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Abstract. Welding is one of the critical material processing technology in modern in-
dustrial production, the defect detection of which is a key part of the production process.
Porosity is a defect that is easily produced during welding, and the presence of porosity
can degrade the quality of the weld formed. This paper proposes a two-stage approach
based on the Faster R-CNN algorithm for detecting porosity in X-ray images, i.e., locat-
ing the weld seam first and then detecting the porosity, and using FPN for feature fusion,
which effectively solves the problem that it is difficult to detect porosity at different scales
simultaneously, and also includes a sliding window cropping method and an image en-
hancement strategy to further improve the detection effect of porosity.
Keywords: Welding Defects, Object Detection, Feature Fusion, Faster R-CNN

1. Introduction. Welding is widely used in the petrochemical, aerospace, and marine
industries as one of the important material processing processes in modern industrial
production. Welding defects reduce the quality of the welded workpiece, which directly
affects the service life of the welded workpiece and is a dangerous hazard for serious safety
accidents, such as the presence of defects in pressure pipelines, prone to leakage or even
bursting [1]. Welding defects are usually divided into pores, cracks, incomplete fusion,
incomplete penetration, slag inclusion, and other defects. Different welding defects have
different effects on the structural strength, and overall performance of the welded parts,
the presence of porosity defects could reduce the effective bearing cross-sectional area of
the weld and stress concentration, jeopardizing the mechanical properties of the weld.
Therefore, porosity is an important element of weld quality inspection. X-ray detection
technology, ultrasonic testing technology, and metallographic microscope photography
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detection technology are currently the most widely used non-destructive testing techniques
for porosity defects [2]. X-ray detect detection is widely used in the detection of welding
defects because of its intuitive imaging in digital images and the advantages of easy
determining the size and internal location of defects. X-ray defect detection uses X-rays
to penetrate the weld, and because of the difference in the ability of different densities of
material to absorb X-rays, the difference in absorption can be distinguished from different
densities of material, and the defects inside the weld will be reflected in the X-ray image,
as shown in Figure 1. At this stage of industrial welding defect detection, most defects are
identified by the inspector using the naked eye to examine the welding X-ray image. This
method consumes a lot of human resources, has high detection costs, and detection speed
is difficult to meet the growing demand for detection, necessitating the urgent development
of an automatic detection method to achieve intelligent industrial upgrading.

Figure 1. X-ray Defect Detection

With the development of image processing technology, the automated detection of weld-
ing defects based on welding X-ray images has received the attention of many scholars,
and several existing studies have accumulated literature on the segmentation and clas-
sification of welding defects. Zhou et al. [3] proposed a method to construct an ideal
weld background for image silhouette segmentation of suspicious defects, which identifies
suspicious defects and does not qualitatively classify them. Chen et al. [4] proposed an
unsupervised learning-based detection algorithm for constructing ideal weld backgrounds
and test image subtraction to segment porosity defects, which has the advantage of detect-
ing porosity defects without the need for manual marking. This method of constructing
an ideal weld background for silhouetting necessitates a high-quality experimental image
background, as well as a high degree of consistency in the image background. With the
continuous upgrading of hardware platforms, some research workers have implemented the
classification of defects inside the weld seam by using deep learning methods. Boaretto
and Mezzadri Centeno [5] proposed a method based on Multilayer Perceptron and Back-
Propagation Algorithm to classify defective and defect-free weld seams by considering
segmented discontinuous regions in the seam as potential defects. Zhang et al. [6] pro-
posed a multi-model integration framework for the classification of welding defects by
combining the results of two models to determine the presence of a defect. For weld-
ing defect classification, Lei et al. [7] suggested an AlexNet-based multi-feature fusion
technique.
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The above work focuses on the segmentation and classification of welding defects. How-
ever, in practical industrial needs, not only is defect identification required, but also the
determination of the specific location and size of defects in the X-ray image, as well as the
number of defects in the category, such as porosity defects, where the size and number of
porosity in the weld have varying degrees of impact on the quality of welded parts. Due
to the complexity of the welding environment, the imaged welding X-ray images have
unique characteristics: they are mostly large-size images with weak contrast and texture.
As a result, the study object pores are small objects relative to the entire image, and the
pores have variable scale features. In the face of these problems, in order to achieve the
detection of porosity in X-ray images at different scales, this paper further investigates
the object detection algorithms based on deep learning, which are currently divided into
two main categories: one-stage algorithms based on regression and two-stage algorithms
based on region proposals. One-stage algorithms are represented by the YOLO series of
models, which is represented by end-to-end from the input image to direct output category
and bounding box, and is characterized by fast computation but low detection accuracy.
Typical representatives of two-stage algorithms include region-based convolutional neural
network algorithm (R-CNN) [8], Fast R-CNN [9], Faster R-CNN, etc. For the R-CNN
algorithm, each region proposals is fed separately into the convolutional neural network
to extract features. To reduce the time consumed by the region proposals to extract
features using the convolutional neural network, Fast R-CNN only performs feature ex-
traction once for the whole image and uses the selective search method to produce region
proposals, which still consumes a lot of time. 2016 Ren et al. [10] proposed the Faster
R-CNN algorithm, which introduced the Region Proposal Network (RPN) to solve the
above problem, where the first stage extracts feature from the image first, and then uses
RPN to localize the target based on the feature map information to get the candidate
regions. The second stage crops out the corresponding features of the region proposals
located in the feature map and performs the final classification and regression bounding
box by ROI Align of the same size, which is characterized by relatively slow speed but
high detection accuracy and generally higher detection effect than the one-stage algorithm
in the small object detection problem.

This paper proposes a two-stage method based on the Faster R-CNN algorithm for
automatic porosity detection : first, weld seam localization, and then detection of the
internal porosity of the weld seam. Through experimental analysis and comparisons, we
verified the effectiveness of the algorithm on a publicly available dataset (GDXray). The
main contributions of this paper are as follows: (1) A sliding-window cropping method is
given to handle the problem of detecting small objects in large-size images by cropping
the useless noise information in the image background. (2) To address the problem of
porosity being easily missed in weak-contrast X-ray images, global histogram equalization
is applied to enhance the images. (3) Considering that porosity is a multi-scale object and
weld seams also exist in multiple forms, the feature pyramid network(FPN) is introduced
to achieve multi-feature fusion detection to improve the detection effect. This paper
consists of five parts, the first part is the introduction, the second part is the problem
analysis, the third part introduces the theory and methodology, the fourth part is the
experiment and discussion, and finally, the work done is summarized.

2. Problem Analysis. As shown in Figure 2, the welding X-ray images have the fol-
lowing characteristics based on the data presented: weak contrast, and differences in the
background of each image, with a large amount of noise information in the background
that might negatively affect the detection. In addition to the characteristics of the weld
X-ray images, the scale variation of the porosity is also a challenge to be addressed in the
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study. These problems present certain difficulties for the deep learning algorithms used
in this study, which are analyzed in detail below.

Figure 2. X-ray images

2.1. Weak Contrast. The low contrast images make the background of the x-ray images
similar to that of the porosity during model training, resulting in poor feature response
of the network to the porosity, making it difficult to extract effective features, resulting in
missed porosity detection. Therefore, the quality of X-ray images needs to be improved.

2.2. Large Size Images. The GDXray dataset contains X-ray images mostly in the
range of [4000,5000] pixels in length and [1000,2000] pixels in width. Due to the limita-
tion of model input, the images cannot be directly used for model training and testing.
According to statistical data, the smallest porosity is 12Ö16 pixels, and to ensure that
small porosity can also be accurately detected, the X-ray images cannot be directly re-
duced and input to the model, otherwise the features of small porosity will be severely
lost during the process of image downsampling and reduction, making it difficult for the
network to extract effective features. Based on the aforementioned possible problems,
a reasonable cropping of the image is an important precondition to achieving accurate
detection of porosity.

2.3. Multi-Scale Porosity. Through the observation of the dataset, it is found that
there are two shapes of porosity, circular and striped, along with multi-scale variations,
and further, we made a pixel size histogram, as shown in Figure 3. According to the
figure, it can be seen that more porosity has a size below 32Ö32 pixels, and there exists
some porosity with a size more than 96Ö 96 pixels. As the number of network layers
deepens, the semantic information of small porosity is lost in the deep feature extraction
network, while large porosity can only be detected by extracting enough features in the
deep network. The large differences in the shape and scale of porosity lead to the difficulty
for the model to detect both small and large porosity, and it is necessary to implement
multi-feature fusion in the porosity detection task in this paper.
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Figure 3. Histogram of Porosity Pixel Size

3. Theory And Methodology.

3.1. Model Selection. In this paper, we focus on the Faster R-CNN algorithm applied
to weld seam and porosity detection in industrial welding X-ray images.

The Faster R-CNN algorithm consists primarily of extracting feature maps by feeding
the entire image into the feature extraction network, directly generating region proposals
by feeding the feature maps into the RPN, determining whether the anchors are positive
or negative by softmax in the RPN, and then using the bounding box regression to fix
anchors to get exact proposals, and the ROI Pooling layer collects the proposals and
feature maps to calculate the proposal feature maps and input them to the second stage
network for classification and bounding box regression again.

Figure 4 shows the basic network architecture of the Faster R-CNN algorithm. In
subsequent studies, He et al. [11] proposed to change the ROI Pooling layer to the ROI
Align layer, and Lin et al. [12] introduced the FPN into the feature extraction network,
and these improvements further enhanced the detection performance of the Faster R-CNN
algorithm.

Figure 4. Faster R-CNN Network Architecture

3.2. Transfer Learning. The dataset used in this paper is small-scale data, and it is
difficult to retrain the feature extraction network if random initialization of weights is used.
To extract better features from X-ray images, a pre-trained feature extraction network is
used as a feature extractor by combining the transfer learning. The X-ray images dataset
is grayscale since the pre-trained model is based on the ImageNet [13] dataset. As a result,
the feature extraction network needs to be globally fine-tuned during the model training.
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3.3. Sliding Window Cropping. The work of cropping X-ray images can be divided
into the following two steps: First, the weld seam is detected using the weld seam po-
sitioning algorithm, and after determining the specific location of the weld seam, the
cropping width W is determined by the mode of the width of all weld seams. Lower-
than-cut-width weld seams will be trimmed by maintaining a portion of the background,
while higher-than-cut-width weld seams will be trimmed by the original width. Second, a
sliding window is used to crop the weld seam obtained in the first step from left to right
and from top to bottom. The window size is the cropping width W, and the sliding step
size is W - m, where m is the maximum pore width, and the cropped adjacent sub-images
will retain part of the overlapping area to ensure that the pore defects at the edges will not
be destroyed by cropping. The final weld X-ray image with length and width dimensions
of W. The X-ray image cropping process is shown in Figure 5.

Figure 5. X-Ray Image Cropping

3.4. Image Enhancement. For the problem of low contrast, the commonly used grayscale
transformation methods are logarithmic transformation, gamma transformation, histogram
equalization, etc. Through several experiments and analyses, as shown in Figure 6, the
cropped X-ray images are subjected to global histogram equalization, which effectively
highlights porosity defects in low-contrast images and improves the network feature ex-
traction effect Figure 6(b).

3.5. Welding Detection. Compared to the internal defects of the weld, the weld seam
occupies a larger part of the whole X-ray image, is a large object that is easy to observe,
and is rich in morphological features. Due to the large size of the X-ray image, the
input size range of the Faster R-CNN algorithm is [600,1000], and to meet the input
requirements, the image is scaled down to 600 pixels on the long side of the image, and
then the short side is scaled equally and made up to 600 pixels to obtain an X-ray image
with pixel size 600Ö600. Finally, the scaled-down image is input into the model for
welding detection, as shown in Figure 7. Due to the large size and feature richness of the
weld seam itself, the feature loss caused by scaling has little impact on the learning of
the network. Further considering that the weld seam morphology is divided into the strip
and circular arc, and there is scale variation in both morphologies, a Feature Pyramid
Network (FPN) is introduced to improve the welding detection performance.

3.6. Porosity Detection. For porosity detection, ResNet [14] is chosen as the feature
extraction network, and the concept of residual connection in ResNet can alleviate the
problem of feature information loss in different network layers for the porosity of different
scaling sizes. The ReLU activation function in the network will induce information loss as
the number of network layers deepens [15], and the pooling layer and decreasing resolution
of the feature map will also cause information loss. ResNet improves the degradation
problem of deep neural networks so that large porosity can still be observed in the feature
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（a）Before Treatment

（b）After Treatment

Figure 6. Global Histogram Equalization of X-ray images

Figure 7. Welding Detection

maps output from deep networks. However, as shown in Figure 8, decreasing feature map
resolution still inevitably results in the loss of small porosity features, which might lead
to missed detection of small porosity. Therefore, it is difficult to meet the demand for
porosity detection by relying only on the low-resolution feature maps of the deep network.
To improve the recall rate of the network for multi-scale porosity, FPN is used in this
paper to extract the features of porosity from the output feature maps of feature extraction
networks at different levels. For small-size objects, the feature maps of the shallow network
have a large resolution, where the features of small porosity are retained more relative to
the feature maps of the deep network, but their semanticization is minimal, which is the
opposite in the deep network. Therefore, it is impossible to achieve accurate detection of
small porosity by relying only on the features of a certain level. The idea of FPN is to fuse
deep feature maps and shallow feature maps to obtain feature maps containing advanced
semantics and large resolution, which retains the feature information of small porosity
in the shallow networks and improves the missed detection problem of small porosity.
The deep network, on the other hand, can detect large porosity reliably, eliminating the
influence of scale variation of porosity and enhancing the porosity recall rate.

The following is a summary of the work we’ve done to resolve the issues, as shown in
Figure 9:
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Figure 8. Feature Fusion-based Porosity Detection

Figure 9. System Framework

4. Experiments and Discussion.

4.1. Experimental Configuration. GDXray [16] is a publicly available X-ray data set
that includes data on X-ray welding images (Welds) collected by the BAM Federal In-
stitute for Materials Research and Testing in Berlin, Germany. W0003 in the Welds
dataset contains 68 X-ray images of welds. This paper is based on the W0003 data
set, and with the help of welding experts, the welds and their internal defects were la-
beled and screened to obtain 36 X-ray images of the sheet with the presence of porosity.
During the experiments, the dataset was divided into training and validation sets in
the ratio of 2:1, and a tri-fold cross-validation was performed, and finally 176 images
were obtained after cropping. For welding detection, combined with the previous analy-
sis of the weld and considering the time factor, the one-stage algorithms YOLOv3 [17],
YOLOv4 [18], YOLOv4-tiny [19], YOLOX-tiny [20], and the two-stage algorithms Faster
R-CNN and Faster R-CNN+FPN for comparison experiments. For porosity detection,
we select ResNet as the backbone network based on the Faster R-CNN algorithm and
validate the effectiveness of three methods of image cropping, image enhancement, and



Research on Porosity Detection Method for Welding X-ray Images 813

feature fusion by Ablation Experiments. The size of Anchors is set to [32,64,128,256,512],
the aspect ratio is (1:2, 1:1, 2:1) and the data format is VOC2007.

4.2. Evaluation Metrics and Specific Steps. Recall and AP are two important met-
rics for evaluating object detection algorithms, as shown in Equation 1 and 2, where

TP denotes true positive, FN denotes false negative, and P (k̃) denotes the precision at
different confidence levels.

Recall =
TP

TP + FN
(1)

AP =
N∑
k=1

max
k̃≥k

P (k̃)∆r(k) (2)

Because the image is supplied to the model with a sliding window cropping, it is necessary
to restore the image before computing Recall and AP during testing, as shown below: (1)
Add the coordinates of the detected porosity to the coordinates of the upper left corner
of the cropped image in the original image. (2) Non-Maximum Suppression (NMS) of the
reduced porosity detection results is required because a portion of the overlapping area is
retained during the sliding window cropping. (3) Calculate Recall and AP.

Table 1. Test Results of Different Weld Detection Algorithms

Model Backbone
Evaluation Index

Recall(%) AP (%)
Faster R-CNN ResNet50 88.88 87.01
Faster R-CNN ResNet50+FPN 96.30 93.76

YOLOv3 Darknet53 68.97 61.33
YOLOv4 CSPDarknet53 65.52 47.75

YOLOv4-tiny CSPDarknet53-tiny 74.46 68.12
YOLOX-tiny CSPDarknet53-tiny 94.83 88.20

4.3. Test Results. For welding detection, as shown in Table 1. Among them, YOLOv3
has a significantly better AP score with a similar recall rate compared to YOLOv4, which
is due to the relatively large size of the YOLOv4 backbone network with a large number
of parameters, which is prone to overfitting only for detecting weld seams as a class
object, while on the lighter YOLOv4-tiny and YOLOX-tiny, both recall rate and AP
score are improved. The difference between the two is that YOLOX is an Anchor-free
algorithm, while YOLOv4 is an Anchor-based algorithm. Weld seam as a large scale target
usually runs through the whole image, the Anchor-free algorithm is not limited to preset
anchors and has a strong generalization ability and high accuracy of abnormal scale object
detection, so the performance of YOLOX is substantially better than YOLOv4. But the
two-stage algorithm Faster R-CNN+FPN has the best detection effect and outperforms
the one-stage algorithm for the following reasons: compared to the one-stage algorithm,
the RPN in the first stage of the two-stage algorithm has localized the weld seam and
generated a large number of bounding boxes to ensure the recall rate. In the second stage,
learning is performed based on the proposal feature maps output from ROI Align, then
classification and regression bounding boxes are performed. The second regression of the
bounding box is not limited to the preset anchors, and only the features corresponding to
the location of each region proposals are used, resulting in high feature recognition and
more accurate weld detection. The accurate detection of weld seam affects the subsequent
defect detection task, so Faster R-CNN+FPN is the most applicable.
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Table 2. Comparison Experiments Results of Different Cropping Methods

Model Backbone Cropping Method
Evaluation Index
Recall(%) AP(%)

Faster
R-CNN

ResNet50
Direct Scaling 26.53 5.38

Segmented Cropping 49.38 10.93
Sliding Window Cropping 74.92 61.38

After obtaining the coordinates of the weld seam by the welding detection algorithm, we
need to extract the weld seam area to remove most of the noise information that does not
need to be concerned in the study. There are two types of weld seams, strip and circular
arc, and two types of weld seams exist for the strip type. In this paper, a long strip weld
is defined as one with a length in the range of [4000,5000] and a width in the range of
[300,1100], a short strip weld is defined as one with a length of [250,350] and a width of
[600,700], and a circular arc type weld is defined as one with a length of [900,1200] and
a width of [2000,2200]. Short strip welds can be directly input to the model for training
and testing, while both long strip and circular arc welds require trimming, and the design
of the trimming method determines the effectiveness of porosity detection.

In the experiments, a Faster R-CNN detection algorithm is chosen and ResNet50 is used
as the backbone network. We compare three cropping methods: direct scaling, segmented
cropping, and sliding window cropping. Direct scaling and segmented cropping extract
the weld seam according to its specific coordinates in the original image while sliding
window cropping takes the mode of the width of the weld seam as the cropping width,
which is the first difference between the method and the first two methods. Since the final
image pixel size obtained by sliding-window cropping is [600,600], the image size obtained
by the first two methods is made the same as the latter to control the variables. For direct
scaling, all welds are directly resized to [600,600] pixel size for training, and the detection
results of porosity are shown in Table 2, which is consistent with the conclusions of the
analysis above, where direct scaling leads to a decrease in image resolution, while the
porosity itself is a small object and scaling leads to a loss of features of the porosity, thus
making the detection worse. For segmented cropping, the specific operation is to crop
long weld seams into 8 segments, circular weld seams into 3 segments, and short weld
seams without cropping, and then resize all images to [600,600] pixel size for training
after finally filtering out the data without pores, and the results show that segmented
cropping is better than direct scaling for detecting pores. However, the difficulty with
segmented cropping is that the porosity may be destroyed in the cropping process, and
the data is reduced in the event of tiny batch data, and both of the above methods
require resizing. For this kind of X-ray image with weak contrast and texture, resizing
should be avoided. Because resizing causes the pore’s morphology to stretch, resulting
in the low accuracy of the model for porosity detection. Based on the above analysis,
our sliding window cropping method crops the X-ray images from left to right and top to
bottom through a fixed size window, and the final image size obtained without resizing
protects the morphology of the pores, and the experimental result is shown in Table 2,
the detection effect of pores is significantly improved.

For porosity detection, since most of pores are small in size, YOLO series algorithms are
usually not suitable for small object detection tasks, and our preliminary experimental
results also show that the YOLO series algorithm has a low recall rate for pores, and
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Table 3. Ablation Experiments For Porosity Detection Performance En-
hancement Strategy

Model Backbone
Upgrade Strategy Evaluation Index

Histogram Equalization FPN Recall(%) AP(%)

Faster
R-CNN

ResNet50 74.92 61.38
ResNet50 ✓ 78.10 54.98
ResNet34 ✓ 95.55 73.37
ResNet50 ✓ 92.77 71.41
ResNet101 ✓ 89.99 73.72
ResNet34 ✓ ✓ 96.85 70.08

there are more missed detections, which cannot meet the demand. As a result, the Faster
R-CNN algorithm is used in the succeeding porosity detection research.

As shown in Table 3, ablation experiments were conducted on the feature fusion strategy
choosing ResNet50 as the backbone network. The results show that the recall rate and AP
score of the model for porosity are improved after introducing FPN. The results show that
the recall rate and AP score of the model for porosity are improved after the introduction
of FPN. The reason is that in the feature extraction stage, FPN upsamples the feature
map of the deep network by ResNet50 and then fuses it with the feature map of the
shallow network to get the final feature map, and the small porosity originally missed in
the deep network are recalled, which makes the detection effect improved. Further, the
ablation experiments are conducted for ResNet of different scales, and the results show
that the small-scale network ResNet34 is more effective. Combined with the previous
analysis of porosity detection at different scales, since the porosity themselves are not
rich enough in features in the single-channel grayscale map, then the information loss will
be further aggravated with the deepening of the network layers and the network is prone
to overfitting. Meanwhile, due to the small dataset in this paper, it is difficult to fine-tune
the large-scale pre-training weights effectively for a single-category object, which leads to
a decrease in the detection effect.

To demonstrate the effect of global histogram equalization on image feature enhance-
ment, comparison experiments were conducted based on the backbone network as ResNet50,
as shown in Table 3, the recall rate was significantly increased with global histogram equal-
ization, but the AP score was slightly decreased. The higher recall rate is owing to the
image’s higher contrast and the prominence of porosity in the background, making it eas-
ier for the network to extract porosity features. The decrease in AP score is because after
global histogram equalization, the image feature expression is enhanced and the network
recalls the labeled porosity along with some of the porosity unlabeled by the labelers,
resulting in a lower AP score. In the field of industrial welding defect detection recall rate
is a prerequisite for subsequent work, so improving recall rate is the primary research goal
of this paper.

Finally, the detection performance of the Faster R-CNN algorithm for multi-scale poros-
ity is significantly improved when the three approaches are combined.

5. Summary. A two-stage porosity detection method based on the Faster R-CNN algo-
rithm is developed in this research to detect porosity at different scales in welding X-ray
pictures, and the system’s performance is proven on the public dataset GDXray. This
paper’s research findings are summarized as follows.



816 G.-L. Xu, Q. Cheng, L.-X. Wei and J.X. Mi

Figure 10. Porosity Detection Results

1. Rather than detecting porosity in X-ray images directly, this paper divides the poros-
ity detection task into two stages, first detecting the weld seam and then detecting
the porosity inside the weld seam, removing more redundant information from X-ray
images and enhancing detection speed and effect.

2. A sliding-window cropping method is provided to crop large-size photographs into
small-size images that may be directly input into the model, preserving the original
image quality, preventing the destruction of porosity by cutting, and lowering the
leakage detection of porosity by the model.

3. The global histogram equalization pre-processing method is employed to enhance the
image feature expression and significantly improve the effect of porosity detection
for welding X-ray images with low contrast.

4. To address the problem of multi-scale targets in porosity, this paper uses a feature
fusion strategy and extends the feature extraction network in Faster R-CNN using
FPN to improve the feature representation of porosity of various sizes, reducing
porosity leakage detection and improving porosity localization accuracy.

We also discovered that the low contrast and blurred background of X-ray images
affect defect data annotation, for example, when faced with multiple densely distributed
defects, annotators use only one rectangular box to annotate; or when the size of defects
in the image is small but the number of defects is large, there will be a small number of
defect unlabeled. Low-quality labeling data has a significant impact on model detection,
therefore future research will focus on a defect detection method based on semi-supervised
learning.
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