
Journal of Network Intelligence ©2022 ISSN 2414-8105 (Online)
Taiwan Ubiquitous Information Volume 7, Number 4, November 2022

Similarity-based Attention Embedding Approach for
Attributed Graph Clustering

Wei Weng
College of Computer and Information Engineering

Xiamen University of Technology
Fujian Key Laboratory of Pattern Recognition and Image Understanding

Xiamen, 361024, P. R. China
xmutwei@163.com

Tong Li
College of Computer and Information Engineering

Xiamen University of Technology
Xiamen, 361024, P. R. China

2022031405@stu.xmut.edu.cn

Jian-Chao Liao
College of Computer and Information Engineering

Xiamen University of Technology
Xiamen, 361024, P. R. China

2022031482@stu.xmut.edu.cn

Feng Guo
Fujian Newland Auto-ID Tech. Co., Ltd.

Fuzhou, 350015, P. R. China
guo.feng@nlscan.com

Fen Chen
Xiamen Fuyun Information Tech. Co., Ltd.

Xiamen, 361008, P. R. China
chenf@safedog.cn

Bo-Wen Wei∗

College of Computer and Information Engineering
Xiamen University of Technology

Xiamen, 361024, P. R. China
wbwjohn@163.com

∗Corresponding author: Bo-Wen Wei
Received June 7, 2022, revised July 11, 2022, accepted September 26, 2022.

Abstract
Graph clustering is a fundamental method for studying complex networks. Some existing approaches

focus on the graph data without attributed information. However, graph data in the real world generally
have attribute information, which can better describe complex networks. Recently, deep learning-based
methods are widely used for attributed graph clustering. DAEGC is a goal-directed method, which uti-
lizes graph attention encoders for latent information learning and performs competitively in attributed
graph clustering. To better aggregate the structure and node attribute information in DAEGC, we employ
a lightweight attention mechanism to capture the relationship between nodes and their neighbors, learn
hidden representations, and use a self-training module to train the model for optimal results. Extensive

848

Similarity-based Attention Embedding Approach for Attributed Graph Clustering 849

experiments show that our proposed method improves DAEGC and achieves superior performance com-
pared with state-of-the-art algorithms in attributed graph clustering.
Keywords: Attributed graph clustering, Graph embedding, Attention mechanism

1. Introduction. Graph data is a kind of data representation which contains a set of nodes
and edges, and it exists widely in real-world applications, such as social networks [1], academic
citation networks [2], biological protein networks [3] and so on. In real-world graph data, nodes
represent basic units, and edges represent the relationship between them. The distribution of
fog node data is similar to the graph data structure [4]. Attributed graph is a kind of graph
where each node is associated with a set of features, and the additional information is helpful
to represent the graph. There are many downstream tasks to which graph data can be applied,
such as node classification [5, 6], clustering [7, 8] and link prediction [9].

The goal of clustering task is to group the nodes into disjoint sets. Traditional machine
learning methods address attributed graph clustering by random walks [10], nonnegative matrix
factorization [11], and so on. Benefit from the breakthroughs in Convolutional Neural Networks
(CNNs) [12], computer vision [13], Transportation Mode Detection(TMD) [14] and other fields
have achieved remarkable progress in recent years. For example, in human motion recognition
technology, CNNs can be used to process human motion data with spatio-temporal continu-
ity [15]. The model based on CNNs can also be applied to the stock price trend prediction
task [16, 17]. Although traditional deep learning methods have achieved great success in ex-
tracting features from Euclidean data (e.g., images and texts), they cannot be directly applied to
graph data. The reason is that graph data is a kind of non-Euclidean data, which is irregular, and
each node has a different number of neighbors. Inspired by convolutional neural networks, re-
current neural networks and deep autoencoders, researchers propose a neural network structure
for graph data, namely graph neural networks (GNNs) [18].

GNNs achieves great success on graph data. Graph clustering methods based on GNNs can
be roughly divided into two categories: one is to learn the node embeddings, the other is the
graph pooling method [19]. For example, the Graph Autoencoder (GAE) [20] model is an
unsupervised GCN-based framework suitable for learning graph node embeddings. It uses the
encoder to learn a latent representation, and then reconstructs the original graph. However, the
GAE model does not consider the importance of neighbors in learning node representation. To
better integrate graph structure and node attribute information, DAEGC [21] adds a self-training
module and attention mechanism to the GAE model. It combines graph topology and node
attribute information to learn more representative node representations, and uses an attention
mechanism to calculate the attention coefficient of neighbors for aggregation. The learned
latent representation has a great influence on the accuracy of clustering results.

To better aggregate the structure and node attribute information, we propose an improve-
ment version of DAEGC for attributed graph clustering in this paper. Motivated by the method
AGNN [22], we use a two-layer attention network to calculate the attention coefficients. Specif-
ically, it adopts a similarity-based attention mechanism, which uses the cosine function to cal-
culate the similarity between node and its neighbors. The calculation is lightweight and has
fewer parameters than GAT. Firstly, less parameters make the model understandable. Secondly,
using the similarity between nodes and their neighbors as the attention coefficient is closer to
the group status in the real world. The intuition is that nodes within the same cluster with
similar feature representations are easier to cluster [23]. To this end, using this method to calcu-
late attention coefficient can make nodes with similar attribute information tend to cluster into
the same cluster, because the attention coefficient value between similar nodes is larger. For
better clustering, a self-training component combined with KL divergence is used to supervise
the embeddings learning. We conduct experiments on three publicly-available datasets, namely

850 W. Weng, T. Li, B.-W. Wei, J.-C. Liao, F. Guo and F. Chen

Cora, Citeseer and Pubmed to evaluate the performance of our proposed method. The experi-
mental results show that our model improves DAEGC and achieves a competitive performance
compared with state-of-the-art algorithms on three evaluation metrics.

2. Related Works. In this section, we introduce graph clustering, graph autoencoders and
attention mechanisms commonly used in graph clustering tasks.

2.1. Graph clustering. Graph clustering methods can be roughly divided into two branches:
graph structure-based clustering (PNE), or considering graph structure and node attribute infor-
mation (ANE). PNE clustering methods only consider edge information between nodes. For
example, [24] computes edge betweenness. Rahavan et al. [25] proposed a semi-supervised al-
gorithm based on label propagation. The method mentioned in study [26] applies graph-based
Laplacian feature mapping. Methods based on matrix factorization use non-negative matrix
factorization to learn network structure features, such as [27]. The method proposed by Grover
et al. [28] generates training sequences based on random walks, and it can explore different
neighborhoods of nodes. Gaussian mixture model [29] realizes clustering by learning prior
distribution and deriving posterior distribution. ANE algorithms consider graph structure and
node features. Zhang et al. [23] proposed a method for obtaining smooth feature representa-
tion by using k-order graph convolution, and performed spectral clustering on learned features.
GCN [30] is a representative graph convolution based method. The algorithm determines the
node and its neighbors according to the structure of the graph, and then continuously update the
feature vector of the node according to the attribute information of its neighbors. ASNE [31]
is a network representation learning method combining any type of topology and attributes.
AANE [32] employs matrix factorization and takes attribute information as one of the decom-
posed information.

2.2. Graph autoencoder. Kipf and Welling presented the graph autoencoder (GAE) and graph
variational autoencoder (VGAE) [20] in 2016. Since then, graph autoencoders have been widely
used in many fields due to their simple structure and efficient encode ability. These methods
first capture latent variables and reconstruct the original graph using graph autoencoder or graph
variational autoencoder. Compared with VGAE using two-layer GCN learning node represen-
tation, MGAE [33] uses three-layer GCN, and employs marginalized denoising autoencoder
when reconstructing the original graph. ANRL [34] uses a single encoder to encode node at-
tribute information, but multiple decoders are used in the decoder part, local and global structure
information can be reconstructed simultaneously. DANE [35] model has two encoders, one en-
coder encodes and reconstructs structural information, and the other encodes and reconstructs
attribute information. ARGE [36] combines graph encoder and adversarial network. The graph
autoencoder takes the graph structure and node features to learn a latent representation, and then
reconstructs the graph structure from the latent representation.

2.3. Attention mechanism. The attention mechanism is a brain signal processing mechanism
unique to human vision. Human vision obtains the target area that needs to be focused on by
quickly scanning the global image, which is commonly referred to as the focus of attention,
and ignoring useless information. Attention models were first used in machine translation [37]
and are now widely used in various types of tasks, such as natural language processing [38],
image recognition [39], and recommender systems [40]. For instance, regions of interest can
be quickly discovered from images by using the principles of visual attention mechanisms [41].
The attention mechanism is also applied in the image title technology. DenseAtt [42] applies a
multilayer dense attention mechanism, which has achieved good results.

In graph clustering, GAT [43] aggregates neighbor node information through the self-attention
mechanism, improves the expression ability of node features, and realizes adaptive matching of

Similarity-based Attention Embedding Approach for Attributed Graph Clustering 851

weights of different neighbors. GCAGC [44] is an adaptive graph convolution network with at-
tention graph clustering. CATs [45] uses a joint attention strategy to learn node representations.
AGCN [46] is a novel deep clustering method, which uses a heterogeneous fusion module to
dynamically fuse node attributes and topology features, and uses the attention mechanism to
dynamically fuse corresponding features.

3. The Proposed Algorithm.

3.1. Problem definition. A non-directed graph G = (V,E,X), where V = {v1, v2, ..., vn} is
a set of nodes with |V | = n. E = {eij} is a set of edges, it can be represented as an adjacency
matrix A = {aij} ∈ Rn×n, where Aij = 1 if (vi, vj) ∈ E, otherwise Aij = 0. X is a feature
matrix of nodes. X = [x1, x2, ..., xn]

T ∈ Rn×d, where xi ∈ Rd is a real-value feature vector
affiliated with node vi. For a given graph G, our goal is to divide the nodes of the graph G into
m clusters C = {C1, C2, ..., Cm}. The nodes in the same clusters are similar to each other, and
there is a high probability that they have the same feature values.

3.2. Proposed method. As discussed in section 1, we introduce the proposed method. Our
method is adapted from DAEGC [21]. DAEGC develops a graph attention encoder to combine
the structure and attribute information of the graph, and uses an attention mechanism to learn the
hidden representation of each node. Motivated by AGNN [22], we adopt a lightweight attention
mechanism to better aggregate the structure and node attribute information. Our model consists
of three parts, a graph attention encoder, a self-training module and an inner product decoder, as
shown in Figure 1. The graph attention encoder aggregates the information of neighbor nodes,
and attention is based on similarity, which can learn similar hidden embeddings for objects
related to each other. The self-training module utilizes KL divergence to generate soft labels to
supervise the embedding learning. The inner product decoder reconstructs the original graph
by computing the inner product of hidden representations.

3.2.1. Graph attentional encoder. We use a graph attention network [22] as the graph encoder.
Assuming that neighbors similar to the node are more important, the relative importance of
nodes can be obtained directly by calculating the similarity between nodes [47]. For example,
in social networks, a user and his friends generally have common hobbies or common topics.
The similarity-based attention mechanism is based on this assumption. The similarity between
nodes can be calculated as the attention coefficient. Given the corresponding features X and
the graph structure A, the attention coefficient can be learned by:

αi,j =
ei,j∑

k∈Γv0
ei,k

, (1)

where ei,j means the correlation between node i and node j . It can be calculated as follows:

eij = β · cos(Wxi,Wxj). (2)

Among them, xi and xj are the feature representations of node i and node j, and W is a
trainable weight matrix that maps attributes of the node to the hidden space. When aggregat-
ing neighbor information, it is necessary to normalize the attention of all neighbors, and the
normalized attention weight αij is the aggregation coefficient. It can be formulated as:

αi,j =
exp(β · cos(Wxi,Wxj))∑

k∈Γv0 exp(β · cos(Wxi,Wxk))
, (3)

where β is a single trainable parameter and cos represents cosine-similarity. The similarity-
based attention mechanism requires few parameters for calculating the attention coefficient.

852 W. Weng, T. Li, B.-W. Wei, J.-C. Liao, F. Guo and F. Chen

Reconstructed graph
Attributed graph

Hidden

representation

Z

Encoder

layer

(1)

layer

(2)

train

KL divergence

Decoder

*σ ()

Z 𝒁𝑻

2

1
3

𝜶𝟏𝟐

4

𝜶𝟏𝟒

𝜶𝟏𝟑

5

6

FIGURE 1. The architecture of the similarity-based attention embedding method
is shown in the figure. The framework of the model is adapted from the structure
of DAEGC [21]. Given the graph structure information A and the graph node
attribute information X , the graph attention encoder with two layers of attention
network is used to encode the graph data and learn the hidden representation Z.
The method to calculate the attention coefficient here is to calculate the similar-
ity between adjacent nodes as the attention coefficient. Next, the self-training
module is performed by minimizing the KL divergence. The module reduces the
loss of the objective function together with the autoencoder and performs clus-
tering in training process.

The DAEGC model uses GAT as the attention mechanism, with an extra parameter a⃗T . In
DAEGC, to capture the graph topology information, the graph encoder adds a coefficient M =
(B +B2 + +Bt)/t, and B is the transition matrix of the graph. In this formula, as t increases,
the computation will be increased while capturing information, and more memory will be occu-
pied. Different from the attention mechanism in the GAT model, the similarity-based attention
mechanism uses the cos function to calculate the similarity between nodes. This lightweight at-
tention mechanism saves memory and improves computing efficiency. Similarity-based graph
attentional encoder is described in Algorithm 1.

Algorithm 1 Similarity-based graph attentional encoder
Input: The feature matrix X and the structure matrix A of graph G.
Output: The learned hidden representation z of graph G.
1: Initializes the parameter matrix W .
2: Calculate eij according to Eq. 2.
3: The aggregation coefficient αi,j is calculated by Eq. 3.
4: The hidden representation z is updated by Eq. 4.

The graph attentional encoder can learn hidden representations of nodes by assigning differ-
ent weights to different neighbors:

zl+1
i = σ(

∑
j∈Ni

αijWzlj). (4)

Similarity-based Attention Embedding Approach for Attributed Graph Clustering 853

As shown in Eq. 4, zl+1
i represents the learned information of the node i . Node j is a neighbor

of the node i , and Ni denotes the neighbors of node i . αij is the attention coefficient between
node i and node j . The attention coefficient α describes the importance of neighbor nodes.

We uses two graph attention layers to capture the hidden representation of node information,
and let x be the initial input feature, xi = z0i :

z
(1)
i = σ(

∑
j∈Ni

αijW
(0)xj), (5)

z
(2)
i = σ(

∑
j∈Ni

αijW
(1)z

(1)
j). (6)

After obtaining the hidden representation of the node information, the decoder decodes the
learned information, here we let zi = z

(2)
i .

3.2.2. Clustering via self-training embedding. The data used in the graph clustering task is un-
labeled. In other words, graph clustering tasks belong to unsupervised learning. Unsupervised
tasks cannot obtain clear feedback during model training, thus self-training method is employed
to solve this problem. We use hidden embedding as input data for the self-training clustering
module, the objective function is formulated as:

Lc = KL(P ∥ Q) =
∑
i

∑
u

piu log
piu
qiu

, (7)

where qiu denotes the similarity between cluster center embedding µµ and node embedding zi.
We use Student’s t-distribution [50] to measure it, which can handle clusters of different sizes,
and it is very convenient in calculation:

qiu =
(1 + ∥zi − µµ∥2)−1∑
k(1 + ∥zi − µµ∥2)−1

. (8)

The soft cluster distribution of each node can be expressed by qiu, and the target distribution
piu can be defined as follows:

piu =
q2iu/

∑
iqiu∑

k(q
2
ik/

∑
i qik)

. (9)

Q is the probability distribution of nodes. Nodes close to the center of the cluster are soft
assignments with high probability, and this part of the node distribution is considered credible.
To reduce the clustering loss, the current distribution must be close to the true distribution P . So
the “confidence distribution” can be used as a soft label to supervise the learning of Q. During
training, we first use the graph attention encoder to get the node embedding z which is defined
in Eq.7. Before training the whole model, K-means is used to cluster on the node embedding z
to obtain the initial cluster centers. Then the confidence distribution Q is obtained by Eq.11.

3.2.3. Inner product decoder. The proposed model is trained with gradient descent using the
Adam optimizer, updating the cluster centers µ and embeddings z. We use Eq.7 and Eq.9 to
update the clustering loss Lc and calculate the target distribution P . There are many kinds of
decoders, each of which is suitable for capturing information. Some decoders reconstruct graph
structure information, and some decoders are suitable for reconstructing attribute information.

854 W. Weng, T. Li, B.-W. Wei, J.-C. Liao, F. Guo and F. Chen

For the embedding z containing node attribute information, the inner product decoder is se-
lected, which is more convenient and flexible when predicting the relationship between nodes.
Therefore, the reconstruction information Âij of the graph is obtained by the following formula:

Âij = sigmoid(z⊤i zj). (10)

3.2.4. Clustering optimization. The reconstruction loss of the data after encoding and decoding
is calculated by the following formula:

Lr =
n∑

i=1

loss(Aij, Âij). (11)

The loss function consists of two parts, the clustering loss Lc and the reconstruction loss Lr.
We optimize the two modules of autoencoder embedding and clustering at the same time, and
the final objective function can be formulated as follows:

L = Lr + γLc, (12)

where γ is a nonnegative parameter to balance the reconstruction loss and clustering loss. The
clustering result can be obtained directly from the optimized Q, and the result can be used as
the prediction of node vi:

si = argmax
u

qiu. (13)

In conclusion, we use a similarity-based attention graph encoder to capture hidden repre-
sentations of nodes, and self-training clustering embedding is used to improve the clustering
performance. The final objective function considers the reconstruction loss and clustering loss
and carries out learning in a unified framework. The pseudocode of the method is summarized
in Algorithm 2.

Algorithm 2 Similarity-based attention embedded attributed graph clustering
Input: Graph structure information matrix A, attributed information matrix X , label matrix
L, the number of clusters k, the number of iterations Iter, target distribution update interval T .
Output: Final clustering results.
1: Get the autoencoder hidden representation Z according to Algorithm 1.
2: Calculate the initial cluster centers µ based on Z by K-means.
3: for ℓ = 0 to Iter − 1 do
4: if ℓ%T == 0 do
5: Calculate soft assignment distribution Q by Eq.8.
6: Compute target distribution P according to Eq.9.
7: end if
8: Calculate clustering loss Lc by Eq.7.
9: Minimizing the loss L that defined by Eq.12 to update the model.

10: end for
11: Get the final clustering results according to Eq.13.

4. Experiments.

Similarity-based Attention Embedding Approach for Attributed Graph Clustering 855

4.1. Datasets. We evaluated our method on three attributed networks: Cora, Citeseer, and
Pubmed [2]. The above three datasets are all citation network datasets. In these datasets, the
nodes correspond to publications. If there is a citation relationship between each other, the two
corresponding nodes are connected by an edge. Table 1 summarizes the statistics of the datasets.

Cora: The Cora dataset contains 2708 nodes, which represents 2708 papers about machine
learning and there are 5429 edges between these nodes. The labels contain seven areas: case
based, genetic algorithms, neural networks, probabilistic methods, reinforcement learning, rule
learning, and theory. Each node is characterized by a 1433 dimensional binary vector.

Citeseer: The Citeseer dataset includes 3327 publications with six classes, including agents,
artificial intelligence, database, information retrieval, machine language, and human-computer
interaction. There are 4732 edges between them, which represent the reference relationship
between publications. The features of each node are represented by a 3703-dimensional binary
vector.

Pubmed: The Pubmed dataset contains 19,717 scientific publications, including Diabetes
Mellitus Experimental, Diabetes Mellitus Type 1, and Diabetes Mellitus Type 2. There are
44338 edges between them. Node is described by a 500-dimensional binary vector.

TABLE 1. Datasets statistics

Datasets Nodes Edges Features Classes
Cora 2708 5429 1433 7

Citeseer 3327 4732 3703 6
Pubmed 19717 44338 500 3

4.2. Comparison methods. In the experiments, we compared our method with some typical
algorithms. These comparison algorithms can be roughly divided into two types. Some methods
only use node attribute information or graph structure information, and the other methods use
node attribute information and graph structure information simultaneously.

K-means K-means algorithm is a basic unsupervised clustering algorithm, where k is the
number of categories after clustering.

DeepWalk [48]: Deepwalk1 is a representative and successful work of early network repre-
sentation learning. DeepWalk learns a social representation of a network from truncated random
walks. It is also a method that only considers graph structure information when learning graph
representation.

GraRep [27]: GraRep2 only utilizes graph structure information. The model represents the
vertices in the graph by learning low-dimensional vectors and integrates the global structural
information of the graph.

TADW [10]: TADW3 algorithm considers the graph structure and node attribute information,
which learnes hidden representations comprehensively.

AANE4 [32]:This algorithm is similar to TADW, which uses matrix decomposition method
for graph data. The result of matrix factorization combines the graph structure and attribute
information.

ARGE & ARVGE5 [36]: The method uses an adversarial graph embedding framework to
process the graph data. The encoder part combines the graph structure and node attribute infor-
mation. Then the decoder is used to reconstruct the graph information. The latent representation

1 https://github.com/houchengbin/OpenANE
2 https://github.com/houchengbin/OpenANE
3 https://github.com/houchengbin/OpenANE
4 https://github.com/houchengbin/OpenANE
5 https://github.com/GRAND-Lab/ARGA

856 W. Weng, T. Li, B.-W. Wei, J.-C. Liao, F. Guo and F. Chen

is matched with prior distribution and the reconstruction loss is reduced by adversarial training.
Depending on whether additional input of variational is considered, the methods are divided into
adversarially regularized graph autoencoder (ARGE) and adversarially regularized variational
graph autoencoder (ARVGE).

DAEGC6 [21]: The DAEGC algorithm considers graph structure and node attribute infor-
mation simultaneously, combines two kinds of information in the encoder, uses the attention
network to learn the importance of graph nodes, and reconstructs the graph structure in the
decoder.

4.3. Evaluation metrics and parameter settings.

4.3.1. Evaluation metrics. To evaluate the proposed model, we use three commonly used met-
rics, including accuracy (ACC), normalized mutual information (NMI) and F − score [49].
NMI measures the similarity of two clustering results. It is a normalization of the Mutual
Information (MI) score to scale the results between 0 and 1. The NMI result of 0 means no
mutual information, and the NMI result of 1 means complete correlation. Assume two labels
U and V , U and V have the same N objects, the MI between U and V is calculated by:

MI(U, V) =

|U |∑
i=1

|V |∑
j=1

|Ui ∩ Vj|
N

log
N |Ui ∩ Vj|
|Ui| |Vj|

. (14)

The NMI is defined as:

NMI(U, V) =
MI(U, V)

mean(H(U)H(V))
, (15)

where H(U(V)) = −
∑|U(V)|

i=1 P (i) log P (i), P (i) = |U(V)i|
N

. For ACC and F − score, the
larger value indicates better performance.

4.3.2. Parameter settings. Our method set 256 neurons of hidden layers and 16 neurons of em-
bedding layers, the learning rate lr = 0.001 for the Cora and Pubmed dataset. For Citeseer, the
lr was 0.0001. We set the maximum number of training max − epoch = 100. The Adam op-
timizer was used for optimization. For the comparison methods, including Deepwalk, TADW,
GraRep, and AANE, the K-means algorithm was used to conduct the clustering task. We se-
lected the parameters for each method according to the original paper. For Deepwalk, we set
walks of each node r = 10, walk length l = 80, window size w = 10 and the number of node
embedding dimension is 128. For TADW, we set the parameter of balancing factor λ = 0.2.
For AANE, the balancing factors were set to 0.2 and 0.05 respectively, the penalty parameter
was set to 5. In GraRep, we set the transition probability matrix parameter kstep = 4. For the
models ARGE and ARVGE, we constructed encoders with 32-units of hidden layers and 16-
units of embedding layers. For DAEGC, we set 256 neurons for hidden layers and 16 neurons
for embedding layers, the alpha of the leaky-relu was 0.2.

4.4. Result Analysis. The results of experiments on three datasets are summarized in Table 1, 2
and 3. The best results are highlighted in bold, and the rank of each algorithm is shown in paren-
theses. A smaller rank indicates better performance. To intuitively reflect the average rank of
these algorithms, the overall average rank is depicted in Figure 2. The column “input” indicates
the type of input data: “Features” means that the algorithm only considers node attribute infor-
mation. “Graph” means that the algorithm only uses graph structure information. “Both” refers

6 https://github.com/Tiger101010/DAEGC

Similarity-based Attention Embedding Approach for Attributed Graph Clustering 857

to utilizing graph structure and node attribute information. The observations are summarized as
follows:

1. Methods using graph structure information or attribute information generally perform
worse than algorithms using the structure and attribute information. It indicates that com-
bining two types of information is helpful for learning comprehensive node representation.

2. Our method using a similarity-based attention mechanism improves the value of NMI
effectively on the Citeseer dataset. The NMI results of our method are 11% higher than
that of ARGE and 12.9% higher than that of ARVGE. Compared with the original model
DAEGC, the NMI value also increased by 1.4%.

TABLE 2. Experimental results on Cora dataset

Input ACC NMI F − score
K-means Features 0.413(8) 0.229(9) 0.363(9)
Deepwalk Graph 0.637(6) 0.449(7) 0.629(6)
GraRep Graph 0.617(7) 0.463(6) 0.578(7)
TADW Both 0.660(5) 0.480(5) 0.659(3)
AANE Both 0.385(9) 0.234(8) 0.367(8)
ARGE Both 0.661(4) 0.480(4) 0.645(5)

ARVGE Both 0.697(3) 0.513(3) 0.657(4)
DAEGC Both 0.723(2) 0.560(2) 0.702(1)

ours Both 0.733(1) 0.562(1) 0.684(2)

TABLE 3. Experimental results on Citeseer dataset

Input ACC NMI F − score
K-means Features 0.472(7) 0.231(8) 0.441(7)
Deepwalk Graph 0.449(8) 0.239(7) 0.421(8)
GraRep Graph 0.354(9) 0.187(9) 0.348(9)
TADW Both 0.597(3) 0.340(3) 0.543(5)
AANE Both 0.571(6) 0.301(5) 0.533(6)
ARGE Both 0.581(5) 0.310(4) 0.558(3)

ARVGE Both 0.584(4) 0.291(6) 0.556(4)
DAEGC Both 0.676(1) 0.411(2) 0.621(1)

ours Both 0.623(2) 0.425(1) 0.562(2)

4.5. Parameter sensitivity. Parameter sensitivity was conducted on the Citeseer dataset. We
investigate the influence of different numbers of embedding dimensions on the performance. We
need to choose an appropriate number of embedded dimensions. We first show how different
numbers of embedding dimensions affect the performance of the algorithm. In Figure 3, we can
see the value of NMI and F − score increases first and then decreases with the increase of the
embedding dimension. For ACC, it decreases first and then increases, and the value starts to
deteriorate when the embedding dimension is large. Thus, to obtain the best performance on a
certain dataset, we suggest searching parameter values first.

4.6. Graph visualization. The visualization tool t-SNE [50] was used to generate visualiza-
tions of the network on a two-dimensional space. We visualized the clustering results of several
methods on the Citeseer dataset. For the units which belong to different categories, we used
different colors to label them. Therefore, a good result requires that the points of the same

858 W. Weng, T. Li, B.-W. Wei, J.-C. Liao, F. Guo and F. Chen

TABLE 4. Experimental results on Pubmed dataset

Input ACC NMI F − score
K-means Features 0.596(6) 0.310(1) 0.582(8)
Deepwalk Graph 0.660(2) 0.297(2) 0.665(2)
GraRep Graph 0.594(7) 0.148(7) 0.592(6)
TADW Both 0.622(5) 0.262(4) 0.616(5)
AANE Both 0.573(8) 0.181(8) 0.589(7)
ARGE Both 0.653(3) 0.250(5) 0.658(3)

ARVGE Both 0.485(9) 0.068(9) 0.374(9)
DAEGC Both 0.624(4) 0.213(6) 0.627(4)

ours Both 0.671(1) 0.295(3) 0.672(1)

FIGURE 2. Overall average rank.

(a) NMI (b) ACC (c) F − score

FIGURE 3. Parameter analysis of different number of embedding dimensions.

color should be closed to each other and the boundaries of different clusters are clear. The
visualization results are shown in Figure 4.

The Citeseer dataset was divided into six categories so the points in Figure 4 have six col-
ors. It can be seen from (a) of Figure 4 that the points of different colors are mixed together

Similarity-based Attention Embedding Approach for Attributed Graph Clustering 859

(a) DeepWalk (b) ARGE

(c) DAEGC (d) ours

FIGURE 4. Visualization comparison of clustering results. The different colors
represent different labels.

without a clear distinction. It indicates that the hidden representation learned by Deepwalk is
not satisfactory. For the ARGE algorithm, points with the same color have a certain degree
of aggregation, and the cluster of different colors is formed. But the center part of the units
of different colors is still mixed. DAEGC results with clear boundaries, but only five distinct
partitions can be seen. The Citeseer dataset has six clusters, so the points with two colors are
completely mixed together with no distinction. The result of our method is better than the above
three methods. The boundary between nodes with different colors is clear. Points of the same
color are clustering together and it can be seen that there are six different colors clustered.

5. Conclusions. In this paper, we propose an improved version of DAEGC. The algorithm
utilizes a graph encoder with a similarity-based attention mechanism to learn hidden represen-
tations for node clustering tasks. And during the training process, the node embeddings are
updated using soft labels. The inner product decoder is used to reconstruct the graph. Using the
attentional mechanism based on similarity in the encoder can make the NMI value increase
stably. Experimental results show that our model performs better than other state-of-the-art
methods on several evaluation metrics. In the future, we will try to better aggregate the graph
structure and node attribute information.

Acknowledgment. This work is partially supported by the natural Science Foundation of Fu-
jian Province of China (No. 2021J011187), the National Social Science Fund of China (No.
21BTJ011). The authors also gratefully acknowledge the helpful comments and suggestions of
the reviewers, which have improved the presentation. Wei Weng and Bo-wen Wei proposed the
methodology and revise the manuscript; Tong Li performed the experiment and wrote the man-
uscript; Jian-Chao Liao, Feng Guo and Fen Chen helped perform the analysis with constructive
discussions.

REFERENCES

[1] W.-L. Hamilton, J. Zhang, and C. Danescu-Niculescu-Mizil, “Loyalty in online communities,” in Interna-
tional AAAI Conference on Web and Social Media. AAAI, 2017, pp. 540–543.

860 W. Weng, T. Li, B.-W. Wei, J.-C. Liao, F. Guo and F. Chen

[2] Z. Yang, W.-W. Cohen, and R. Salakhutdinov, “Revisiting Semi-Supervised Learning with Graph Embed-
dings,” in International Conference on International Conference on Machine Learning. PMLR, 2016, pp.
40–48.

[3] M. Zitnik, and J. Leskovec Zitnik, “Predicting multicellular function through multi-layer tissue networks,”
Bioinformatics, vol. 33, no.14, pp. i190–i198, 2017.

[4] T.-Y. Wu, X. Guo, L. Yang, Q. Meng, and C.-M. Chen, “A Lightweight Authenticated Key Agreement Pro-
tocol Using Fog Nodes in Social Internet of Vehicles,” Mobile Information Systems, vol. 2021, 3277113,
2021.

[5] J.-C. Liao, T. Li, W. Weng, J.-B. Wang, and J. Wen, “Overlapping Community Detection by Motif-aware
Label Propagation,” Journal of Network Intelligence, vol. 7, no. 1, pp. 260–277, 2022.

[6] X. Shen, Q. Dai, F. Chung, W. Lu, and K.-S. Choi, “Adversarial deep network embedding for cross-network
node classification,” in AAAI Conference on Artificial Intelligence. AAAI, 2020, pp. 2991–2999.

[7] C. Wang, S. Pan, and P.-Y. Celina, “Deep neighbor-aware embedding for node clustering in attributed graphs,”
Pattern Recognition , vol. 122, 108230, 2022.

[8] H. Sun, F. He, J. Huang, Y. Sun, and Y. Li, “Network embedding for community detection in attributed
networks,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 14, no. 3, pp. 1–25, 2020.

[9] X. Du, J. Yan, and H. Zha, “Joint Link Prediction and Network Alignment via Cross-graph Embedding,” in
28th International Joint Conference on Artificial Intelligence. IJCAI, 2019, pp. 2251–2257.

[10] C. Yang, Z. Liu, and D. Zhao, “Network representation learning with rich text information,” in Twenty-Fourth
International Joint Conference on Artificial Intelligence. IJCAI, 2015, pp. 2111–2117.

[11] X. Wang, D. Jin, X. Cao, L. Yang, and W. Zhang,“Semantic community identification in large attribute
networks,” in AAAI Conference on Artificial Intelligence. AAAI, 2016, pp. 265–271.

[12] J.-S. Ma, H.-H Xue, Y.-D. Zeng, Z.-C Zhang and Q.-C Wang, “Significant wave height forecasting using
WRF-CLSF model in Taiwan strait,” Engineering Applications of Computational Fluid Mechanics, vol. 15,
no. 1, pp. 1400–1419, 2021.

[13] J. L, Tan. F, J. S, “Generative adversarial network technologies and applications in computer vision,” Com-
putational Intelligence and Neuroscience, vol. 2, pp. 1–17, 2020.

[14] S. Kumar, A. Damaraju, A. Kumar, S. Kumari, and C.-M. Chen, “LSTM Network for Transportation Mode
Detection,” Journal of Internet Technology, vol. 22, no. 4, pp. 891–902, 2021.

[15] F. Zhang, T.-Y. Wu, J.-S. Pan, G. Ding, and Z. Li, “Human Motion Recognition Based on SVM in VR Art
Media Interaction Environment,” Human-centric Computing and Information Sciences, vol. 9, 40, 2019.

[16] J. M.-T. Wu, Z. Li, N. Herencsar, B. Vo, and J. C.-W Lin, “A graph-based CNN-LSTM stock
price prediction algorithm with leading indicators,” Multimedia Systems, 2021. [Online]. Available:
https://doi.org/10.1007/s00530-021-00758-w

[17] J. M.-T Wu, Z. Li, G. Srivastava, J. Frnda, V. G. Diaz, and J. C.-W. Lin, “A CNN-based stock price trend
prediction with futures and historical price,” in 2020 International Conference on Pervasive Artificial Intelli-
gence (ICPAI). IEEE, 2020, pp. 134–139.

[18] Z. Wu, S. Pan, and F. Chen, “A comprehensive survey on graph neural networks,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4–24, 2020.

[19] J. Zhou, G. Cui, and S. Hu, “Graph neural networks: A review of methods and applications,” AI Open, vol.
1, pp. 57–81, 2020.

[20] T.-N. Kipf, and M. Welling, “Variational graph auto-encoders,” in Conference and Workshop on Neural
Information Processing Systems NIPS, 2016, pp.1–3.

[21] C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, and C. Zhang, “Attributed Graph Clustering: A Deep Attentional
Embedding Approach,” in Twenty-Eighth International Joint Conference on Artificial Intelligence. IJCAI,
2019, pp. 3670–3676.

[22] K.-K Thekumparampil, C. Wang, and S. Oh, “Attention-based graph neural network for semi-supervised
learning,” in International Conference on Learning Representations ICLR, 2018, pp.1–15.

[23] X. Zhang, H. Liu, and Q. Li, “Attributed graph clustering via adaptive graph convolution,” in 28th Interna-
tional Joint Conference on Artificial Intelligence. IJCAI, 2019, pp. 4327–4333.

[24] M. Girvan, and M. Newman, “Community structure in social and biological networks,” National Academy of
Sciences, vol. 99, no. 12, pp. 7821–7826, 2002.

[25] U.-N Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm to detect community structures in
large-scale networks,” Physical Review E, vol. 76, 036106, 2007.

[26] M. Newman, “Finding community structure in networks using the eigenvectors of matrices,” Physical Review
E, vol. 74, 036104, 2006.

Similarity-based Attention Embedding Approach for Attributed Graph Clustering 861

[27] S.-S. Cao, W. Lu, and Q.-K. Xu, “Grarep: Learning graph representations with global structural information,”
in 24th ACM International Conference on Information and Knowledge Management. CIKM, 2015, pp. 891–
900.

[28] A. Grover, and J. Leskovec, “node2vec: Scalable feature learning for networks,” in 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. SIGKDD, 2016, pp. 855–864.

[29] L. Kang, R.-S. Chen, N. Xiong, Y.-C. Chen, Y.-X. Hu, and C.-M. Chen, “Selecting Hyper-Parameters of
Gaussian Process Regression Based on Non-Inertial Particle Swarm Optimization in Internet of Things,”
IEEE Access, vol. 7, pp. 59504–59513, 2019.

[30] T.-N. Kipf, and M. Welling, “Semi-supervised classification with graph convolutional networks,” in Interna-
tional Conference on Learning Representations, ICLR, 2017, pp.1–14.

[31] L. Liao, X. He, and H. Zhang, “Attributed social network embedding,” IEEE Transactions on Knowledge and
Data Engineering, vol. 30, no. 12, pp. 2257–2270, 2018.

[32] X. Huang, J. Li, and X. Hu, “Accelerated attributed network embedding,” in SIAM International Conference
on Data Mining. Society for Industrial and Applied Mathematics. SDM, 2017, pp. 633–641.

[33] C. Wang, S. Pan, and G. Long, “MGAE: Marginalized Graph Autoencoder for Graph Clustering,” in ACM
on Conference on Information and Knowledge Management. CIKM, 2017, pp. 889–898.

[34] Z. Zhang, H. Yang, and J. Bu, “ANRL: Attributed Network Representation Learning via Deep Neural Net-
works,” in Twenty-Seventh International Joint Conference on Artificial Intelligence. IJCAI, 2018, pp. 3155–
3161.

[35] H. Gao, and H. Huang, “Deep attributed network embedding,” in Twenty-Seventh International Joint Confer-
ence on Artificial Intelligence. IJCAI, 2018, pp. 3364–3370.

[36] S.-R. Pan, R.-Q. Hu, and G.-D. Long, “Adversarially regularized graph autoencoder for graph embedding,”
in Twenty-Seventh International Joint Conference on Artificial Intelligence. IJCAI, 2018, pp. 2609-2615.

[37] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Trans-
late,” in 3rd International Conference on Learning Representations, ICLR, 2015, pp.1–15.

[38] A. Vaswani, N. Shazeer, and N. Parmar, “Attention is all you need,” Advances in Neural Information Pro-
cessing Systems, vol. 30, pp. 6000–6010, 2017.

[39] J. Fu, H. Zheng, and T. Mei, “Look closer to see better: Recurrent attention convolutional neural network for
fine-grained image recognition,” in IEEE Conference on Computer Vision and Pattern Recognition. CVPR,
2017, pp. 4438–4446.

[40] F. Sun, J. Liu, and J. Wu, “BERT4Rec: Sequential recommendation with bidirectional encoder representa-
tions from transformer,” in 28th ACM International Conference on Information and Knowledge Management.
CIKM, 2019, pp. 1441–1450.

[41] F. Zhang, T.-Y. Wu, and G. Zheng, “Video salient region detection model based on wavelet transform and
feature comparison,” EURASIP Journal on Image and Video Processing , vol. 2019, 58, 2019.

[42] E.-K. Wang, X. Zhang, F. Wang, T.-Y. Wu, and C.-M. Chen, “Multilayer Dense Attention Model for Image
Caption,” IEEE Access, vol. 7, pp. 66358–66368, 2019.

[43] P. Veličković, G. Cucurull, and A. Casanova, “Graph Attention Networks,” in International Conference on
Learning Representations, ICLR, 2018, pp. 1–12.

[44] K. Zhang, T. Li, and S. Shen, “Adaptive graph convolutional network with attention graph clustering for
co-saliency detection,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, 2020,
pp. 9050–9059.

[45] T. He, Y.-S. Ong, and L. Bai, “Learning Conjoint Attentions for Graph Neural Nets,” Advances in Neural
Information Processing Systems, vol. 2021, no. 34, pp. 2641–2653, 2021.

[46] Z. Peng, H. Liu, and Y. Jia, “Attention-driven Graph Clustering Network,” in 29th ACM International Con-
ference on Multimedia.ACM MM, 2021, pp. 935–943.

[47] J.-B. Lee, R.-A. Rossi, and S. Kim, “Attention models in graphs: A survey,” ACM Transactions on Knowledge
Discovery from Data, vol. 13, no. 6, pp. 1–25, 2019.

[48] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social representations,” in 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. SIGKDD, 2014, pp. 701–710.

[49] X. Su, S. Xue, and F. Liu, “A comprehensive survey on community detection with deep learn-
ing,” IEEE Transactions on Neural Networks and Learning Systems, 2022. [Online]. Available:
https://doi.org/10.1109/TNNLS.2021.3137396

[50] L. Van der Maaten, and G. Hinton, “Visualizing data using t-sne,” Journal of Machine Learning Research,
vol. 9, no. 11, pp. 2579–2605, 2008.

