wIkJl)

(7)

where W in
Ik and W out

Ik are weight sets corresponding to edge sets Ein
Ik and Eout

Ik . W in
Ik and

W out
Ik are expressed as follows:

W in
Ik = {wIkJl|(fc(vIk)⊕ fc(vJl) = 0)} (8)

W out
Ik = {wIkJl|(fc(vIk)⊕ fc(vJl) = 1)} (9)

The smaller value of F CEF (vIk) is, the more likely the feature k is to be the feature
envy bad smell. However, only consider the feature envy ratio to detect bad smells is
not comprehensive enough. The class structures play a role in detecting bad smells, the
cohesion of one class can be calculated to measure envy degree of the class. By considering
the node information contained in the class VI of CCan, VI = {vIk, k = 1, 2, ..., n}, and
the different types of dependency relationship of class I, the cohesion of class I can be
defined. We define an edge set EI of class I and the set contains follows two types edges.

When f(eIkJl) = 0, eIkJl includes two nodes vIk and vJl that belong to the same class
I. We define an edge set Ein

I that contains eIkJl. When f(eIkJl) = 1, we use eIkJl for this
type edge, and eIkJl includes two nodes vIk and vJl, however, vIk and vJl do not belong
to the same class, and only one node vIk belong to class I. We define an edge set Eout

I

contains eIkJl. E
in
I and Eout

I are denoted as follows:

Ein
I = {eIkJl|fc(vIk)⊕ fc(vJl) = 0} (10)

Eout
I = {eIkJl|fc(vIk)⊕ fc(vJl) = 1} (11)

And the edge set EI is expressed as follows:

EI = Ein
I ∪ Eout

I (12)

Definition 3.3. (SourceClass-Class Envy Factor, TargetClass-Class Envy Factor): In
order to measure the cohesion of class I, by using weights that corresponds to edge sets
Ein

I and Eout
I , SourceClass-Class Envy Factor (SC CEF (VI)) is defined to calculate the

envy ratio that methods of source class I calls features belonging to source class I and
the whole software, SC CEF (VI) can measure the cohesion of class I. Thus, for each
feature node vIk of V Can, the target class J is corresponding to vIk, TargetClass-Class
Envy Factor (TC CEF (VJ)) is defined to calculate the envy ratio that methods of target
class J call features belonging to target class J and the whole software, and SC CEF (VI)



784 W.C. Jiang, J.T. Wu, X.X. Zhang, W.H. Zhu

can measure the cohesion of class J . SC CEF (VI) and (TC CEF (VJ)) are calculated as
follows:

SC CEF (VI) =

∑
vIk∈VI

∑
wIkJl∈W in

Ik
(wIkJl)∑

vIk∈VI

∑
wIkJl∈W in

Ik
(wIkJl) +

∑
vIk∈VI

∑
wIkJl∈W out

Ik
(wIkJl)

(13)

TC CEF (VJ) =

∑
vJl∈VJ

∑
wIkJl∈W in

Jl
(wIkJl)∑

vJl∈VJ

∑
wIkJl∈W in

Jl
(wIkJl) +

∑
vJl∈VJ

∑
wIkJl∈W out

Jl
(wIkJl)

(14)

where W in
Jl and W out

Jl are weight sets corresponding to edge sets Ein
Jl and Eout

Jl , and Ein
Jl

and Eout
Jl represent the two types edge sets of EIk respectively.

Let node vIk belong to one target class J , the nodes of the source class I, nodes of
the target class J and dependency relationships between these nodes will change. That
is, the cohesion of class I and class J also will change. Thus, we will recalculate the
Feature-Class Envy Factor F CEF (vIk)

′, SourceClass-Class Envy Factor SC CEF (VJ)
′

and TargetClass-Class Envy Factor TC CEF (VJ)
′
by using the following formulas:

F CEF (vIk)
′ =

∑
(wIkJl∈W out

Ik )(wIkJl)∑
(wIkJl∈W in

Ik )
(wIkJl) +

∑
(wIkJl∈W out

Ik )(wIkJl)
(15)

SC CEF (VI)
′
=

∑
vIk∈VI

∑
wIkJl∈W in

Ik
(wIkJl)−

∑
(wIkJl∈W in

Ik )
(wIkJl)∑

vIk∈VI

∑
wIkJl∈W in

Ik
(wIkJl) +

∑
vIk∈VI

∑
wIkJl∈W out

Ik
(wIkJl)

(16)

TC CEF (VJ)
′
=

∑
vJl∈VJ

∑
wIkJl∈W in

Jl
(wIkJl) +

∑
(wIkJl∈W in

Jl )
(wIkJl)∑

vJl∈VJ

∑
wIkJl∈W in

Jl
(wIkJl) +

∑
vJl∈VJ

∑
wIkJl∈W out

Jl
(wIkJl)

(17)

The change of Feature-Class Envy Factor can reflect the difference of node vIk envy
source class and target class, the change of SourceClass-Class Envy Factor and TargetClass-
Class Envy Factor can reflect the changes of cohesion of source class and target class
before and after node vIk movement. Then the change of Feature-Class Envy Factor
∆F CEF (vIk), SourceClass-Class Envy Factor ∆SC CEF (VI), and TargetClass-Class
Envy Factor ∆TC CEF (VJ) are also recalculated as follows:

∆F CEF (vIk) = F CEF (vIk)
′ − F CEF (vIk) (18)

∆SC CEF (VI) = SC CEF (VI)
′ − SC CEF (VI) (19)

∆TC CEF (VJ) = TC CEF (VJ)
′ − TC CEF (VJ) (20)

Definition 3.4. (Feature Envy metric): By calculating that the feature node belongs to
different classes, the information of the class containing the feature in G, resulting in
the change of the edge information. By calculating the change amount of the envy degree
between the feature itself and the source class and the change amount of cohesion degree
between the source class and the target class, a Feature Envy metric FE(vIk) of vIk is
defined. The Feature Envy metric FE(vIk) can be used to control whether vIk accepts
movement operations during the process of community detection. By using the dependency
relationship that feature node vIk belongs to source class I, and the dependency relationship
that vIk belongs to target class J , FE(vIk) is calculated as follows:

FE(vIk) = ∆F CEF (vIk) + ∆SC CEF (VI) + ∆TC CEF (VJ) (21)



Bad Smells Identification using Community Detected based on Feature Envy Metric 785

4. Bad Smells Identification Algorithm using Community Detection. By using
the feature envy metric, the bad smells identification algorithm using community detection
(BSICD) is proposed. The algorithm can identify the feature envy bad smells in the
feature level of one software, which can be divided into four stages. First of all, we
extract a software as a directed weighted feature dependency software network G. Then,
the candidate feature node set V Can and the candidate class set CCan are obtained.
Third, the community detection starts from a state that each feature belongs to a specific
community, in which the feature is defined, and it is not a random community as that
in [12]. For each node vIk of V Can, the feature envy metric FE(vIk) is designed. And
community detection is proceeded by feature-moving operations based on the feature envy
metric. In this stage, the moving operation of vIk can be controlled by using FE(vIk).
And FE(vIk) decides whether accept or reject this feature movement. When FE(vIk) is
greater than 0, vIk accepts the feature movement, otherwise, vIk rejects the movement.
Finally, the new communities can be obtained after moving operations. Compared with
nature communities, if a feature is not in nature community, it will be identified as the
feature envy bad smell. The algorithm is described as follows:

Algorithm

Input: an objected oriented software
Output: feature envy bad smells
(1) For each class I of software do 2-6
(2) For each feature k (method k or attribute k) of class I do 3-6
(3) Extract feature k as node vIk and put it into node set vI , put vI into node set v;
(4) If (vIk calls other vJl ) do 5-6
(5) Extract the dependency relationship as a directed edge eIkJl and put it into edge

set E;
(6) Extract call times as weight wIkJl and put it into edge set W ;
(7) For each e(vIk, vJl) in E do 8-10
(8) If (f(eIkJl)=1) do 9-10
(9) Put eIkJl into edge set ECan, put vIk and vJl into node set V Can;
(10) Put fc(vIk) and fc(vJl) into class set CCan;
(11) For each node vIk of V Can with 12-16
(12) Feature-Class Envy Factor F CEF (vIk) is calculated by Formula (7);
(13) SourceClass-Class Envy Factor SC CEF (VI) and TargetClass-Class Envy Fac-

tor TC CEF (VJ) are calculated by Formulas (13) and (14);
(14) When vIk belong to target class J , F CEF (vIk)

′, SC CEF (VI)
′ and

TC CEF (VJ)
′ are calculated by Formulas (15), (16) and (17);

(15) ∆F CEF (vIk), ∆SC CEF (VI), ∆TC CEF (VJ) are calculated by Formulas
(18), (19) and (20);
(16) Feature envy metric is calculated with 12-16;
(17) For each node vIk in G do 19-20;
(18) Every node belongs to a specific community;
(19) When the feature envy metric FE(vIk) is greater than 0, we move node vIk of

V Can from source class to target class;
(20) With 19-20, new communities can be obtained;
(21) Compare with nature communities, the feature envy bad smell can be identified.



786 W.C. Jiang, J.T. Wu, X.X. Zhang, W.H. Zhu

5. Experiments. Firstly, modularity [15] is used to evaluate effectiveness of the proposed
approach BSICD. Then, to evaluate accuracy of BSICD, we compare the identified
result with that of two other approaches FEED [10] and JDeodorant [8, 16]. FEED
is a feature envy detection algorithm based on dataflow analysis. JDeodorant (version
5.0.0.201611112330) is a refactoring tool, which adapts the moving-method refactoring to
identify bad smells.

5.1. Experiment Object. The experiment has been conducted on the objected oriented
software Colt [17, 18]. As written in Java, Colt provides an open source library for high-
performance scientific and technical computing with strong callability and reusability.
The average LCOM value in CK metrics suite indicates that Colt system has poor co-
hesion. The CK metrics can measure cohesion and coupling of software and reflect the
viewpoints of experienced of software. From the perspective of modularity, Colt has obvi-
ous community structures, which has advantages in using community detection to identify
feature envy bad smells. Colt is abstracted as a directed weighted feature dependency
software network, and the basic information is shown as Table 1 and the software network
is shown as Figure 1. There are 125 classes in Colt, which indicates 125 communities in
the start state during the community detection of BSICD, and each colour in the Figure
1 denotes one community. In section 5.3, the three community structures represented by
the three colours in Figure 1 will be studied and analysed.

Table 1. Basic information of the directed weighted feature dependency
software network of Colt

Software Version Number
of nodes

Number
of edges

Number
of classes

Number of
edges in ECan

Number of
nodes in
CCan

Colt 1.0.1 4375 6861 125 1101 1260

Figure 1. The directed weighted feature dependency software network of
Colt



Bad Smells Identification using Community Detected based on Feature Envy Metric 787

5.2. Modularity. The feature envy bad smells of BSICD identified and its source class
are shown as Table 2. In order to evaluate the effectiveness of BSICD, we calculate the
modularity value of results of BSICD. And the feature envy nodes in software network
are evaluated in the Table 3 from modularity perspective.

Table 2. Feature envy bad smells of BSICD identified

Number Feature envy nodes Features Classes
1 1139 Keys AbstractDoubleIntMap
2 196 Sort Sorting
3 1081 Beta Random
4 1688 zdemo1 DenseObjectMatrix3D
5 1519 toList DoubleFactory1D
6 1227 SparseDoubleMatrix3D SparseDoubleMatrix3D
7 3445 random DoubleFactory2D
8 4347 composeDiagonal DoubleFactory1D
9 2446 doubleTest31() TestMatrix2D
10 136 like2D DenseObjectMatrix3D

Table 3. Modularity of the identified feature envy bad smells of BSICD

Feature
The source class The target class

The whole
node software

number QS Q′
S ∆QS number QT Q′

T ∆QT ∆Q
1139 107 0.56 0.578 0.018 111 0.658 0.658 0.000 0.018
196 197 0.530 0.578 0.048 205 0.537 0.549 0.012 0.06
1081 197 0.530 0.537 0.007 201 0.607 0.633 0.026 0.033
1688 125 0.460 0.444 -0.016 131 0.643 0.674 0.031 0.015
1519 128 0.724 0.746 0.022 126 0.704 0.708 0.004 0.026
1227 171 0.858 0.857 -0.001 141 0.626 0.628 0.002 0.001
3445 129 0.527 0.528 0.001 221 0.760 0.763 0.003 0.004
4374 128 0.686 0.724 0.038 221 0.761 0.759 -0.002 0.036
2446 175 0.628 0.617 -0.011 177 0.550 0.587 0.037 0.026
136 150 0.750 0.777 0.027 149 0.722 0.703 -0.019 0.008

Modularity can be used to calculate the class cohesion of Colt as shown in Table 2.
Before taking a feature-moving operation, we calculate the modularity QS of the source
class of one feature with Gephi tool [19]. And after taking the feature-moving operation,
the modularity Q′

S of the source class of one feature is calculated. Then, ∆QS = Q′
S−QS,

which can reflect the variation of the source class in modularity QS.
Similarity with modularity calculation of the source class, QT , Q

′
T and ∆QT are cal-

culated to represent the modularity of target class of the feature. QT represents the
modularity before taking the feature-moving operation, Q′

T represents the modularity
after taking moving operation, ∆QT represents the change of modularity.

For a feature envy bad smell, ∆Q = ∆QS +∆QT , which can reflect changing in modu-
larity of the whole software of Colt. For each row in Table 3, when both ∆QS and ∆QT of
a feature node are greater than 0, moreover, ∆Q is greater than 0, as a result, the cohesion
of the source class I and the target class J of the feature are increased. For every feature



788 W.C. Jiang, J.T. Wu, X.X. Zhang, W.H. Zhu

node in Table 3, although not all ∆QS and ∆QT are greater than 0, ∆Q is greater than
0. Once ∆Q of one feature is greater than 0, the cohesion of the whole software of Colt
is increased, which means that the feature moving operation is meaningful. That is, the
feature should be defined in its target class and it is identified a feature envy bad smell.

When feature envy nodes in Table 3 move to the target class in turn, the Figure 2 is used
to represented the variation trend of modularity of the software network. The abscissa
represents the feature envy nodes of Table 2, the ordinate represents the variation of
Colt in modularity. As shown in Figure 2, after the feature envy node moved into the
target class one by one, the modularity value of the whole software network gradually
increases. The modularity value increase and the whole system Colt shows an upward
trend, which means the whole system Colt more consistent with the software design rule
of high cohesion and low coupling.

Figure 2. Variation of the Colt in modularity

Based on the above analysis of the Table 3 and Figure 2, the feature envy nodes in
Table 2 can be evaluated effectively by BSICD.

5.3. Comparison with FEED. The feature envy bad smells will be divided into two
types. The two types of feature envy bad smells are shown as Figure 3. The method
of the first type is more interested in another class than the one it actually in. When
feature k calls features k1, k2, k3 of class J , and feature k does call any features of class
I. Feature k is called as the first type of feature envy bad smells. The method of the
second type is interested in the other classes than the one it actually is in. That is, when
feature k calls features in J1 and J2, the sum number of calling features is greater than
that of source class I, feature k is the second feature envy bad smell.

The proposed approach BSICD can identify the both two types of bad smells, but the
FEED algorithm is not feasible for the second type bad smells identification. We give
one case to evaluate the advantage of BSICD and disadvantage of FEED on the second
type feature envy bad smells. Method sample() of class DoubleFactory2D is a feature
envy bad smell, which is detected by BSICD. The method sample() is defined in class
DoubleFactory2D. It calls two methods that belong to class DoubleFactory2D and is
called by four methods that belong to two other different classes BenchmarkMatrix and
TestMatrix2D. From the call relationships of sample(), sample() fits the second type of
feature envy bad smells.



Bad Smells Identification using Community Detected based on Feature Envy Metric 789

Figure 3. Variation of the Colt in modularity

BSICD algorithm can identify the second type bad smells. In the start state of BSICD
algorithm, the community that sample() belongs to and the communities that have de-
pendency relationships with sample() are shown in Figure 4. The purple circle shows the
community 1 that class DoubleFactory2D belongs to. The green circle shows the commu-
nity 2 that class BenchmarkMatrix belongs to. The yellow circle shows the community 3
that class TestMatrix2D belongs to. The class DoubleFactory2D is the source class, the
class BenchmarkMatrix and TestMatrix2D are target classes. From the Figure 4(A),
the feature node 922, 3229, 3468, 3477, 3380, 4682, 1169 are placed into the V Can using
the formula (1). And the edges of feature nodes as Figure 4(B).

(a) The dependency relationships of sample() with
three communities

(b) The dependency relationships of
sample()

Figure 4. Local software network of sample()

From the Figure 4(B), the relationships between feature node 922 and the feature nodes
of source class are not closeness. The sample() is more interested in the target classes
than class. F CEF (vIk) can be calculated by using the formula (8), which considers
the dependency relationship between sample() and the community 2, the dependency
relationship between sample() and the community 3 as a whole, we can calculate the
FE(vIk) of feature nodes of V Can.

From Table 4, only the FE(vIk) of feature node 922 greater than 0. The feature node
922 accepts feature movement during community detection. The sample() is identified



790 W.C. Jiang, J.T. Wu, X.X. Zhang, W.H. Zhu

Table 4. FE(vIk) of feature nodes of V Can

Feature

node

F CEF (vIk) F CEF (vIk)
′ SC CEF (VI) SC CEF (VI)

′ TC CEF (VJ ) TC CEF (VJ )
′ FE(vIk)

922 2/9 4/9 5/18 2/18 3/19 7/19 0.266
3229 2/3 1/3 5/18 4/18 4/19 4/21 -0.408
3468 1/2 1/2 5/18 5/18 3/19 3/19 0
3477 1/2 1/2 5/29 5/29 5/18 5/18 0
3380 2/3 1/3 5/29 4/27 5/18 7/19 -0.266
4682 2/5 3/5 4/19 2/16 5/18 2/21 -0.068
1169 1/2 1/2 4/19 4/19 5/18 5/18 0

as the feature envy bad smell. Because the sample() call features of different classes, the
sample() is the second type of feature envy bad smells.

Furthermore, we analyse the reason of FEED algorithm can not identify the second
type of feature envy bad smell. As the statement granularity is considered as the smell
detection unit in FEED algorithm, when different methods calling features of different
classes envies the same method, the parameter of calling will be calculated for different
classes. Method run() of classBenchmarkMatrix calls sample(), method runSpecial() of
class BenchmarkMatrix calls sample(), method doubleTest23() of TestMatrix2D calls
sample(), and method doubleTest29() of TestMatrix2D calls sample(). For the method
sample(), the parameter of calling of Benchmark is equal to 2, and the parameter of
calling of TestMatrix2D is equal to 2. Since sample() calls two features that its source
class, so the FEED algorithm can not detect the sample() as the feature envy bad smell.
As a result, feature envy bad smells of the second type can not be identify by FEED

algorithm, However, the feature envy bad smells of the second type can be identify by
BSICD algorithm. Compare with FEED algorithm, BSICD algorithm can identify
one more type of bad smells than FEED algorithm.

5.4. Comparison with JDeodorant. As an Eclipse plug-in tool, JDeodorant identifies
feature envy bad smells by applying the moving-method refactoring. In order to illustrate
the accuracy of BSICD, we compare the identified results with that of JDeodorant under
two evaluation criteria.

(1)True Positive: Feature envy bad smells that can both be identified by and JDeodor-
ant;

(2)False Positive: Feature envy bad smells that can not be identified by or JDeodorant.
BSICD can identify 25 feature envy bad smells of Colt, however JDeodorant can

identify only 23 bad smells. As shown in the Table 5, these 23 bad smells can be repre-
sented under the criteria of true positive. There are two methodsDenseObjectMatrix3D.
like2D() and TestMatrix2D. doubleTest31() that are identified by BSICD and not
identified by JDeodorant. The advantage of BSICD can be shown under the criteria of
false positive.

Table 5. Feature envy smells of Colt under BSICD and JDeodorant.

BSICD JDeodorant
True Positive 25 23
False Positive 0 2



Bad Smells Identification using Community Detected based on Feature Envy Metric 791

In order to prove these two methods DenseObjectMatrix3D. like2D() and TestMatr-
ix2D. doubleTest31() are feature envy bad smells, we use the Coupling between object
classes (CBO) [20] from the CK suite to evaluate the advantage of BSICD. CBO for
a class is a count of the features number of other classes to which it is coupled. Good
software design practice calls for minimizing coupling. We calculate the CBO of classes
of like2D() and doubleTest31() belonging to.

Firstly, the feature calling graph of like2D() can be extracted by using Doxygen [21]
tool. From feature calling graph, we can calculate the CBO of like2D(). As we can ob-
serve from the feature calling graph of Figure 5, because the method like2D() heavy
uses methods and attributes of class AbstracMatrix3D, and like2D() does not use
any methods and attributes of class DenseObjectMatrix3D, and the coupling between
class DenseObjectMatrix3D and class AbstractMatrix3D is too high. The CBO of
DenseObjectMatrix3D is 2. If the like2D() belongs to AbstracMatrix3D, the CBO of
class DenseObjectMatrix3D is 0. According to the good software design practice and
the definition of feature envy bad smells, the method like2D() is a feature envy bad smell.

Figure 5. Feature calling graph of method like2D()

Secondly, from the feature calling graph of the method doubleTest31() in Figure 6, be-
cause doubleTest31() calls features of class DoubleMatrix1D and DoubleFactory1D, the
CBO of class TestMatrix2D is 5. If doubleTest31() belong to class DoubleFactory1D,
the CBO of TestMatrix2D is 0, and the CBO of DoubleFactory1D is 3, which the
coupling of the class TestMatrix2D is decreased. If doubleTest31() belong to class
DoubleMatrix1D, the CBO of DoubleMatrix1D is 2, which the coupling of the class
DoubleFactory1D is decreased. When doubleTest31() belongs to different classes, the
CBO changes of the whole system are shown in Table 6.

Table 6. CBO of classes under doubleTest31() belongs to different classes.

CBO of
TestMatrix2D

CBO of
DoubleFactory1D

CBO of
DoubleMatrix1D

CBO of
Software

doubleTest31() belongs to
TestMatrix2D

5 0 0 5

doubleTest31() belongs to
DoubleFactory1D

0 3 0 3

doubleTest31() belongs to
DoubleMatrix1D

0 0 2 2

From Table 6, we know that the CBO of the whole software is decreased, which is con-
sistent with design rules of low coupling. That is to say, when the method doubleTest31()



792 W.C. Jiang, J.T. Wu, X.X. Zhang, W.H. Zhu

Figure 6. Feature calling graph of method doubleTest31()

belongs to class DoubleMatrix1D, the coupling of whole system is the lowest. And the
CBO of classes of whole software can be shown as Figure 7, the different colours represent
that the doubleTest31() belongs to different classes. From the Figure 7, we can know
that the CBO of whole software is the lowest, when the method doubleTest31() belongs
to class DoubleMatrix1D. As a result, the method doubleTest31() should not be de-
fined in class TestMatrix2D, and the method doubleTest31() should be defined in class
DoubleMatrix1D. It can prove that doubleTest31() is a feature envy bad smell.

Figure 7. The CBO of classes under doubleTest31() belongs to different
classes.

As the feature envy bad smells, methods like2D() and doubleTest31() are only detected
by our bad smells identification algorithm BSICD, in comparison with JDeodorant,
BSICD is more accurate in identifying feature envy bad smells.



Bad Smells Identification using Community Detected based on Feature Envy Metric 793

6. Conclusion and future work. This paper proposes a feature envy metric based
on feature membership parameters and the metric can be used to control community
detection by a series of feature-moving operations. A bad smells identification algorithm
using community detection is designed to identify the feature envy bad smells. In addition,
for two types of feature envy bad smells we can both identify. The first type is a feature
envies methods or attributes that belong to one class, the second type is that a feature
envies features that belong to different classes. Compare with JDeodorant, our approach
can provide a more accurate identification. Compare with FEED, our approach can
identify the second type feature envy bad smells.

In the future, we would like to improve the technology of abstracting object oriented
software systems into the software networks of levels of feature and class. We plan to
consider identify bad smells of over coupling in class level.

Acknowledgment. This work was supported in part by the Research Project of the Edu-
cation Department of Jilin Province under Grant JJKH20190706KJ and in part by Science
and technology innovation development program of Jilin under Grant 20190104140.

REFERENCES

[1] R. Oliveto, M. Gethers, G. Bavota, D. Poshyvanyk and A. De Lucia, “Identifying method friendships
to remove the feature envy bad smell: NIRE track,” 2011 33rd International Conference on Software
Engineering(ICSE), pp. 820–823, 2011.

[2] H. Xiao, M. H. Cao and R. Peng, “Artificial neural network based software fault detection and
correction prediction models considering testing effort,” Applied Soft Computing, vol. 94, 106491,
2020.

[3] B. L. Sousa, P. P. Souza, E. M. Fernandes, K. A.M. Ferreira and M. A.S. Bigonha, “FindSmells: flex-
ible composition of bad smell detection strategies,” 2017 IEEE/ACM 25th International Conference
on Program Comprehension(ICPC), pp. 360–363, 2017.

[4] M. Fowler, “Refactoring: improving the design of existing code,” Xp Universe and First Agile Uni-
verse Conference on Extreme Programming and Agile Methods-xp/agile Universe.Springer-Verlag,
2013.

[5] W. F. Pan, B. Jiang and Y. Xu, “Refactoring packages of object-oriented software using genetic
algorithm based community detection technique,” International journal of computer applications in
technology, vol. 48, no. 3, pp. 185–194, 2013.

[6] W. F. Pan, B. Li, Y. T. Ma, J. Liu and Y. Y. Qin, “Class structure refactoring of object oriented
softwares using community detection in dependency networks,” Frontiers of Computer Science, vol.
3, no. 3, pp. 396–404, 2009.

[7] G. Saranya, H. K. Nehemiah, A. Kannan and V. Nithya, “Model level code smell detection using
egapso based on similarity measures,” Alexandria engineering journal, vol. 57, no. 3, pp. 1631–1642,
2018.

[8] N. Tsantalis, A. Chatzigeorgiou, “Identifification of move method refactoring opportunities,” IEEE
Transactions on Software Engineering, vol. 35, no. 3, pp. 347–367, 2009.

[9] Á. Kiss, P. F. Mihancea, “Towards feature envy design flaw detection at block level,” 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pp. 2576–3148, 2018.

[10] W. K. Chen, C. H. Liu and B. H. Li, “A feature envy detection method based on dataflow analysis,”
2018 IEEE 42nd Annual Computer Software and Applications conference, pp. 93–102, 2018.

[11] H. Liu, Z. Xu and Y. Zhou, “Deep learning based feature envy detection,” 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering, pp. 385–396, 2018.

[12] P. He, P. Wang, B. Li and S. W. Hu, “An evolution analysis of software system based on multi-
granularity software network,” ACTA ELECTONICA SINICA, vol. 46, no. 2, pp. 257–267, 2015.

[13] M. E. Newman, M. Girvan, “Finding and evaluating community structure in networks,” Physical
review E, vol. 69, no. 2, pp. 12–220, 2004.

[14] C. M. Chen, L. Chen, W. Gan, L. Qiu and W. Ding, “Discovering high utility-occupancy patterns
from uncertain data,” Information Sciences, vol. 546, pp. 1208–1229, 2021.

[15] M. S. Zanetti, F. Schweitzer, “A network perspective on software modularity,” Computer Science
Software Engineering, pp. 175–186, 2013.



794 W.C. Jiang, J.T. Wu, X.X. Zhang, W.H. Zhu

[16] M. Fokaefs, N. Tsantalis and A. Chatzigeorgiou, “Jdeodorant: Identification and removal of feature
envy bad smells,” IEEE International Conference on Software Maintenance, vol. 42, pp. 14–19, 2018.

[17] J. Liu, B. Liu and D. Li, “Discovering protein complexes from protein-protein interaction data by
local cluster detecting algorithm,” Fourth International Conference on Fuzzy Systems and Knowledge
Discovery, pp. 280–284, 2007.

[18] J. Liu, K. Q. He, R. Peng and Y. T. Ma, “A study on the weight and topology corrlation of object ori-
ented software coupling network,” International Conference on Complex Systems and Applications,
vol. 13, pp. 955–959, 2006.

[19] V. D. Blondel, J. L. Guillaume, R. Lambiotte and E. Lefebvre, “Fast unfolding of communities in
large networks,” Journal of Statistical Mechanics: Theory and Experiment, vol. 10, pp. 1–7, 2008.

[20] A. Henderson-Sellers, A. J. Pitman, B. Henderson-Sellers, D. Pollard and J. M. Verner, “Applying
Software Engineering Metrics to Land Surface Parameterization Schemes,” Journal of Climate, vol.
8, no. 5, pp. 1043–1059, 2009.

[21] D. V. Heesch, “Doxygen: Source code documentation generator tool,” http://www.doxygen.org,
2008.


