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Abstract. A defective insulator detection method based on improved You Only Look
Once version 4 (YOLOv4) is proposed to improve the precision of defective insulator
detection. This method designs a dual-branch attention block by simulating the attention
process of the human eye, and introduces it into the backbone of YOLOv4 to extract richer
information on defective insulator features. To make the output feature map of shallow
layer network fuse more different scale features, a path aggregation network has been
designed. To improve detection accuracy, the spatial pyramid pooling has been replaced
by atrous spatial pyramid pooling. A dynamic non-maximum suppression method is pro-
posed to improve defective insulator detection accuracy. It employs an adaptive threshold
control strategy and weighted operation to full use of the predicted box. We compare our
method with defective insulator detection methods based on YOLO and R-CNN. Our sim-
ulation results show that the proposed method is more accurate than defective insulator
detection methods based on YOLO, and has a faster detection speed than methods based
on R-CNN. Compared with the defective insulator detection method based on R-CNN
that has the highest mean average precision, the mean average precision of the proposed
method is lower, but its detection speed is faster. Compared with YOLOv4, its detection
speed is slower, but the mean average precision is higher. The proposed method strikes a
satisfactory tradeoff between detection speed and mean average precision.
Keywords: Deep learning, Object detection, Defective insulator, Path aggregation net-
work
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1. Introduction. The power system consists of power generation, transformation, trans-
mission, and distribution. Transmission lines are the infrastructure for power transmission
in the power system and are the key to improving the stability and safety of the power sup-
ply. The main components that constitute transmission are conductors, lightning cables,
fixtures, insulators, towers, tie wires and foundations, grounding devices, etc. The insula-
tors are essential components that are used to support and sustain electrical transmission
lines and ensure a degree of insulation between transmission lines and the ground in high-
voltage power transmission systems. If the insulator fails, it will directly affect the line
insulation, and then a permanent ground fault will occur [1]. Therefore, it is very impor-
tant and essential to detect the insulator strings and timely deal with defective insulator
string to improve the safe and stable operation of power systems. The insulator strings
are exposed to wind, rain, sunlight, and other poor working conditions for a long time and
are susceptible to self-exploding or going missing, which in turn will cause single-phase
grounding or short-circuiting between phases [2]. This will cause power transmission in-
terruption. To ensure safety and stability in high-voltage power transmission systems, it is
necessary to detect insulator defects timorously. Manual inspection is the most commonly
used transmission line inspection method. The inspector uses binoculars to observe the
transmission line insulation through the human eye and to record the defective insulator
conditions. However, due to the continuous expansion of the scale of power grids, more
and more high-voltage transmission towers and longer transmission lines require a large
number of inspectors to inspect the transmission lines. Transmission lines are generally
located in remote areas, and some towers are erected in high mountains. Inspectors need
to go over high mountains for inspection, resulting in low efficiency of transmission line
inspection. Therefore, the traditional manual transmission line inspection methodologies
can no longer satisfy this requirement.

With the deployment of unmanned aerial vehicle technology, the transmission line in-
spection based on the unmanned aerial vehicle has become an important means of trans-
mission line inspection, and these are widely used by power supply companies. Transmis-
sion line inspectors use the unmanned aerial vehicle to inspect transmission lines under
the mountains, and line inspections can be realized without going over the mountains.
This greatly improves the efficiency of line inspection, reduce the labor intensity of in-
spection personnel. However, the transmission line inspection based on unmanned aerial
vehicle still requires the inspector to view video obtained by unmanned aerial vehicle
to detect defective insulators. To further improve the efficiency of transmission line in-
spection, the transmission line inspection based on unmanned aerial vehicle and deep
learning is proposed. Detection method based on the deep learning method has been
introduced into transmission equipment fault detection systems to supplement or replace
human detection. They use the deep learning method to automatically detect transmis-
sion lines, normal insulator strings, and defective insulators without human intervention.
Deep learning is one of the research directions of artificial intelligence. It has been widely
used in trade strategy [3], transportation mode detection [4], image caption [5] and wind
power generation forecast [6]. Although there exists a wide range of transmission equip-
ment faults, this paper focuses only on defective insulator detection, which concerns the
most common problem affecting transmission insulators.

The traditional defective insulator detection methods require an artificially designed
feature extractor to extract features. The robustness of the designed feature extractor
and the quality of extracted features tend to below. Advances in deep learning technology
have led to the development of convolution neural networks that can be used to extract
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features without relying on an artificially designed feature extractor. Many object detec-
tion methods based on convolution neural networks have been applied in the detection
of defective insulators. They have better feature expression ability and higher detection
accuracy than traditional detection methods. Object detection methods based on deep
learning can be divided into two categories: one-stage detection method and two-stage
detection method. For two-stage method, it divides the detection process into two stages.
It generates region proposals in the first stage, regresses the bounding box and on can-
didate regions, and classifies the objects in the second stage. For the one-stage method,
directly generates detection boxes and classifies the objects without generating region
proposals. The one-stage method has a faster detection speed and lowers detection ac-
curacy than the two-stage method. The transmission line inspection based on unmanned
aerial vehicle requires real-time. The detection of the one-stage method is about ten times
faster than two-stage. Therefore, we select the YOLOv4 method to detect the defective
insulator. YOLOv4 is the latest version of the YOLO serial methods [7]. YOLOv4 is also
the only later version of YOLO endorsed by Joseph Redmon, the inventor of the YOLO
method [8]. Compared with the two-stage detection method, although the YOLOv4 has a
faster detection speed, it also has a lower precision. The performance of the deep learning
method directly affects insulator string and defective insulator detection. Therefore, we
propose an improved YOLOv4 to improve the precision of defective insulators with an
acceptable detection speed.

The main contributions of this paper are as follows:
1. To reduce redundant semantic information and thus reduce the influence of redun-

dant information on defective insulator detection accuracy, a novel Dual-Branch Attention
Block is designed and introduced into the backbone. This can make the backbone extract
more useful feature information from complex semantic information.

2. To make the output feature map of shallow layer network fuse more different scale
features, a new path aggregation network is proposed. To further improve accuracy, the
ASPP (atrous spatial pyramid pooling) structure is used instead of SPP (spatial pyramid
pooling) structure in the path aggregation network. ASPP can increase the respective
field and reduce loss of information caused by the pooling operation.

3. To improve the accuracy of defective insulator detection, a dynamic non-maximum
suppression method is proposed. This uses an adaptive threshold control strategy and
weighted operation to make full use of the predicted box.

In this section, we have outlined the theoretical background of defective insulator detec-
tion and our contributions to the field. In Section 2, we review related work on defective
insulator detection based on deep learning. In Section 3, we explain our proposed method
in greater detail. In Section 4, we illustrate and discuss our experimental results. In
Section 5, we provide a summary of our experimental work.

2. Related work. Object detection method based on deep learning has been widely
applied in insulator and defective insulator detection. To detect the defective insulators
and birds nest in high voltage lines, a deep convolution neural network on the basis
of Faster-RCNN was proposed [9]. It transformed the classification problem of damage
insulators and birds nest into detection and recognition. It also proposed to use the
ImageNet dataset to pre-train the convolution neural network to reduce the influence
of lacking many natural bird nests and damaging insulators images. Zhao et al. [10]
also proposed an insulator detection method based on improved Faster-RCNN. To make
the Faster-RCNN more suitable for detecting the insulators with different scales, aspect
ratios, and transformation, a new region proposal network was proposed. It combined
six scales with five different aspect ratios to obtain 30 anchors. Besides, it also proposed
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a non-maximum suppression method to obtain more accurate bounding boxes. Lin et
al. [11] proposed a two-stage self-blast glass insulator detection method. It firstly used
Faster-RCNN to locate the glass insulators from the aerial images captured by UAV and
then cropped the detected insulators. Secondly, U-net that is a state-of-art segmentation
module, was used to judge whether the glass insulators had self-blast insulator. It had
higher accuracy and a faster detection speed. Tao et al. [12] proposed cascading network
that contains insulator string localizer network and insulator defect detector network,
which were designed on the basis of a region proposal network that is also used in faster
R-CNN. It used an insulator localizer network to detect the insulator string and cropped
the detected insulator string image. The insulator defect detector network was used
to judge whether the insulator string contained a defective insulator. Besides, it also
constructed a public Chinese power line insulator dataset containing normal insulators
and defective insulators. Liu et al. [13] proposed a Box-Point detector to detect defective
insulators. The detector was composed of a deep convolutional neural network and two
parallel branches: center box heads and endpoint heads. Each branch has three different
heads, and each head is constructed by two convolutional layers with different kernel sizes
and corresponds to a specific attribute of the defective insulator. The deep convolutional
neural network was applied to extract insulators feature. The center box head was used
to detect the rectangle region of defective insulator. The end point head was used to
supervise the detector to lean insulators image features. Zhao et al. [14] proposed an
improved Faster RCNN method by introducing new feature pyramid networks and used
it to detect the normal insulator strings and defective insulators. It also firstly detected all
insulator strings and secondly detected the defective insulator from the detected insulator
strings.

The Faster-RCNN method can be seen as one of the R-CNN serial methods. The
object detection method based on deep learning can be divided into two classifications
that are one-stage detection method and two-stage detection method. The two-stage
detection method solves the classification problem of the object in the first stage and
searches the bounding box of the object in the second stage. The one-stage method solves
classification and location problems at the same time. The two-stage method focus on
the accuracy of the one-stage method focuses on detection speed. The R-CNN serial
methods belong to two-stage detection methods. They have higher accuracy and slower
detection speed than the one-stage method. On the contrary, the one-stage method has
a faster detection speed and lower accuracy than the two-stage method. YOLO serial
methods are typical one-stage detection methods. In this paper, we focus on real-time
defective insulator detection, which is more important in actual transition line inspection.
Therefore, we mainly introduce YOLO serial methods and their applications in defective
insulator detection in the following.

YOLO method was firstly proposed by Joseph Redmon and Ali Farhadi et al. in
2016 [8]. It considers the recognition problem as a regression problem rather than a
classification problem and predicts the location and category of the object at the same
time by the convolutional neural network. It has a faster detection speed with acceptable
accuracy. Due to its advantages, it attracts much attention from many scholars and
becomes an essential branch of object detection research. In 2016, Joseph Redmon et
al.proposed the YOLOv2. It used Darket19 as the backbone and many strategies, such
as adding Batch Normalization in all convolution layers, using clustering to automatically
generate the appropriate bounding box prior and multi-scale training, etc., to improve
detection accuracy. YOLOv3 is the last version proposed by Joseph Redmon in 2018.
It used Darknet53 as the backbone to extract features. Compared with Darket19, the
Darknet53 increased the number of network layers and introduced cross residual network
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structure of the residual network. Besides, it also used the LeakyReLU function as activate
function to improve detection accuracy further. To improve the accuracy of YOLOv3,
many methods were proposed. Ma et al. used the ShuffleNetv2 instead of DarkNet53 as
backbone and GIOU function as loss function in 2020 [15]. It has higher detection accuracy
than YOLOv3 in detecting collapsed buildings after the earthquake. Yang et al. proposed
learnable semantic fusion and global context block on the basis of YOLOv3 to make full
use of the output of the feature extraction network [16]. The method named GC-YOLOv3
has higher accuracy than YOLOv3 in the COCO dataset and PASCAL VOC dataset
with a small amount of additional computational cost. Liu et al. designed Dense Block
with multi-scale feature fusion. They used it instead of some residual network with lower
resolutions in the backbone of YOLOv3 to obtain abundant semantic information of upper
and lower layers [17]. It has higher accuracy than YOLOv3 in detecting transmission line
insulators.

Although Joseph Redmonet al. withdrew the research on the computer version, many
scholars still try to improve the YOLO serial methods. Alexey et al. [7] proposed the
YOLOv4 method, that is the latest version of YOLO serial methods in 2020, which is
also only admitted by Joseph Redmon. It designed the CSPDarknet53 by using the
CSPNet to replace ResNet in YOLOv3 and used it as the backbone to extract features.
It selected PANet to be used as a feature fusion network in lots of experiments, and SPP
was also used to increase the receptive filed of network. It also used the Mish function as
activate function of the backbone. Besides, it proposed to use the DIoU-NMS method to
add the information of the center point distance to the Bounding Box screening process,
and it also proposed new data augmentation method named Mosaic, etc. Compared
with YOLOv3, the YOLOv4 has greatly improved. Based on YOLOv4, some improved
methods are also proposed to improve accuracy or detection speed. Hu et al. proposed
to add a spatial pyramid pooling network at the top and bottom of the backbone to
increase the respective field to enhance the ability of feature extraction [18]. Besides, it
also used the GIOU loss function instead of IOU loss function that was used in YOLOv4,
to pay more attention to the non-overlapping area of the two kinds of boxes. It has
higher accuracy than YOLOv4 in GWHD dataset. Cai et al. [19]proposed YOLOv4-
5D that designed a new backbone CSPDarknet53 dcn for YOLOv4 by using deformable
convolution at the last layer of CSPDarknet. Besides, to improve the detection accuracy
of the smaller object, PAN++ is also designed, and two large-scale detection layers are
also added. It has higher accuracy than YOLOv4 in KITTI dataset and BDD dataset.

The YOLO serial method is a typical object detection method based on deep learning
and has also been widely used in insulator and defective insulator detection. Diana et
al. [20] proposed real-time detection of insulators using UAV images based on YOLOv2
method. It also used some methods that are Gaussian noise, blurring, rotation, and scaling
to argument dataset to avoid over-fitting. Han et al. [21] proposed a cascaded network
model that contains two parts. The first part is used to locate the insulator string in an
aerial image. The second part is used to detect the defective insulator from the located
insulator string by the first part. Based on the cascaded network model, they also designed
a three-structure spatial pyramid pooling model to improve the performance of locating
insulator string in the first part, and used YOLOv3-tiny method to detect the insulator
defective fault in the located insulator string region [22]. It has a faster detection speed
than other methods and is more suitable for deploying on UAV. Liu et al. [23] proposed
an improved YOLOv3 and applied it in defective insulator detection. It introduced the
cross-stage partial dense network into the feature extract network to extract multi-scale
features of insulator string. Besides, it also used complete intersection over union instead
of the mean square error to improve loss function. It obtained better performance in
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accuracy than YOLOv3 method on the modified Chinese Power Line Insulator Dataset.
Some of the images captured by unmanned aerial vehicle are not clear. This will affect
defective insulator detection. To solve the problem, it firstly designed a super-resolution
convolution neural network to reconstruct the blurred insulator image, and secondly used
the YOLOv3 method to detect the insulator strings and harmers [24]. A lightweight
YOLO method named MTI-YOLO was proposed to realize the insulator detection under
various background interferences [25], which was based on YOLOv3-tiny. It designed
multi-scale feature detection headers and introduced the spatial pyramid pooling to the
headers to improve the detection accuracy for different sizes of insulators. To extract more
insulator semantic features, a multi-scale feature fusion method was proposed. Although
it consumes longer detection times than YOLOv3-tiny, it has higher precision, recall and
mean average precision than YOLOv3-tiny. Compared with YOLOv3, it has a faster
detection speed and almost the same precision and mean average precision. Zhang et al.
also designed a densely connected feature pyramid network to improve the YOLOv3 and
used the improved method to detect normal insulator strings and defective insulators [26].
It has higher accuracy than the original YOLOv3. To further improve the insulator
and insulator fault detection accuracy, some detection methods based on YOLO are also
proposed [27, 28].

3. Defective insulator based on improved YOLOv4.

3.1. Proposed dual-branch attention block. YOLOv4 uses a new backbone, CSP-
Darknet53, the design of which is based on CSPNet. CSPDarknet53 increases the depth
of the network to extract more features, but it also introduces more redundant semantic
information. To suppress the redundant semantic information and reduce its influence on
the accuracy of defective insulator detection, we introduce the channel attention mech-
anism into the depth network of the backbone. The channel attention mechanism can
assign a larger weight to the channels that contain more important feature information
relevant to the detection task. This makes the backbone extract more useful feature in-
formation from the vast pool of complex semantic information. Inspired by the efficient
channel attention method [29], we have designed a dual-branch attention block that sim-
ulates the attention process of the human eye to extracting more relevant information
from defective insulators. This is shown in Figure 1.
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Figure 1. Proposed dual-branch attention block

The feature map firstly passes two branch and fuses in the end. In the proposed dual-
branch attention block, expresses the input feature map, that is, the output of the previous
feature extraction layer that is the CSP block in the YOLOv4 backbone. X1 expresses the
output feature map that X passes, a convolution layer with kernel size . X2 expresses the
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output feature map that X passes, a convolution layer with kernel size 5× 5 and padding
of 1. Therefore, we can obtain:

Y = X1 +X2 = f 3×3 (X) + f 5×5 (X) (1)

where f 3×3() and f 5×5() are express convolution operations, with kernel size 3×3 padding
of 1 and kernel size 5×5, and padding of 2, respectively. Next, we take channel-wise global
average pooling operation on Y to obtain the channel level global statistics information.
ωc is the cth component of ω . It is expressed as follows:

ωc =
1

H ×W

H∑
i=1

W∑
j=1

Yc (i, j) (2)

where Yc is feature map of cth channel, and H and W are the size of Yc.
After obtaining the global information, we use a one-dimensional convolution opera-

tion to realize the cross-channel interaction that is useful for enhancing the information
interaction between different channels. The range of channel interaction is determined
by kernel size of one-dimensional convolution. We use the same method used in efficient
channel attention to determine the kernel size of convolution. It can be expressed as
follows [29]:

k = ψ (C) =

∣∣∣∣ log2 (C)

γ
+
b

γ

∣∣∣∣
odd

(3)

where C is the number of channels, and γ and b are pre-defined parameters ( we set
γ = 2 and b = 1). |t|odd expresses the nearest odd number of t. Based on (3), we can see
that kernel size changes with a change in the number of channels. After determining the
number of channel interactions, that is, the kernel size of a one-dimensional convolution,
we can obtain the feature cross-channel interaction result. It is expressed as follows:

v = σ (C1Dk (ω)) (4)

where C1Dk is the one-dimensional convolution with kernel size k, and σ(·)is sigmoid
function.

To obtain the weights of two branches, the feature map v s divided into two equal
parts that are expressed as v1 and v2 , respectively. The weights of the two branches are
expressed as a = [a1, a2, · · · , ac] and b = [b1, b2, · · · , bc], respectively. ai and bi are the ith
channel weights of the two respective branches. They can be expressed as follows:

ai =
exp(v1i)

exp(v1i) + exp(v2i)
(5)

bi =
exp(v2i)

exp(v1i) + exp(v2i)
(6)

where v1i and v2i are the ith channel feature value of v1 and v2, respectively. The larger
the channel feature value is, the larger the weight of channel is. Formula (5) and (6) are
realized by using the softmax function. In the end, we get the output feature map O the
ith channel feature map Oi is expressed as follows:

Oi = Y1i + Y2i = ai ·X1i + bi ·X2i (7)
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where X1i and X2i are the ith channel feature map of X1 and X2 in Figure 1, respectively.
The larger the channel weight is, the larger ratio of the channel feature map is. This
can make the output feature map contain more effective feature information of defective
insulator. Using formula (7), we can fuse different feature maps originating from differ-
ent respective fields so as to extract more effective feature information from redundant
information.

3.2. Proposed path aggregation network. In YOLOv4 network, there are three dif-
ferent scale output feature maps in the backbone. PANet (path aggregation network) is
used to fuse the features from the three different scales in YOLOv4 network. It firstly
uses up-sampling to increase the scale of the shallow layer network to the scale of the deep
layer network and uses concatenation and convolution operation to fuse the features of
the shallow layer network and deep layer network. Secondly, it uses maxpooling to reduce
the scale of the deep layer network to the scale of the shallow layer network and also uses
concatenation and convolution operations to fuse the features of the deep layer network
and shallow layer network. Based on the up-sampling and maxpooling, the output fea-
ture map of the shallow layer network obtains more fused features than the deep layer
network. The scale of the output feature map for the shallow layer network is larger than
the scale of the output feature map for the deep layer network. The larger-scale feature
map is more suitable for detecting a smaller object, and the smaller feature map is more
suitable for detecting a larger object. Therefore, the PANet used in YOLOv4 is better
for detecting larger objects. In the defective insulator detection, the defective insulator
is relatively small. Making the larger-scale feature map fuse more features can improve
the defective insulator detection accuracy. Therefore, we propose an improved PANet to
increase the fused features of larger scale feature map.

The improved PANet is shown in figure 2. Firstly, we use maxpooling to reduce the scale
of the shallow layer network to the scale of the deep layer network and use concatenation
and convolution operations to fuse the deep layer network and maxpooled feature features.
Secondly, we also use the same method to fuse the deep layer network and deeper layer
network. Thirdly, we use up-sampling to increase the scale of fused feature to the scale of
deep layer network feature and use concatenation and convolution operations to fuse the
features of shallow layer networks and deep layer network. Finally, we also use the same
method to obtain the output feature of the shallow layer network. The structure of the
improved PANet is the opposite of the original PANet. The improved PANet can obtain
more features about the smaller object. For a more detailed description of the model,
we suppose that the size of the input image is 416×416, so the sizes of feature maps for
three branches of the backbone are 52×52, 26×26 and 13×13, respectively. We firstly use
maxpooling to reduce the size of the feature map from 52×52 to 26×26 and concatenate
the new 26×26 feature map with the original 26×26 feature map. The CBL block that
contains a convolution layer, batch normalization, and Leaky ReLU activate function is
used to fuse the concatenated 26×26 feature map. Secondly, we use maxpooling to reduce
the size of the fused feature map from 26×26 to 13×13 and concatenate the new 13×13
feature map with the original 13×13 feature map. The CBL block also is used to fuse the
concatenated 13×13 feature map, and the fused 13×13 feature map is used as the output
feature map of the deep layer network. Thirdly, we use upsampling to increase the size
of the fused feature map from 13×13 to 26×26, and concatenate the new 26×26 feature
map with the fused 26×26 feature map that is obtained by upsampling, concatenating
and fusing. The output of the fused 26×26 feature map is used as the output feature map
of the intermediate layer network. In the end, we also use upsampling, concatenation,
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and CBL modules to obtain the fused 52×52 feature map and use it as the output feature
map of the deep layer network.

The output feature map of the deep layer network in the original PANet only contains
the features that contains in the original 52×52 feature map, transmitted feature from
26×26 feature map by one time upsampling, and transmitted feature from 13×13 feature
map by two times upsampling. In the improved PANet, the output feature map of deep
layer network contains the original 52×52 feature map, transmitted feature from 26×26
feature map by one time upsampling, transmitted feature from 13×13 feature map by two
times upsampling, transmitted feature from 26×26 feature map by one time maxpooling
and transmitted feature from 52×52 feature map by two times upsampling and max-
pooling. Therefore, the final 52×52 feature map contains more features in the improved
PANet than the original PANet.

To further improve accuracy, we use the ASPP (atrous spatial pyramid pooling) struc-
ture instead of SPP (spatial pyramid pooling) structure in YOLOv4. The ASSP structure
uses atrous convolution, instead of the max pooling operation used in SPP. It can increase
the respective field and avoid losing information caused by the pooling operation. The
relationship between the kernel size of normal convolution and atrous convolution is:

K = k + (k − 1) (r − 1) (8)

where K is the kernel size of normal convolution, k is the kernel size of atrous convolution,
and r is dilation rate. For the SPP network in the YOLOv4 method, the max pooling of
kernel sizes are 3 × 3, 9 × 9and 13 × 13, respectively. Therefore, we respectively set the
atrous convolution kernel sizes at 3× 3, 5× 5 and 7× 7 with dilation rate 2, to make the
ASPP network connect with the next layer. The ASPP network is shown in figure 2.

We introduce our proposed Dual-branch Attention Block (DBA) into the CSP block
to construct the improved backbone. Besides, we use our proposed path aggregation
network (PANet) and ASPP module to improve the neck part of YOLOv4. The improved
YOLOv4 network for defective insulator detection is shown in Figure 2. Compared with
YOLOv4, we introduce the DAB module, improved PANet module and ASPP module.
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Figure 2. Proposed defective insulator detection network
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3.3. Proposed non-maximum suppression method. The non-maximum suppression
(NMS) method is used to select the optimal target box from the bounding boxes. In
YOLOv4, it uses the DIoUNMS method, an improved NMS method for selecting the
target box. DIoUNMS introduces the center distance between two bounding boxes into
the threshold to avoid error suppression for different objects sharing a high degree of
overlap. If the IOU (Intersection over Union) between the predicted boxes with low
confidence and high confidence is larger than the threshold, the DIoUNMS method will
directly delete the predicted box with low confidence. During real-world application, some
predicted boxes with low confidence contain much useful information that could be used
to improve detection accuracy. To make full use of a predicted box with low confidence
and make the NMS dynamically adapt to high-density crowded scenes, a dynamic NMS
method is proposed.

We propose an adaptive threshold control method for the high-density crowded scenes
in NMS. To avoid error suppression for different objects with a high degree of overlap, the
threshold should be larger when the number of objects and degree of overlap are larger.
Nevertheless, the threshold should be smaller. Therefore, we introduce the number of
objects and average IOU of the predicted box into the threshold and thus propose an
adaptive threshold. The new threshold is expressed as follows:

Tadap =
(Dobj +Miou + T )

3
(9)

where T is the fixed threshold used in the original NMS, and Dobj ∈ (0, 1) expresses same
kind of object density. The larger the number of objects of the same kind is, the larger
the number of predicted bounding boxes is, and the larger the value of Dobj. Therefore,
we propose that Dobj can be expressed as follows:

Dobj =
(Dmax −Dmin)

(Nmax −Nmin)
×N +Dmin (10)

where Dmax and Dmin are the upper and lower limits of Dobj, respectively; and, Nmax

andNmin are the upper and lower limits of bounding boxes of defective insulators, respec-
tively. In this paper, we set Dmax = 0.04, Dmin = 0.01, Nmax = 20 and Nmin = 0. N is
the number of bounding boxs of defective insulators. Miou ∈ (0, 1) expresses the mean
overlap level of the objects. The larger the overlap is, the larger the value of , which in
turn is expressed as follows:

Miou =
1

n

n∑
i=1,i 6=best

IoU (bbest, bi) (11)

where B = {b1, b2, · · · , bn} is the predicted box set of objects of the same kind, and bbest is
the predicted box with the highest confidence score in B. In formula (9), we consider the
density of object and overlap level in determining the NMS threshold in order to select
a more optimal predicted box. In addition, in order to make full use of the predicted
box with low confidence, we use the weighted operation to fuse these predicted boxes.
The fused predicted box is the proposed optimal target box that is used to express the
location of defective insulator. It is used in the Head network in Figure 3. It is expressed
as follows:
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Bout =

n∑
i=1

Si × IoU (bi, bbest)× bi
n∑

i=1

Si × IoU (bi, bbest)
(12)

where Si is confidence score of bi box. bi is expressed as follows:

bi ∈ {bi|IoU (bbest, bi) ≥ Tadap} (13)

4. Simulation and discussion.

4.1. Datasets and simulation configuration. We sourced 1545 insulator images that
contain 45 defective insulator images for Power Supply and Internet. The number of de-
fective insulator images is too small to train network. To increase the number of defective
insulator images to avoid overfitting, we firstly use Photoshop to crop the insulator strings
that contain defective insulators from the insulator images. Secondly, we use Photoshop
to extract the cropped insulator strings from background by background color eraser tools.
In the end, we use Photoshop to fuse the extracted insulator with different background
to generate new defective insulator images.

The generation of a new defective insulator image is shown in Figure 3. The Figure
3(a) image is the original image that contains a defective insulator. The Figure 3(b)
image is the image cropped from Figure 3(a). The Figure 3(c) image is the extracted
image with transparent background from Figure 3(b). The Figure 3(d) image is the
insulator image that is used to be fused with Figure 3(c) image. The Figure 3(e) is
the fused image. Compared with the original image Figure 3(a), the background of the
fused image is completely different. To further compare the difference between the fused
image and the original image, we also crop the defective insulator string from the fused
image (e) to obtain the enlarged insulator string image Figure 3(f). In Figure 3(b), the
nearby background of defective insulators is a leaf. In Figure 3(f), the nearby background
of defective insulators is land. This shows that the nearby backgrounds of defective
insulators are also different between Figure 3(b) and Figure 3(f). The defective insulators
are more difficult to recognize by our eyes in Figure 3(f) than Figure 3(b). The background
has a large impact on defective insulator detection. Based on this method, we select 30
defective insulator images as original training images and 15 defective insulator images as
original test images. We use each original defective insulator image to generate 20 images
with different backgrounds. The training dataset contains 1000 normal images and 600
defective insulator images. The test dataset contains 500 normal images and 300 defective
insulator images.

4.2. Performance of proposed model. In this paper, we propose a modification to
the original YOLOv4 by introducing our proposed Dual-Branch Attention into the back-
bone of YOLOv4 to suppress redundant semantic information and reduce the influence
of redundant information on detection accuracy, designing a path aggregation network
to obtain more location information of defective insulator and proposing synthetic Non-
Maximum suppression method to select a more optimal predicted box. For the sake of
simplicity, we name the Dual-Branch Attention as DBA, path aggregation network as
PAN, and synthetic Non-Maximum suppression as Syn. The defective insulator detection
average precisions for YOLOv4 based on different proposed methods are shown in table
1. The YOLOv4 based on DBA has the highest mean average precision, followed by
YOLOv4 based on PAN and YOLOv4 based on Syn. Compared with YOLOv4, the mean
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(a)                                (d)                          (e) 

   

(b)                              (c)                          (f) 

Figure 3. Generation of new defective insulator image. (a) original image
with defective insulators;(b) cropped image from (a); (c) extracted image
with transparent background from (b); (d) image with different background;
(e) image obtained by fusing (c) and (d); (f) enlarged defective insulator
string from (e)

average precision of YOLOv4 based on PAN, YOLOv4 based on DBA, and YOLOv4
based on Syn are 2.9%, 3.3% and 1.2% higher, respectively. These results indicate that
our proposed PAN, DBA, and Syn are effective.

Table 1. Accuracies of different methods on office-31 dataset.

PAN DBA Syn mAP(%)

YOLOV4 79.2
YOLOV4

√
82.1

YOLOV4
√

82.5
YOLOV4

√
80.4

We show some visual detection results with different models in Figure 4. Figure 4(a)-
(h) show the detection results of two insulator strings and two defective insulators using
model [30], model [12], our model, YOLOv4, InsuDet [31] and YOLOv3, respectively. Fig-
ure 4(g)-(l) show the detection results of four insulator strings without defective insulators
using model [30], model [12], our model, YOLOv4, InsuDet, and YOLOv3, respectively.
In figure 4(a)-(h), the model [30], model [12], and our model successfully detect all in-
sulator strings and defective insulators, and the YOLOv4, InsuDet, and YOLOv3 detect
two insulator strings and one defective insulator. The YOLOv4, InsuDet, and YOLOv3
do not detect the defective insulator that locates at the right of the image. The feature
of the right defective insulator is not obvious, and its size is relatively smaller, so it is
difficult to detect. The larger scale detection branch of our model based on improved
PANet and ASPP nework obtains more fused information, so it has better accuracy in
the detect smaller defective insulator. In Figure 4(g)-(l), the model [30], model [12] and
our model also successfully detect all four insulator strings, and the YOLOv4, InsuDet,
and YOLOv3 detect three insulator strings. The YOLOv4, InsuDet, and YOLOv3 do
not detect the insulator string that locates at the top right of the image. The color of
the undetected insulator string is very close to the color of the surrounding background
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(building), so it is difficult to detect. We propose a new dual-branch attention block and
introduce it into the backbone to make the model pay more attention to the effective
feature. This reduces the background interference. Although the detection results are
influenced by background and the size of the object, the model [30], model [12], and our
model successfully detects all objects. This shows that model [30], model [12], and our
model has better performance in accuracy than others.

 
(a)                              (b)                               (c) 

 
            (d)                             (e)                                 (f) 

 
            (g)                             (h)                                (i) 

 
(j)                             (k)                                (l) 1

Figure 4. Detection results with different models. (a)-(f) detection results
using model[30], model[12], our model, YOLOv4, InsuDet and YOLOv3, re-
spectively. (g)-(l) detection results using model [30], model [12], our model,
YOLOv4, InsuDet and YOLOv3, respectively. Blue box: Bounding box
of detected insulator string. Red box: bounding box of detected defective
insulator.

To quantitatively analyze the performance of our model, we use all test images to test
the performance of different models. The results of our proposed model and other model
are shown in Table 2. The model [30] has the highest mAP and Recall, followed by
model [12] and our model. The model [12], and model [30] are based on R-CNN and
belong to two-stage detection method. The YOLOv3, InsuDet, YOLOv4, and our model
are based on YOLO and belong to one-stage detection method. The two-stage model focus
on accuracy, and the one-stage method focuses on detection speed. Therefore, model [12],
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and model [30] have better performance in mAP and Recall for detecting insulator strings
and defective insulators than on-stage models that are YOLOv3, InsuDet, YOLOv4,
and our model. Compared with YOLOv3, InsuDet, and YOLOv4 methods, the mean
average precisions of our proposed method are 14.4%, 7.1%, and 6.8% higher, and the
recalls of our proposed model are 12.7%, 6% and 4.2% higher, respectively. Compared
with model [30] and model [12], the mean average precisions of our proposed model are
6.5% and 5.4% lower, and the recalls of our proposed model are 6.2% and 4.4% lower,
respectively. Therefore, based on the analysis of Table2, although our proposed model
has lower performance in mAP and Recal than model [12] and model [30], it has higher
performance in mAP and Recall than YOLOv3, InsuDet, and YOLOv4.

Table 2. Different models on mean average precision, Recall.

Model mAP(%) Recall(%)

Model[30] 92.5 96.7
Model [12] 91.4 94.9
YOLOv3 72.4 77.8
InsuDet 78.9 84.5
YOLOv4 79.2 86.3
Our model 86.0 91.5

We also compare the detection speed of different models. The average consuming times
of detecting one image for different models are shown in Table 3. The model [30] and
model [12] belong to two-stage detection methods, so they have the longer detection
time. On the contrary, YOLOv3, InsuDet, YOLOv4 and our model belong to one-stage
detection methods, so they have shorter detection time. Compared with model [30] and
model [12], detection speeds of our proposed model are about 4.3 times and 9.7 times,
respectively. Compare with YOLOv3, InsuDet and YOLOv4, the detection times of
our proposed model are about 4.3ms, 5.5ms and 2.2ms longer for detecting one image,
respectively. Our model introduce dual-branch attention model into backbone, it increases
complexity of network and consumes more detection time.

Based on Table 2 and Table 3, compared with two-stage models (model [30] and
model [12]), our model has a faster detection speed and lower mean average precision
and Recall. The mean average precision and Recall of our model are about 6% lower than
model [30] and model [12], but the detection speeds of our model are about nine times and
four times than model [12] and model [30], respectively. Compared with one-stage models
(YOLOv3, InsuDet, and YOLOv4), our model has a slower detection speed, and higher
detection mean average precision and Recall. Although our model has a slower detection
speed than YOLOv3, InsuDet, and YOLOv4 models, the difference in detection speed has
little influence on real-time detection. Our method has higher detection accuracy with
acceptable detection speed, indicating that our proposed method is more suitable for the
real-time detection of defective insulators.
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Table 3. Different models on detection speed.

Model Average detection time(ms/image)

Model[30] 138.7
Model [12] 314.6
YOLOv3 28.2
InsuDet 27.0
YOLOv4 30.3

Our model 32.5

5. Conclusions. This paper proposes a new defective insulator detection method that
offers higher accuracy and a more acceptable detection speed. In addition, it also de-
tails the construction of a new defective insulator dataset, whereby Photoshop is used
to extract defective insulators and fuse them into different backgrounds. In the back-
bone, it introduces a new dual-branch attention block in order to extract more effective
defective insulator feature information from the redundant semantic information. The
novel path aggregation network is designed to fuse more effective information relating
to defective insulators. In addition, a dynamic non-maximum suppression method for
improving defective insulator detection accuracy has been outlined. Compared with the
defective insulator detection method that has the highest mean average precision in our
simulations, the mean average precision of our method is 6.5% lower, but the detection
speed of our method is 4.3 times faster. The increased detection speed is larger than the
reduced mean average precision. Compared with the defective insulator detection method
that has the fastest speed in our simulations, the detection speed of our method is 5.5ms
lower, but mean average precision of our method is 7.1% higher. Our proposed method
strikes a careful trade-off between detection speed and precision.

Although the improved YOLOv4 has higher precision with acceptable detection speed,
it cannot be employed on lightweight equipment that unmanned aerial vehicles can carry.
In our feature work, we will consider how to reduce the complexity of improved YOLOv4
to operate it on lightweight equipment. Therefore, the defective insulator detection can
be realized live without transmitting the image to the remote server.
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