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Abstract. Human pose estimation is an important research area in computer vision,
and is a pre-requisite task for research on human motion recognition, behavior analysis,
and human-computer interaction. A dynamic skeleton model can be naturally represented
as a series of time series of human joint positions. To express the real-time motion state
of skeletal nodes during human motion, graph convolutional neural networks are the most
suitable choice because the human skeleton is most similar to the graph. In this article,
given the neglect of skeletal motion direction by previous methods, we propose a new
bone motion recognition method that considers bone direction calculation and prediction.
Based on the motion direction of the bone,the skeletal orientation is defined as the sub-
traction of the coordinates of the relevant skeletal points. Firstly, the bone points are
obtained through the attention mechanism, and we take two points with a connection re-
lationship are taken to express the predicted information between two joints of the bone.
The prediction yields nodes as new nodes, thus updating the graph network structure. Fi-
nally, all the generated new nodes form a new skeleton, which improves the information
and discriminative power of the skeletal representation.

Therefore, our algorithm can not only express the coordinates of the joints, but also the
prediction information between the two joints of the bone, which is more informative and
discriminative. We selected two classical 3D skeletal motion recognition datasets:NTU-
RBD and Kinetics datasets as our training and test subsets, and the comparison experi-
ments show that our proposed algorithm performs better than other methods and improves
the accuracy and efficiency of pose recognition.
Keywords: Action recognition, Bone direction prediction, Attention mechanism,Skeleton
reconfiguration.

1. Introduction. The problem of pose estimation and action recognition is a popular
research area in computer vision. This problem is a key to successful analysis of peoples’
behaviors on video. Skeleton data based motion recognition and pose estimation are
widely concerned and researched by worldwide researchers, not only because of their
worldwide applications in video understanding and detection, but also because they are
still challenging tasks in complicated backgrounds.
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The dynamic skeletal modality can naturally represent the time sequence of human
joint positions in two-dimensional space or three-dimensional space coordinates, and then
its movement can be identified by dissecting the pattern of its motion posture [?, ?].Action
recognition applied to the skeleton is performed by adopting the joint coordinates at each
time step to constitute a feature characteristics, and then perform time interpretation on
them.The conventional RGB videos and deep learning-based methods artificially construct
the skeleton as a spatial sequence oriented to the main body joints, which cannot accu-
rately indicate the dependency between associated joints. Large scale 3D skeleton datasets
are available for researchers to explore skeleton-based human action recognition and de-
tection with the constantly evolving of low-cost human skeleton information acquisition
systems [?]. However, the performance of these manual function-based methods is almost
unsatisfactory because it cannot take into account all the influencing factors at the same
time. Many works [?, ?] explore the temporal evolution of actions based on long short-
term memory (LSTM) based framework, and many improvements have been achieved in
the literatures. The traditional deep learning-based method is to artificially abstract the
skeleton as a series of joint coordinate vectors [?, ?, ?] or pseudo-images [?, ?, ?], and
feed it into RNN or CNN to generate predictions.

In the era of big data, as deep learning techniques and artificial intelligence technologies
become more and more mature, while the application scenarios we face become more
and more complex, data-driven approaches gradually become the mainstream of pose
recognition. Thus, the problem of human skeleton-based motion recognition focuses on
two aspects: the first is the variability of the input data, such as scaling, rotation and
translation, which can largely increase the completeness of the training data; the second
is the modeling of human behavior, which enables a concrete description of the human
pose. These two aspects are mutable, dynamic, and have similarities with each other.
Most of the currently available skeleton-based action recognition approaches utilize a
representation of the corresponding position of the joint coordinates, e.g., spatiotemporal
pyramidal models and hidden Markov models.

Aiming at the demand of dynamic recognition, the most important point in building
a structural model for action classification is to extract both visual characteristics of the
appearance and temporal evolution of the joints. Researchers propose the representation
of skeleton data with CNN [?], they applied the faster R-CNN based object recognition
framework for action detection in the time domain to effectively extract epistemic and
action features in regions of interest. In addition, in the work of paper [?], RNN models
are also applied to provide abundant spatial domain characteristics for LSTM models by
exploring the geometric relationships between joints and using different geometric feature
streams for learning training. Many improvements have been made by scholars in order to
more adequately represent the dependencies between the relevant joints. For the action
recognition with skeleton task, in the work of [?], the GCN framework was chosen to
represent the structure of the skeleton as a graph in non-Euclidean space by modeling
the skeleton data, Where key skeletal points in the human body with connectivity are
characterized as vertices of the graph, and temporal edges between corresponding joints
in consecutive frames are characterized as edges of the graph.

The sampling function based on distance is adopted to construct the graph convolu-
tional layer, and it is also applied as the fundamental component for constructing the com-
plete ST-GCN. However, the shortcomings of the graph construction process in ST-GCN
are: (1) The structure of GCN is divided into different layers, where each layer contains
different multi-level semantic information. However, the ST-GCN model does not allow
for complete and accurate modeling of the high-level semantic information contained in
all levels. (2) The changes in skeletal orientation before and after limb movements are
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not updated in time for samples with different movement categories. The movement di-
rections of two points in the bones that have a connection relationship are taken into
consideration [?]. Therefore, a fixed graph structure may not be optimal.
For the purpose of maintaining the data of the detection model updated with changes

in skeletal orientation before and after limb movements, we will propose a network with
temporal dimensions (Temporal) and spatial dimensions (Spatial): the spatial dimension
is reflected in the skeleton diagram within a frame, and the time dimension is constructed
to connect the nodes in the same position of the diagrams in adjacent frames, and then
according to the skeleton, the sequence constructs a spatial-temporal graph. Then, a
bone direction is artificially set, and the two points that have a connection relationship
are taken as the new node according to the direction of the bone. Finally, all the generated
new nodes form a new skeleton.

2. Skeleton Graph Construction. The structure of the graph is generally very irreg-
ular and can be considered as a kind of infinite-dimensional data, so it has no transla-
tion invariance,so the surrounding structure of each node may be unique,which makes
traditional CNN and RNN invalid instantly. In order to deal with this type of data,
many related research works have emerged, such as Graph Neural Network, DeepWalk,
node2vec,and so on. GCN can extract features from the graph data, and then we can
perform node classification, graph partitioning and classification, and link relationship
prediction by the features of graph data.

The recognition of human skeletal structure is based on action recognition in two dimen-
sions of time and space. For pictures, when doing target recognition, what we care about
is actually only a part of the key points on the two-dimensional picture. The video is com-
posed of frame by frame images, and the human skeleton data of each frame of the video is
made up of the feature data of different human joints. Therefore, it is necessary to apply
for a convolutional neural network based on graph structure to characterize the dynamic
skeleton data. As we all know, deep learning-based research has gradually generalized
to neural network structures for processing graph data due to the substantial increase
in the amount of data and the emergence of complex scenarios. The authors propose a
model based on a two-stream adaptive graph convolutional network (2s-AGCN) [?], in
which the topology of the graph can be learned uniformly or individually in an end-to-end
manner by BP algorithm implementation. Also, a dual-stream framework for modeling
first level of visual information and second level of motion flow information is proposed
in the paper, which has a significant improvement on recognition accuracy. The paper [?]
proposes a new GCN trained based on reinforcement learning to solve the problem of
action recognition by using joint relational inference, which has practical applications.

In this paper, we propose to design a representation of a skeleton sequence applicable
to human action recognition by constructing a graph neural network through time and
space modeling as a spatio-temporal graph model based on the ST-GCN model. Also,
since our model incorporates the prediction of skeletal orientation, we define this model
as the spatio-temporal graph model with orientation prediction (DPST-GCN).

As shown in Figure 1, the ST-GCN model is formulated on a sequence of skeleton di-
agrams, where every single node corresponds to a joint in the human body. The joints
in a frame are connected to the edges according to the connectivity of the human body
structure. And the video is decomposed into frame by frame, and in each frame , a
spatial graph is constructed based on the distribution characteristics of the real skeletal
interconnections of the human body; meanwhile, the key points in the same location and
function in two adjacent frames are connected to form a spatial-temporal edge. Thus, the
two categories of edges in the model are: spatial edges matching the raw connections of
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joints and temporal edges connecting the same joints in successive time strides. Even-
tually, different frames can be convolved along the spatial and temporal dimensions to
jointly build a multilayer spatio-temporal graph convolution model. The two dimensions
of this spatio-temporal graph convolution model can also be understood as: (1) Tempo-
ral dimension: the nodes at the same position of adjacent frames in the graph, and the
points at the same position of the two preceding and following frames as the points to be
involved in the convolution. (2) Spatial dimension: the skeleton diagram in one frame,
a convolution center point is determined first, and the points adjacent to it are taken as
the points to be involved in the convolution.

Figure 1. The spatial temporal graph of a skeleton sequence

In addition, in our DPST-GCN model, we added the attention branch to put more
emphasis on categorical and discriminative features, while keeping the common features
about joint electricity in another branch to maintain the integrity of the features.

3. Proposed Scheme.

3.1. Spatial and temporal graph convolutional networks(ST-GCN). ST-GCN [?]
was proposed to adapt to the dynamic environment and complex background of the
pose recognition process, and to be able to present the hierarchical representation of
the skeleton sequence as a spatial-temporal map. In order to describe the skeleton se-
quence with N nodes and T frames in a concrete form, the algorithm constructs an
undirected spatial and temporal graph G(V,E), and it is also necessary to characterize
each joint point of the human body and the connections between adjacent frames. In the
graph, the set of all joint nodes including the entire skeleton sequence is represented by
V = {vti|t = 1, 2, ...T, i = 1, 2, ...N}, where T is the number of features of each node. Each
node in the graph has its unique feature vector, and each edge in the set E connects the
adjacent joints of the human body in each frame, while ensuring that each edge connects
the same joints between consecutive frames.

Since the human body accomplish a entire action during motion is combined with frames
of different lengths in the video, the information of skeletal nodes in each frame needs
to be characterized by spatial data, while the information between different frames needs
to be represented by a temporal graph. Therefore, we need to utilize a spatial-temporal
graph to model the structured information between these joints along the spatial and
temporal dimensions.
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The ST-GCN algorithm adopts the idea of convolutional network. In the skeleton
node network, a convolution center is first determined, and then in the spatial dimension,
the adjacent point is taken as the point that needs to participate in the convolution;
at the same time, in the temporal dimension, take the points where the front and back
frames are at the same position as the points that need to participate in the convolution.
Finally, after determining the convolution center and the points that need to participate
in the convolution center, the convolution operation is performed, which can aggregate
the information of the different temporal dimension and the complex spatial dimension
at the same time.

In our proposed scheme, the node set defined as V = {vti|t = 1, 2, ...T, i = 1, 2, ...N}
represents the whole joints in a skeleton sequence. The body’s physical bone connection
ES and the different time joint trajectories EF = {vti × v(t+1)i} constitute the edge set E
of the space-time graph. The feature vector F (vti) on each node is a three-dimensional
space coordinate vector. When the skeleton sequence is the result of video estimation of
human body pose, the feature vector of the node is the two-dimensional space coordinate
vector and the confidence of the node is estimated.

Figure 2. The structure of the spatial-temporal block

For the individual node in the graph, it can be characterized by the corresponding
feature vector, for example, for a node i in a frame T of video clip, its graph convolution
can be described by the formula defined in Eq. (1).

fout(vi) =
∑

vj∈Bvti

= fin(vij) ∗ w(vti) (1)

where fin(vij) is the feature vector of the node set in the graph vij in the input feature
map, and Bvij is a collection of the nodes within a certain distance away from the node
vti in the space and time domains, which can be written as:

B(vti) = {vti|d(vtj, vti) ≤ D} ∪ {vqi| |q − t| ≤ τ/2} (2)

And w can be thought of as a weighting constructor in the convolution operation that
performs the weighting operation, which can offer a suitable weight vector based on a
specific input. In order to make the disordered and unfixed number of neighboring nodes
become orderly, the ST-GCN algorithm adopts the method of graph label processing,
and divides the neighborhood into a certain number of M subsets according to the seg-
mentation strategy, and the labels of the nodes in each subset are the same, so B(vti)
can be mapped to labels L = {0, 1, 2...M − 1} .Finally, the weighting function of graph
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convolution operation can be defined as:

w(vti, vj) = w(l(vtj)) (3)

Among them, l(·) is the label mapping function determined by the segmentation strat-
egy. From the temporal dimension, when the label mapping l(vti) of a node is confirmed,
the label of the node at other times is also confirmed:

l(vqi) = l(vti) + (q + τ/2)×K (4)

where K is the number of labels of neighborhood nodes vti in a single time.
As in the structure of the spatial-temporal block shown in Figure 2, the feature maps

are first fed to the full attention module to mater the corresponding attention masks.
The learned attention mask represents the feature weights of the corresponding feature
maps, so that the mask has the same size as the corresponding feature maps of the input
data. It aims to assign the much higher weight values to more discriminative features.
On the one hand, the attention mask is multiplied by the corresponding feature maps
one by one, and the obtained results are added to the feature maps one by one as the
input feature maps for the next layer of image convolution.On the other hand, the result
of the element-by-element multiplication of the attention mask and the input feature
map is transferred to the attention branch to participate in the loss calculation of the
attention branch. Thus, the attention mechanism can be applied to the attention branch
of the graphical convolutional network branch as well as the attention branch of the
multitasking framework.

3.2. Bone direction graph construction. In this section, we will introduce our pro-
posed DPST-GCN model. The input data of skeletal sequence action recognition con-
tinuously records the characteristic information of the main joint points of the human
body. The 3D spatial location is applied as the feature information, and each joint point
of the human skeleton in each frame of the video corresponds to a 3D feature vector. The
skeleton diagram of the node set is shown in Figure 3.To more clearly describe the body’s
joint points, we used a configuration of 25 body joints from the 3D dataset, with the
coordinates and locations of the different osteoarticular nodes characterized by numbers.
In a certain order [?] these joints are labeled as : 1-bottom of spine, 2-middle of spine,
3-neck, 4-head, 5-left shoulder, 6-left elbow, 7-left wrist, 8-left hand, 9-right shoulder, 10-
right elbow, 11-right wrist, 12-right hand, 13-left hip. 14-left knee, 15-left ankle, 16-left
foot, 17-right hip, 18-right knee, 19-right ankle, 20-right foot , 21-Spine, 22-Left hand tip,
23-Left thumb, 24-Right thumb and 25-Right thumb.

Then we divide the skeleton graph of the node set into different subsets according to
the division of the space configuration to divide the neighbors.

In ST-GCN [?], all the keypoints extracted from each frame form a key node set, and
the same key points in two adjacent frames are connected to form all edges of the timing
edge. This constitutes an edge set (edge set), that is, a required space-time diagram,
which naturally retains the spatial information of the key points of the skeleton, and
enables the trajectory of the key points to be expressed in the form of time series edges.

However, ST-GCN is able to express the feature flow of the skeleton data well by
building feature vectors on each vertex in the graph structure. However, these visual
feature streams contain only 2D or 3D coordinates of the joints, and do not characterize the
skeletal features of the motion relationship between two joints. In the actual experimental
process, we found that for the recognition of dynamic skeletal features, the length and
motion direction of the skeleton are more informative and discriminative.



A New Bone Direction Prediction Method Based on Spatial-temporal Graph Convolutional Network 841

Figure 3. The joint labels of the NTU-RGBD dataset

Hence, in order to explore the directional motion information of the skeleton data as
a way to represent the skeletal directional feature flow, we need to predict the motion
direction of each skeletal point in each frame by the distance and relationship information
between adjacent skeletal nodes, so as to continuously update the directional state of the
skeleton. Just as shown in Figure 4, the blue mark represents the constantly updated
bone direction. The specific steps are as follows:

Figure 4. The prediction of the bone direction.The node serial number
marked in black is the initial label, and the new nodes generated by one
iteration are marked in blue

Firstly, given an input sample, we statistically obtain the skeletal data based on the
distribution of the joint points.

Secondly, since different parts of the body interact with each other when humans move,
meaning that the joints of the body parts interact and move together. Prediction of more
complex motion trajectories can be achieved based on the combination of 3D trajectories
of node movements. We artificially set a skeleton direction, take the two points with a
connection relationship as the inner and outer points, and take the middle position of the
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two nodes as the new nodes according to the skeleton direction; then all the generated
new nodes constitute the new skeleton. This processes can be described as follows:

(1) The number of main nodes of the skeleton is 24,which can be described as num node =
24,and the connection between two nodes can be represented as self link = (i, i) [?]. Here
we show the the original stgcn joint method, original bone-based method and different di-
rection bone-based method, which are represented as the edge format: (origin, neighbor)
in the following Table 1.

(2) The neighbour node can be described as neighbor = inward + outward, and the
inward and the outward can be described as inward = (i − 1, j − 1) for (i, j) in in-
ward orientation index, the original outward node is named as outward = (j, i) for (i,
j) in inward, we change the outward node as outward = (i − 1, j − 1) for (i, j) in out-
ward ori index, just as the example shown in Table 2. Then The coordinates of two
adjacent skeletal points are subtracted from each other to give the orientation of the new
skeleton.

For example, given a bone with its source joint v1 = (x1, y1, z1) and its target joint
v2 = (x2, y2, z2), the vector of the bone is calculated as ev1,v2 = (x2 − x1, y2 − y1, z2 − z1).
(3) Since DPST-GCN requires sharing weights at distinct nodes, it is essential to keep

the scale of input data consistent across nodes. Through multiple iterative operations,the
generation of skeletal frames is achieved by point-to-edge and edge-to-point conversions.

Then, all the direction vectors are fed to the GCN, and the direction of the bones
is predicted by the directional difference of adjacent skeletal points, which enables the
prediction of action labels.

In Table 1 we show the link based, original skeletal point information used in the stgcn
network, and at the same time, information about the skeletal points calculated using
the node directions described in this paper, e.g., skeletal direction 1 to skeletal direction
4. As can be seen from the table, the predicted directions based on the skeletal motion
directions are chosen to express the detailed information about the human skeletal points
more completely. Since the projection of skeletal directions is done based on the inner and
outer nodes and the link relationship between the nodes. Table 2 shows the information
of different inward and outward orientation indices .

Finally, similar to the bone stream information, the coordinates of the bone points are
subtracted as the direction of the bone, and the direction vector is sent to the adaptive
GCN to predict the action label. Furthermore, we incorporate with the attention graph
model with the pooling operation [?] to retain the local properties of different bones and
the graph structures . Meanwhile, we perform the graph convolution operations on the
feature vector of the bone point and the feature vector of the motion direction to further
improve the performance. Then the bone stream and the bone direction stream are sent
to the network together, just as the structure shown in Figure.5.

4. Experiments.

4.1. Datasets. To perform the comparison with the state-of-are, we select two classical
action recognition datasets as experimental data: the skeleton sequence dataset (NTU-
RGB+D) [?] and the Kinetics skeleton [?],which are both the large-scale datasets.

(1) NTU-RGB+D: This data set records the three-dimensional coordinate positions
of 25 joint points of the human body in continuous time (X, Y, Z). It contains 56880
action samples and a total of 60 actions types, including 50 single-player action types
and 10 two-player action types. The data set is classified into two subsets: cross-object
(X-Sub) and cross-perspective (X-View). In the X-Sub, the training set and the test set
are executed by different people. The training set has 20 action performers and a total of
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Table 1. Different directions of the bone in edge format.

The original stgcn joint method

[(1, 2), (2, 21), (3, 21), (4, 3), (5, 21), (6, 5),
(7, 6),(8, 7), (9, 21), (10, 9),(11, 10), (12, 11),
(13, 1),(14, 13), (15, 14), (16, 15), (17, 1), (18, 17),
(19, 18),(20, 19),(22, 23), (23, 8), (24, 25), (25, 12)]

The original bone-based method

[(1 , 2 ),(2 , 3), (3 , 4), (5 , 6), (6 ,7), (7 , 8 ),
(5, 9),(9 ,10), (10, 11), (11, 12), (1 , 13),(13, 14),
(14, 15),(15, 16),(1 ,17), (17, 18),(18, 19),(19, 20),
(8 ,21),(8,22), (21, 22), (12, 23), (12, 24), (23, 24),
(13, 17), (2 , 5 ), (2 , 9 ), (3 , 5 ), (3 , 9 )]

The direction1 bone-based method

[(23,24), (23, 12), (24,12), (12, 11), (11 ,10),
(10 , 9),(9, 5),(9 , 3), (9, 2), (3, 4), (5 , 6),
(6, 7), (7, 8),(8 , 21),(8 , 22), (21, 22),
(2, 1), (1, 17),(17,18),(18, 19), (19,20),
(1, 13), (13 , 14 ), (14 , 15 ), (15 , 16 )]

The direction2 bone-based method

[(9 ,10), (10,11), (11,12), (12,24), (12,23),
(5 , 6), (6 , 7), (7 , 8), (8 ,21), (8 ,22),
(17 , 18),(18 , 19), (19, 20),(13 , 14),(14,15),
(15, 16),(3 , 4),(9 , 3),(9 , 2), (5, 3),
(5,2),(13, 1), (17 , 1 ),(1 , 2)]

The direction3 bone-based method

[(10, 9 ), (11, 9 ), (12, 9 ), (23, 9 ), (24, 9 ),
(6 , 5 ), (7 , 5 ), (8 , 5 ), (21, 5 ), (22, 5 ),
(4 , 3 ), (18, 17), (19, 17), (20, 17),
(14, 13), (15, 13), (16, 13)]

The direction4 bone-based method

[(2 , 9 ), (9 , 10), (10, 11), (11, 12), (12, 24),
(12 ,23),(2 , 5 ), (5 , 6 ), (6 , 7 ), (7 , 8 ),
(8 , 21), (8 , 22),(1 , 13), (17, 18), (18, 19),
(19, 20),(1 , 17), (13, 14), (14, 15), (15, 16),
(2 , 3 ), (3 , 4 )]

Table 2. The inward orientation index in edge format.

Inward orientation index 1

[(1, 2), (2, 3), (3, 4), (6, 7), (7, 8), (5, 9),
(10, 11), (11, 12), (1, 13), (14, 15), (15, 16),
(1, 17), (18, 19), (19, 20), (8, 21), (8, 22),
(12, 23), (12, 24), (23, 24), (21, 22), (13, 17),
(2, 5), (2, 9), (3, 5), (3, 9), (5,6),(9,10),
(13,14),(17,18), (5,8), (6,8), (9,12),
(10,12),(13,16),(14,16), (17,20),(18,20)]

Inward orientation index 2

[(1, 2), (2, 3), (3, 4), (6, 7), (7, 8), (10, 11),
(11, 12), (1, 13), (14, 15), (15, 16), (1, 17),
(18, 19), (19, 20), (8, 21), (8, 22), (12, 23),
(12, 24), (23, 24), (21, 22), (2, 5), (2, 9),
(5,6), (9,10), (13,14),(17,18)]
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Figure 5. Illustration of the structure of the bone direction prediction

40,320 sample sequences, and the test set has 20 action performers and a total of 16,560
samples; While in X-View, the training set is the bone sequence of all people under the
view of camera 2 and 3, and the test set is the bone sequence of all people under the
view of camera 1. The training subset and test subset contains 37920 and 18960 samples,
respectively.

(2) Kinetics: consisting of 400 actions with between 400 and 1150 video clips per
action, with each video clip being approximately 10 seconds long. And the entire dataset
is also partitioned into two subsets: the training subset (containing 240,000 clips) and the
validation subset (containing 20,000 clips).

4.2. Implementation Details. We conduct the experiments on PyTorch deep learning
framework with an AI computing platform with Nvidia A100 GPU and Aurora ParaS-
tor300S parallel storage system. During the training process, we select the Adam opti-
mizer with faster convergence rate, which is used to calculate the adaptive learning rate of
each parameter with an initial value of 0.1 and a value of 0.0001 for the weight decay co-
efficient. Then, after the 10th epoch and the 50th epoch time, the learning rate is reduced
to 1/10. In the back propagation structure of the neural network, in terms of the error
back propagation and parameter iterative optimization perspective, the cross entropy is
chosen as the loss function of the gradient. Brief description of the experimental steps is
as follows.

Step 1: Data pre-processing. For videos containing human standing, walking, sitting,
running, jumping, squatting, kicking, punching, waving and other actions, the whole
multi-objective action monitoring system is built mainly relying on openpose’s pose recog-
nition environment. Different gesture features are detected and integrated as recognition
features of the complete action through the openpose toolbox. To ensure that the skele-
ton sequence is fixed at 100 frames, we will zero fill if the length is not long enough, and
conversely, if the length is larger, we will extract frames larger than 100 at equal intervals.

At the same time, for the NTU-RGBD data set, when utilizing the NTU-RGBD data
set samples, we first perform frame padding, repetitive sampling, and normalization, and
centering operations on each sample to achieve completeness and uniformity of the data
samples.

Step 2: Training. The pre-processed data were input into our DPST-GCN model
according to the skeletal orientation map generation method in Section 3.2, while the
parameters were fine-tuned to ensure the stability and convergence of the model.
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Step 3: Test. To ensure that the space represented by the test and training sets is
the same, we preprocess the video to be predicted in the same way as in step 1. The
preprocessed data is then fed into the trained network for classification and computation.

4.3. Comparison with the State of the Art. To verify the effectiveness of our al-
gorithm, we select two classical datasets: the NTU-RGBD dataset [?] and the Kinetics-
Skeleton dataset [?], and on the basis of these two datasets, we compare our model with
several state-of-the-art methods associated with the bone point based action recognition
for experiments. For the Kinetics-Skeleton dataset, we recorded the recognition accuracy
for the top 1 and top 5. The action recognition comparative experimental outcome is
given in Table 3 with RGB method [?], Feature map Enc. [?], Deep LSTM [?], Temporal
Conv [?]and the ST-GCN [?] based alogrithm. And these algorithms are very repre-
sentative experiments. Similarly, we also compared representative algorithms: spatial-
temporal LSTM with trust gate (ST-LSTM+TS) [?], Clips CNN+multitask learning (C-
CNN+MTLN) [?], and ST-GCN [?]. It should be noted that the experimental Subject is
to record different people doing the same action, and the View is to record a viewpoint of
different camera positions. We express the cross-performer and cross-view as (X-Sub) and
(X-View), respectively. Then, we report the highest classification accuracy throughout
the training process on X-Sub and X-View, respectively.

Table 3. Comparision performance of action recognition on the Kinetics dataset.

Methods Top-1 (%) Top-5(%)
RGB[21] 57% 77.3%

Feature Enc.[2] 14.9% 25.8%
Deep LSTM [20] 16.4% 35.3%
TemporalConv[1] 21.5% 42.6%

ST-GCN[14] 30.7% 52.8%
Our Scheme 32.8% 55.6%

Table 4. Comparision performance of action recognition on NTU-RGB+D dataset.

Methods X-Sub X-View
Deep LSTM [20] 60.7% 67.3%
TemporalConv [1] 74.3% 83.1%
ST-LSTM+TS [4] 69.2% 77.7%
C-CNN+MTLN[10] 79.6% 84.8%

ST-GCN [14] 81.5% 88.3%
Our Scheme 87.24% 96.94%

From Table 3 and Table 4, we can see that the proposed scheme has significant advan-
tages in terms of recognition efficiency and accuracy. And our scheme ends up with 2.1%
and 3.2% accuracy improvement on Kinetics for Top-1 and Top-5, respectively; mean-
while, our scheme ends up with 5.7% and 7.6% improvement over ST-GCN for X-Sub and
X-View, respectively.

4.4. Ablation Study. In order to illustrate the validity of the DPST-GCN model in the
pose recognition process, we need to conduct further additional ablation experiments. The
ablation experiments are set up with (1) skeletal information as the input of the original
ST-GCN model, (2) information of the large have orientation prediction as the input of the
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original ST-GCN model, and (3) the model proposed in this paper. In terms of database
selection, because the Kinetics dataset not only records human skeleton data, contains
many background and irrelevant objects, which may lead to errors in pose estimation,
detecting some objects as skeletons incorrectly. Therefore, we only request the NTU-
RGB+D action recognition dataset as the experimental data for the ablation study.

Table 5. Experimental study of ablation of NTU-RGB+D action recog-
nition dataset.

Methods X-Sub X-View
ST-GCN with bone stream 81.5% 88.3%

ST-GCN with bone direction stream 83.58% 89.5%
Our Scheme 87.24% 96.94%

In Table 5, we do the comparison experiments about different experimental data input
configurations. The scheme based on ST-GCN with bone direction stream performs better
than the bone stream, and we can see that the ablation experiments in NTU-RGB+D
action recognition dataset prove the validity of the direction of the bones’ motion.

5. Conclusions. In this paper, a new DPST-GCN method based on directional compu-
tation and prediction for skeleton-based action recognition is proposed. Our DPST-GCN
model consists of key skeletal point detection, skeletal orientation generation prediction
and spatio-temporal model training modules. Firstly,in the algorithm, we parameterize
the graph structure of the skeleton data, abstracts the key skeletal nodes and inter-node
relationships as vertices and edges of the graph structure, respectively, and builds a graph
network structure with nodes and inter-node relationships. The generation and prediction
of skeletal orientation information enriches the dimensionality of temporal and spatial in-
formation in ST-GCN. This data-driven approach not only increases the flexibility of the
GCN, but also enables a more detailed representation of the spatio-temporal information
of the human skeleton, which makes it more applicable to action recognition tasks.

Besides, based on the motion direction of the bone, two points with a connection
relationship are taken to express the predicted information between two joints of the bone.
The prediction yields nodes as new nodes, thus updating the graph network structure.
Finally, all the generated new nodes form a new skeleton, which improves the information
and discriminative power of the skeletal representation. Our proposed algorithmic model
was evaluated on two large-scale action recognition datasets, NTU-RGBD and Kinetic,
and achieved higher human discrimination efficiency in both cross-scene(X-Sub) and cross-
view(X-View) experiments. In the future,we will further analyze the relationship among
bone direction streams and the critical skeletal points to improve the model, and consider
more contextual information, such as interactions, to aid action recognition.
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