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ABSTRACT. Mapping an unfamiliar environment is one of the essential tasks in suc-
cess prerequisite for accurate navigation of mobile robots. This study suggests an indoor
machine 2D Lidar mapping based on the cartographer algorithm using synchronous local-
ization and mapping (SLAM) for mobile robot navigation. In the experimental section,
two scenarios: in simulation and systems in actual experiments are carried out to eval-
uate the suggested approach. A built crawler mobile robot test is mainly equipped with
Lidar A1 radar and the Jetson nano main control board with running memory for a
real scenario. A robot operating system (ROS) is used to construct a simulation envi-
ronment for making mainstream map implementation as in an indoor portable machine
test. The obtained experimental results of the suggested approach are compared with the
other schemes, such as the G-mapping and Hector approaches, from the perspectives of
synchronous positioning and mapping accuracy, computational complexity, and mapping
efficiency. The results show that the introduced Cartographer SLAM algorithm performs
best in an unfamiliar indoor environment.

Keywords: Indoor mobile robot mapping; Simultaneous localization and mapping
(SLAM); Robot operating system (ROS); 2D lidar; Indoor mobile robot

1. Introduction. In an unknown indoor environment, a mobile robot uses sensor infor-
mation to locate itself and construct an environment map in real-time, called synchronous
localization and mapping (SLAM)[1, 2]. The mobile robot must select the appropriate
SLAM algorithm to establish an accurate environment map in the unknown environment
[3]. 2D lidar has the advantages of solid robustness, good economy, high accuracy, and
small cumulative error [4, 5]. It stands out among many sensors and is often used as
the first choice for an indoor mobile robot to construct environment maps and positions
[6]. Many SLAM algorithms are developed based on 2D light detection and ranging laser
(Lidar) under a robot operating system with sensor and robot technology [7]. Several
popular SLAM algorithms have been proposed in the platform for robot development
with a robot operating system (ROS), e.g., the G.mapping [8], and Hector [9] schemes.
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ROS has been widely used in the robot industry worldwide because it is considered a
robot project software platform for robot development [10].

A recently developed SLAM scheme potential method called Cartographer has been
proposed based on a 2D Lidar with ROS [11]. The cartographer has advantages, e.g.,
high code reuse rate, simple structure, rich software kits, and free and open-source. The
mapping in unfamiliar environments with appropriate algorithms is a challenging issue
for success prerequisite for accurate navigation of mobile robots.

This study suggests an indoor machine 2D Lidar mapping based on the cartographer-
Slam algorithm for mobile robot navigation. As in an indoor portable machine test,
a simulation environment is constructed with ROS for map building in an unfamiliar
indoor environment. After building the map, the main task is to evaluate the results of
the suggested scheme in comparison with the other algorithms in the literature [12, 13].
In the experimental section, different slam systems are used as test scenarios based on the
2D lidar of the slam system [14], such as the slam system based on a monocular camera
[15] and the slam system based on a stereo camera [16] are tested and compared on the
same data set [17]. The obtained experimental results of the suggested approach are
compared with the other schemes, such as the G-mapping, and Hector approaches, in the
perspectives of synchronous positioning and mapping accuracy, computational complexity,
and mapping efficiency [18]. The results show that the introduced Cartographer SLAM
algorithm performs best in an unfamiliar indoor environment. The contributions of the
paper are highlighted as follows.

e The cartographer SLAM algorithm applies to indoor machine mapping for the first
time.

e The slam algorithms intuitively from the environment are reviewed with validating
performance and discussion about their advantages and disadvantages.

e The iterative nearest point method, structural similarity index and Hausdorff dis-
tance are proposed to compare the maps constructed by the turtle bot3 mobile robot.

The results directly discuss efficiency and accuracy in Orb SLAM2 with rich 3D en-
vironment features on the map. The rest of the paper is organized as follows: the first
section introduces the necessity of mapping an unfamiliar environment as one of the es-
sential tasks in the success prerequisite for accurate navigation of mobile robots. The
second section describes the principle of the SLAM algorithm. The slam map evaluation
standard is proposed in the second section, and then the simulation and accurate experi-
ment results are analyzed in the fourth section. The final section summarizes the research
conclusions and prospects.

2. Cartographer - SLAM Algorithm. Cartographer-SLAM algorithm [11] is a recent
SLAM graph optimal mapping algorithm that adapted the scene with a large area with
closed-loop detection to eliminate the error and avoid faulty construction. The main
goal of SLAM, based on graph optimization, is to create a real-time pose map for a
mobile robot. The node represents the robot’s stance, while the edge represents the
transformation relationship between each node. In contrast to the SLAM, The SLAM
based on graph optimization is divided into two modules based on the filtering method:
the front-end and the back-end, with the back-end introducing the closed-loop detection
connection. As a result, the SLAM based on graph optimization is divided into the front-
end module and the back-end module, as opposed to the particle filter algorithm. The
graph optimization algorithm is capable of adapting to a large-scale scenario. Closed-
loop detection can detect the error and prevent improper construction caused by the
accumulation of errors [11].
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The cartographer framework has three main components: local mapping, closed-loop
detection, and global mapping. Unlike other slam lidar algorithms, the concept of submap
is introduced into the front end of the cartographer algorithm. When the front-end carries
out data extraction and data association, a subgraph is formed every time the lidar scans.
The data frame obtained from each scan will be compared with the previous sub-graph
and inserted into the last sub-graph. The updating and optimization of the sub-graph
depend on the continuous insertion of the data frame. A complete optimized sub-graph
will be formed whenever no data frame is inserted. Here, the non-linear least square
method is used to solve the problem. The objective function of posture optimization is
modeled to effectively reduce the cumulative error in local mapping over iterations, several
subgraphs, namely local maps, as follows.

K
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where T is the relative transfer matrix; hy, is the data point in the radar frame; Mp,o0tn
is a bicubic interpolation function. The closed-loop detection is carried out to the existence
of the accumulated position and pose error of local mapping, the map constructed by the
robot has the problem of ghosting. The global constraint method is used to construct
the closed-loop constraint to improve the efficiency of the whole pose detection. The
bicubic interpolation function is used to determine the radar scan profile . The matching
degree between and local subgraph. The cartographer uses a sparse pose map to do
global optimization, and the global pose of the robot corresponding to all radar frame:

= ={¢°),7 = 1,2, - -, n. Global pose corresponding to all local subgraphs: =™ =
{5]5} ,j = 1,2,-- - n. The mathematical expression of the global mapping is shown as

follows. The mathematical expression of the global mapping is shown as follows.
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where ¢ and jare the serial number of radar scanning frame and the subgraph number, p
is loss function that used to punish those errors that are too large. When the closed-loop
is detected, all the pose values in the whole pose map are optimized globally: =Z*and Z™.
All the positions and poses in the algorithm will be modified, and the corresponding map
points on each pose will be modified accordingly, which is called global mapping. The
cartographer principle [11] is shown in Figure 1.

3. An Indoor Machine Mapping with Cartographer.

3.1. Space Workload Environment Setting. The described equipment and environ-
ment are presented as follows. A center controller with a notebook with i7-11800, an
8-core processor, and 16GB running memory is used for the experiment [14]. A built-in
gazebo based on ROS is used as a mobile robot model simulator [19]. A built crawler
mobile robot is used as the test robot that is mainly equipped with rplidar A1 radar of
Silan technology, and the main control board is Jetson nano with running memory of
4GB. Figure 2 shows a crawler mobile robot with Silan technology plidar A1 radar, main
control nano board, and 4GB memory [16]. The center device can connect the mobile
robot through SSH command in the slave terminal, control its movement and complete
the map construction on the slave machine .

The environment space is a large-scale in door house. It can be a closed warehouse for
setting a large-scale environment. Figure 3 displays a closed house using the laboratory
as actual mapping construction.
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FIGURE 1. Schematic diagram of cartographer SLAM algorithm

FIGURE 2. A mobile robot with Crawler

3.2. A Map Construction Process. The assumed robot is mainly equipped with rpl-
idar A1 radar of Silan technology, and the main control board is Jetson nano with a
running memory of 4GB. An unfamiliar environment is set in the map construction en-
vironment, subsequent steps of mobile robot precise navigation are set to prepare with
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FIGURE 3. An example of a real closed house used in actual mapping construction

safety obstacle avoidance, and the corresponding evaluation criteria must be established.
The suggested scheme is mainly implemented in the map construction process as follows.

1. The SLAM algorithm’s precision has visually assessed the map for flaws, ambiguity,
and jaggedness, as well as whether the features are visible. The algorithm’s accuracy,
the distance between essential feature points represented in the map, such as the
distance between the wall and so on, can be made more intuitive.

2. The time spent building the map with the environment map, following the same
route, and moving at the same speed until the finished map with closed-loop detec-
tion. The position and pose error of local mapping is implemented in complete pose
detection.

3. The algorithm’s complexity is represented in the CPU occupancy rate. The greater
the algorithm’s occupancy rate, the more complicated the algorithm is; on the other
hand, the lower the algorithm’s complexity.

4. Experimental Results and Discussion. There are two scenarios for testing the
suggested scheme: scenarios in simulation and systems in actual experiments. The out-
come results of the proposed approach are compared with the other methods, e.g., the
G-mapping [8] and Hector [9] SLAM algorithms, to evaluate the suggested scheme’s per-
formance.

4.1. Results with Scenarios in Simulation. The slam algorithms are set in the same
conditions in order to compare the accuracy. Several feature points are selected in the
simulation environment with a built-in gazebo based on ROS. The calculated absolute
value data and absolute error data of the algorithms are compared with the measured
values of the algorithms. Figure 4 shows the comparison line chart of the relative error of
the three algorithms. The map constructed results are of the suggested scheme smoother
and more precise than the other two algorithms, with small and few sawteeth, and the
contour of obstacles is relatively complete.

In the observation from Figure 4, it can be seen the advantages and disadvantages of the
accuracy of the algorithms. The maximum absolute error of the suggested cartographer
is 4.44% the minimum is 0%, and the variance is 0.076, while the maximum absolute
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FiGURE 4. Comparison of absolute relative error values of three slam al-
gorithms in simulation

TABLE 1. The results of the comparison of the three methods in simulation scenarios

Algorithm Map accuracy Map completion Minimum CPU Maximum CPU
time (s) utilization utilization

G-mapping 3 1256 19.1% 20.4%

Hector 2 1960 18.9% 19.2%

Cartographer 1 1372 18.4% 19.8%

value of the absolute error of G-mapping is 5.5%, and the minimum value is 0%, and
the variance is 0.105. The absolute error of Hector is 73.0% and the absolute error is
73.0%. Therefore, the cartographer SLAM algorithm has the best stability, the Hector
SLAM algorithm takes second place, and the G-mapping SLAM algorithm [8] is relatively
unstable.

Figure 5 compares the graph map constructed by the proposed cartographer scheme
with the G-mapping and Hector SLAM algorithms. The three slam algorithms can build
the environment map successfully. Remarkably, the outcome of the suggested scheme
Cartographer SLAM algorithm is the best one with the map constructed by the whole is
smoother and more straightforward than the other two algorithms, with small and few
sawteeth, and the contour of obstacles is relatively complete. The resulting mapping of the
Hector SLAM algorithm is better than the G-mapping SLAM algorithm. The sawtooth,
the silhouette of some blocks on the walls on the map of the G-mapping scheme not
recognized completely.

The mobile robot travel at the speed of 0.2m/s, completes the map construction three
times along the same route, records the completion time, and takes the average value.
Table 1 shows the results of the comparison of the three methods with values of ranking
and timing execution. The ranking map accuracy and checking CPU utilization are two
parameters to measure the performance of the methods. The G-mapping algorithm would
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FiGURE 5. The graph map constructed by the algorithms in simulation

take 1256 seconds for map construction completed, and the CPU consumption is higher
than the other two algorithms. It shows that the complexity of the algorithm is slightly
higher. The construction time of the Hector SLAM algorithm, and its CPU utilization
are the lowest. The completion time of the cartographer SLAM algorithm is 1672s, and
the CPU utilization rate is the second.

4.2. Results Systems in Actual Experiment. A mobile robot would be taken the
route and the related route is recorded with the time from the beginning of the robot to
the time when the map is built. Figure 6 shows a real environment constructed mapping
by the suggested algorithm with the G-mapping and Hector algorithms for path mapping.
The cartographer algorithm has the best definition compared with G-mapping and Hector
algorithm. There are many jagged walls on the map constructed by the Hector.

Figure 7 depicts the comparison of the measured error values of the three algorithms.
The compared and analyzed map results show that the suggested scheme outperforms the
algorithms. The corresponding values of feature points in the constructed map are mea-
sured with walls, columns, and stations with noticeable features for testing the accuracy
performance.

The line chart of absolute value comparison of relative errors shows the relative error
of the cartographer SLAM algorithm is far less than that of the other two algorithms.
The maximum absolute value of the relative error of the cartographer SLAM algorithm
is 6.52%, the minimum is 0.000%, and the variance between the measured value of the
feature point map and the actual error is 0.0004. The maximum absolute error of Hector
slam is 14%, the minimum is 0.15%, and the variance is 0.0015. The maximum total value



802 Y. Jie, A. Zhang, Y. Zhong, T.T. Nguyen, T.D. Nguyen

(a) Gmapping-SLAM (b) Hector-SLAM (c) Cartographer-SLAM

FIGURE 6. Real environment map constructed by three algorithms
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FiGure 7. Comparison of relative error values of three slam algorithms in
real scenarios

of the relative error of the G-mapping SLAM algorithm is 13.24%, the minimum is 1.62%,
and the variance is 0.0016. From the perspective of error, the error of the cartographer-
slam algorithm is the smallest, and the variance is also the smallest from the perspective
of error stability, which shows that the cartographer-slam algorithm has the best stability.
The stability of the Hector SLAM algorithm is slightly better than that of the G-mapping
SLAM algorithm, and the error is almost the same as that of the G-mapping algorithm.
On the whole, the accuracy of the cartographer SLAM algorithm ranks first.

In the process of indoor 2D map construction, according to the experimental conditions
and specific environment, the result from the suggested Cartographer SLAM algorithm
constructs a two-dimensional map and the perceived indoor environment information
completion time. It is seen that the accuracy of the suggested Cartographer mapping
algorithm is efficient best compared with the other two algorithms. The CPU utilization
rate of the G-mapping algorithm is higher, which also represents the complexity of the
G-mapping algorithm. Hector algorithm needs the longest time to complete the map and
the lowest efficiency, the CPU utilization is in the middle of the other two algorithms.
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TABLE 2. The results of the comparison of the three approaches in real scenarios

Algorithm Map accuracy Map completion Minimum CPU Maximum CPU
time (s) utilization utilization

Gmapping 3 572 35% 50%

Hector 2 913 32% 43%

Cartographer 1 603 33% 41%

D.

Conclusions. This study investigated mapping an unfamiliar environment for navi-

gation of mobile robots based on the cartographer SLAM algorithm. The construction of
2D lidar maps in an indoor environment is a challenging task as large map construction,
the much error, the high occupation CPU rate, and the increased hardware requirements.
Simulation and actual experiment scenarios are used to evaluate the suggested approach.
A built-in crawler mobile robot test is mainly equipped with Lidar Al radar and the Jet-
son nano main control board with running memory for a real scenario. A robot operating
system (ROS) is used to construct a simulation environment for making mainstream map
implementation as in an indoor portable machine test. The obtained experimental results
of the suggested approach are compared with the other schemes, such as the G-mapping
and Hector approaches, from the perspectives of synchronous positioning and mapping
accuracy, computational complexity, and mapping efficiency. The results show that the

int

roduced Cartographer SLAM algorithm performs best in an unfamiliar indoor environ-

ment. The suggested approach will apply further applications, e.g., the authenticated key
agreement protocol [22, 23] and optimizations [24, 25] in future work.
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