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Abstract. To improve the economy of wind-solar hybrid power generation and energy
storage system and reduce its operating costs, this paper studies the capacity optimization
configuration model of wind-solar hybrid power generation and energy storage system. On
the basis of this model, an improved Golden Eagle optimization algorithm is introduced
to realize the optimal configuration of hybrid energy storage capacity. This method first
introduces the static model of the whole life cycle cost, using batteries and super capacitors
as hybrid energy storage devices for wind-solar hybrid systems, taking the minimum life
cycle cost of the energy storage device as the goal, and the operating indicators such as the
power shortage rate of the system as its constraints, a capacity optimization configuration
model of the hybrid energy storage system is established; Secondly, an improved Golden
Eagle optimization algorithm is proposed, the improvement strategy consists of a personal
example learning strategy, a decentralized foraging strategy, and a random perturbation
strategy. personal example learning and random perturbation can enhance the search
capability of GEO and prevent the algorithm from falling into local optimal solutions,
disperse foraging strategy can enhance the convergence rate and optimization accuracy
of GEO; Finally, the model simulation and solution are carried out in Matlab. The
experimental results indicate that the IGEO can not only improve the convergence speed
and accuracy of the original algorithm, but also further improve the working state of the
energy storage system and reduce the whole life cycle cost of the energy storage system.
Keywords: Golden Eagle Optimization, Personal example learning, Disperse foraging
strategy , Random perturbation, Hybrid energy storage system

1. Introduction. With the concept of carbon neutrality and carbon peaking, Clean
energy power generation has developed rapidly in late years. The State has established
a large number of wind-solar complementary power generation systems in regions rich
in wind and solar resources [1]. However, due to the uncertainty and volatility of clean
energy, energy storage system is needed to suppress power fluctuation in wind - solar
hybrid system. Commonly used energy storage devices include super capacitors and
batteries. The energy of the battery is relatively high, and it can store electric energy for
a long time, which can largely increase the energy adjustment range of the entire power
generation system. However, the power density of the battery is low, the cycle life is
short, and the environment is polluted to a certain extent, the instability and intermittent
problems of wind and light will increase the cost of the energy storage part of the system;
Super capacitors have high energy storage power density, recharging and discharging rate
is very fast, and long service life, which are beneficial to suppressing short-term power
fluctuations of the system. To optimize the charge and discharge state of energy storage,
reduce the number of charge and discharge of energy storage, and prolong its use time,
Batteries and super capacitors can be mixed to achieve complementary advantages and
disadvantages of the two types of energy storage, which is called a hybrid energy storage
system(HESS)[2][3][4][5] .

To improve the economy of energy storage systems, many researchers studied the econ-
omy of energy storage capacity allocation, through the optimization of the algorithm,
a more reasonable energy storage capacity configuration is obtained. Due to the long
computation time of traditional optimization algorithms and the tendency to fall into
local optima, researchers gradually began to improve the meta-heuristic algorithm. The
meta-heuristic algorithm is an algorithm proposed by simulating the interactive behav-
ior of living things[6][7]. For instance, particle swarm optimization (PSO)[8][9] simulates
the foraging behavior of birds. Grey Wolf Optimizer (GWO)[10] simulates grey Wolf
hunting behavior. Sparrow search algorithm (SSA)[11] simulates sparrow predation and
anti-predation behavior. Bats algorithm (BA)[12] is based on the echolocation behavior
of bats. Flower pollination algorithm (FPA)[13] simulates the flower pollination process of
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plants. Ant colony optimization (ACO) [14][15] simulates the behavior of ants in finding
paths during foraging. Whale Optimization Algorithm (WOA) [16] simulates the social
behavior of humpback whales. Salps Swarm algorithm (SSA) [17][18] is an algorithm
to simulate the chain foraging behavior of Spirulina. There are also some intelligent al-
gorithms obtained by simulating the survival of the fittest in nature. such as Genetic
Algorithm (GA) [19], evolutionary strategy (ES) [20], Differential Evolution (DE) [21],
gene expression programming (GEP) [22]. There are also some intelligent algorithms from
physical laws or chemical reactions, such as simulated annealing (SA) [23], charged system
search (CSS) [24] and gravitational local search (GLSA) [25]. Due to its randomness, the
algorithm can avoid local extremum and obtain the optimal solution. According to the no
free lunch law (NFL) [26], it can be known that no algorithm can obtain all the optimal
solutions. Therefore, Liang et al[27]. added damping constraint processing strategy to
enhance the particle swarm optimization algorithm, reducing the possibility of particle
swarm optimization falling into local optimum. Chen et al[28]. addressed the problem
of parameter estimation for photovoltaic models by combining Cuckoo Search (CS) and
Biogeography-Based Optimization (BBO).

To obtain the optimal configuration of energy storage capacity, Domestic and foreign
scholars have proposed many optimization algorithms, such as the GEO. The Golden
Eagle optimizer imitates the spiral hunting behavior of Golden Eagle. In the search-to-
development process, a good transition is achieved by constantly regulation the numerical
of attack factors and cruise coefficients. The GEO is resemble to other algorithms, the
Golden Eagle optimizer also exists some shortcomings. The main reason is that in the
search process, the GEO algorithm dose not achieve a good balance between the search
and development stages. To improve the search efficiency of Golden Eagle optimizer
and prevent algorithm from falling into local optimum, a Golden Eagle optimizer based
on personal example learning, disperse foraging strategy and random perturbation is
proposed. On the one hand, adding personal example learning and random perturbation
strategies can enable individuals in the population to improve themselves by learning
excellent individuals in the sample pool, thereby improving the search efficiency of GEO
and the possibility of reducing the local extremum of the algorithm is reduced. On
the other hand, the disperse foraging strategy enables some individuals to search for a
promising area through an automatically adjusted parameter, so that the algorithm well
balanced between development and search, thereby the convergence speed of the algorithm
is enhanced. To verify the superiority of the optimization algorithm in this paper, the
algorithm is compared under the CEC2013 test set. The experimental results suggest
that the performance of the improved algorithm has been greatly improved. Secondly,
taking the whole life cycle cost (WLCC) of the HESS as the optimization goal, establish a
capacity optimization configuration model of wind-solar hybrid energy storage system, by
improving the GEO, the most reasonable number and capacity configuration of batteries
and super capacitors are obtained.

2. Wind-solar hybrid hybrid energy storage model. In the wind-solar hybrid power
generation system, batteries and supercapacitors are mixed as energy storage devices.
The main components are wind turbines, photovoltaic arrays, batteries, super capacitors,
converters, loads, etc. Figure 1 is the system structure diagram.

2.1. Full life cycle cost. The whole life cycle cost, refers to the sum of all the expenses
paid in the process of equipment planning, manufacturing, installation, use, maintenance,
and disposal during the life cycle of the equipment [29]. In order to estimate the full
life cycle of energy storage more reasonably and accurately, this paper establishes the
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Figure 1. Hybrid energy storage structure of solar wind.

decomposition structure of WLCC. According to the operating cost of each stage of the
whole life cycle, the whole life cycle cost is decomposed into basic modules, and a cost
system arranged in sequence is formed, which is called the cost decomposition structure.
According to the decomposition structure of the cost, an estimation model of the WLCC
of the energy storage system is established, the cost model that does not consider the
time value of money is a static cost model. The WLCC of the energy storage system is:

WLCC = C1 + C0 + CM + CD (1)

In the formula, WLCC is the cost of the whole life cycle; C1 is the cost of investment
equipment; C0 is the operating cost of the equipment; CM is the maintenance cost of the
equipment; CD is the disposal cost of the equipment.

2.2. Objective function. WLCC of hybrid energy storage system can be divided into
four categories, The WLCC model of the HESS is:

minC = C1 + C0 + CM + CD = (1 + fob + fmb + fdb)NbPb + (1 + focfdc)NcPc (2)

In the formula, Nb and Nc are the number of batteries and supercapacitors; P is the
unit price of the battery super capacitor; fob and foc are the maintenance coefficients
of batteries and super capacitors, In general, super capacitors are maintenance-free, the
maintenance factor of super capacitors is 0; fdb and fdc are the processing coefficients of
batteries and super capacitors.

2.3. Reliability index of power supply. As the volatile operation index of wind-solar
hybrid power generation index, The Loss of Power Supply Probability (LPSP) can be
expressed by the ratio of power shortage to total power consumption.

fLPSP =
K∑
k=1

Elps(k)/
K∑
k=1

EL(k) (3)

In the formula, EW (k), Es(k), EL(k) are the power of wind energy, solar energy and
load at time k, respectively; ηc is the power conversion efficiency of the inverter.

Figure 2 shows the calculation process of the LPSP rate. When the wind-solar power
generation meets the load demand, the power shortage is 0, and the hybrid device is
charged. When the wind-solar hybrid power generation is insufficient, the power shortage
of the energy storage device discharge supplementary power is negative.

Elps = EL(k)− (EW (k) + ES(k)) ηc (4)

The rated capacity of the battery is Ebn, The minimum remaining storage power is Ebmin.
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Figure 2. Hybrid energy storage structure of solar wind.

Ebn = NBCBUB/10
6 (5)

Ebmin = NBCBUB(1−DOD)/106 (6)

In the formula, Ub is the rated voltage of the battery; Cb is the rated capacity; DOD
is the maximum depth of discharge.

In the actual running of the system, the voltage of the supercapacitor will work within
a specified range. and the maximum stored power is:

Ecmax = 0.5 ·NcCcU
2
cmax/3.6 ∗ 109 (7)

The minimum value is:

Ecmin = 0.5 ·NcCcU
2
cmin/3.6 ∗ 109 (8)

In the formula, Uc is the terminal voltage of the super capacitor; Cc is the capacitance
value. It can be seen from Figure 2 that the battery is charged and discharged at the
rated value, which can reduce the number of times of charging and discharging and the
depth of discharge of the battery, and reduces the energy storage loss, increased battery
life, and makes the energy storage more economical.

2.4. Constraints. (1) The reliability of power supply is characterized by the power short-
age rate of the load, and the power shortage rate of the load needs to be within an
acceptable range.

fLPSP ≤ fLPSP max (9)

In the formula, fLPSPmax is the maximum power shortage rate allowed by the load.
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(2) The upper and lower limits of the energy stored in the energy storage system:

Ebmin < Eb(k) < Ebn (10)

Ecmin < Ec(k) < Ecmax (11)

(3) ∆E can be divided into two parts, the basic part and the fluctuation part, the
battery is mainly responsible for the basic part, which needs to meet:

Eb(k) ≤ µ ·∆E (12)

3. Golden Eagle Optimizer. The meta-heuristic algorithm are more often than not
partitioned into two stages: search and development. The algorithm expands the search
range through the search stage, so that the population resulting from the search agent is
as diverse as possible. The role of the development phase is to provide the algorithm with
sufficient optimization depth so that the search agent can arrive at the optimal solution.
The GEO can also be divided into two phases: search and development. GEO algorithm
is an optimization algorithm that imitates the spiral hunting characteristics of golden
eagle. Each golden eagle has the attraction of attacking prey and cruising to get better
food.

3.1. Prey selection. Each iteration of the prey selection, Each golden eagle individual
needs to select a target prey to perform cruising and attacking behaviors. In GEO, the
target prey will be defined as the best solution that the current golden eagle group can find.
Each golden eagle can remember the best solution found. In each iteration calculation,
each search vector can select the target prey from the whole group memory. Then calculate
the assaulting and patrolling vector of every golden eagle relative to the selected prey.
Update memory if the calculated current position is better than the previous one. Prey
selection strategy is very important in geographic information systems. When choosing a
basic way to calculate, each golden eagle can only choose prey in his memory. However,
in order to improve the search efficiency, it is stipulated that each golden eagle individual
can randomly choose prey from the memory of other golden eagle groups. But to improve
search efficiency, every prey in group memory is distributed one by one to the Golden
Eagle. Then calculate the attack and cruise vector of each golden eagle to the selected
prey.

3.2. Aggressive behavior. GEO’s development phase is mainly guided by attack vec-
tors, Equation (13) can calculate the attack vector:

Ai = X∗
p −Xi (13)

In the formula, Ai is the attack vector of the i-th golden eagle. X∗
p is the current optimal

position. Xi is the current position of the Golden Eagle.

3.3. Cruise behavior. Golden Eagle uses the cruise vector to complete the search pro-
cess of the search space, and then find a more sufficient area for food. The tangent vector
of the circle is cruise vector, vertical with the attack vector. Cruising can also be expressed
as the linear velocity of the golden eagle relative to its prey. The n-dimensional patrol
vector on a hyperplane tangent to the circle. Therefore, the equation of tangent hyper-
plane should be calculated first. Equation (14) is a scalar expression of an n-dimensional
hyperplane.

n∑
j=1

sjxj = d (14)
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Equation (15) is used to calculate the hyperplane where the cruise vector lies.

n∑
j=1

bjxj =
n∑

j=1

btjx
∗
j (15)

From the n variables, if the attack vector is 0, this element cannot be chose. GEO
randomly picks one variable from the variables as a fixed variable and assigns the other
free vectors to random values. Fixed variables calculated by equation (16).

Cy =
d−

∑
j,j ̸=y bj

by
(16)

After the fixed variable of cruise hyperplane is determined, the points on the cruise
hyperplane can be expressed by Equation (17)

Ci =

(
c1 = random , c2 = random , . . . Cy =

d−
∑

j,j ̸=y bj

by
, . . . cn = random

)
(17)

3.4. Location Update. The movement of the golden eagle includes both attacking and
cruising. Define Equation (18) as the iteration step size of Golden Eagle

∆xt
i = r1p

t
a

Ai

∥Ai∥
+ r2p

t
C

Ci

∥Ci∥
(18)

pta = p0a +
t

T

∣∣pTa − p0a
∣∣ (19)

ptc = p0c +
t

T

∣∣pTc − p0c
∣∣ (20)

In equations (19) and (20), t represents the current number of iterations, and T Repre-
sents the maximum number of iterations. Equation (19) represents the aggression vector
coefficient, Equation (20) represents the cruise vector coefficient. These two coefficients
control the effect of the attack vector and cruise vector on the step vector. Equation (19)
= [0.5, 2], Equation (20)= [1, 0.5], Parameter reference [30]. r1 = [0, 1], r2 = [0, 2]. ∥Ai∥,
∥Ci∥ is the Euclidean norm of the attack vector and the patrol vector.

∥Ai∥ =

√√√√ n∑
j=1

b2j (21)

∥Ci∥ =

√√√√ n∑
j=1

C2
j (22)

The iterative position t is added to the iterative step vector to generate a new iterative
individual position.

∥Ai∥ =

√√√√ n∑
j=1

b2j (23)

If the iterative position is better than the memory position, the memory position will
be replaced by the new position, otherwise it will remain unchanged. Pseudo-code:
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Algorithm 1 The framework of the GEO

1: Set the population size n, current number of iterations t, and the maximum number
ofiterations T ;

2: Initialize population individuals;
3: Calculate fitness function;
4: Initialize population memory;
5: Initialize pa and pc
6: t = 1
7: while t < T do
8: update pa and pc by Eqs.(19) and (20)
9: for i do=1:n

10: Randomly select a prey from the population’s memory
11: Calculate C by Eq.(16)
12: Calculate ∆X by Eq.(18)
13: Update new position xnewi; by Eq.(23)
14: Calculate fitness function of xnewi;
15: if f thenitness of xnew; is better than the fitness of the position in eagle i’s

memory
16: Update the memory of eagle i
17: end if
18: end for
19: t = t+ 1
20: end while

4. Improved Golden Eagle Optimizer (IGEO). The GEO algorithm unable well
balance the relationship between the search stage and the development stage. To enhance
the performance of GEO, this paper will improve the performance of the algorithm by
introducing dividual example learning, dispersion foraging strategy and random pertur-
bation strategy.

4.1. Personal example learning. The attack vector of search agent i represents the
distance vector from the current location to the personal best location of search agent
p in GEO. The personal best position of search agent p is chosen randomly from the
memory of the population. If the best personal position of search agent p is poor, the
attack vector Ai will develop in a poor direction. This larger randomness may increase the
GEO computation time. In this paper, applying case learning to GEO can make search
develop in a better direction, and it can improved search capability for GEO and prevent
GEO from falling into local optimum. Firstly, the fitness of individuals in the population
needs to be arranged in ascending order, and Xi can learn from its example pool. Figure 3
Sample pool for personal example learning. The individual X ′

is example pool is composed
of the individual before Xi and himself. The m sample value is randomly selected from all
the best positions of individuals, and the attack vector will be updated with this sample
value. Change Equation (13) to Equation (26).

X∗
p = X∗

p (m) (24)

m = ceil(i ∗ rand ) (25)

Ai = X∗
p −Xi (26)
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Figure 3. Example pool of personal example learning.

In the formula, X∗
p (m)is the sample value of the m-th individual in the sample pool

consisting of individual best positions; ceil represents rounding; Xi represents the position
of the ith individual.

4.2. Dispersion foraging strategy. Food shortage may genesis in areas where a group
of golden eagles live. This event may have forced some golden eagle individuals to disperse
into a new area to forage. This dispersal behavior facilitates the migration of golden eagles
to food-rich areas and improves their survivability in harsh environments. The dispersed
foraging strategy is proposed by mathematically modeling the dispersal behavior. During
the dispersive foraging phase, partial search agents can be relocated to a more promising
area based on dispersion (DR), and the updated location formula is as equation (27).

X t+1
i,d = X t

i,d + ρ ·∆t
i,d ·Bt

i,d (27)

∆t
i,d =

(
X t

m,d −X t
n,d

)
(28)

Where ρ denotes the scaling factor of the transference distance of the seek agent in the
search stage, ρ ∼ N(0.5, 0.12). For the install of ρ parameters, please refer to [31]. ∆t

expresses the random transference distance of the seek agent. B can be used to determine
whether the seek agent is scattered and is a logical value, which can be expressed as:

Bt
i,d =

{
1, rand > DR
0, otherwise

(29)

Where DR represents the manner decreasing parameter in the iterative process, which
can be expressed by equation (30):

DR = DRmax − (DRmax −DRmin) · t/L (30)

It follows from equations (27) and (30) that the scaling factor ρ in the search agent
improves the randomness throughout the optimization process. And through the adaptive
adjustment of DR, the scale of search agents scattered to new areas can be controlled.
In the initial stage of iteration, the small-scale golden eagle has a larger DR value in
the scattered foraging stage, which can improve the convergence speed of the algorithm.
Secondly, the DR value decreases with the iteration times increases, and the search agent
is more likely to participate in the decentralized restle process, preventing the algorithm
from obtaining a local optimal solution.

Pseudo-code:

4.3. Random perturbation strategy. In the iterative process of complex problems,
the algorithm may fall into a local optimum. To make up for the deficiency of the algo-
rithm, this paper adds a random disturbance, and continues to run the algorithm on this
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Algorithm 2 Disperse foraging algorithm

1: Input: The search agent population X t, parameter DR
2: Output: Updated search agents population X t+1, parameter DR
3: Generate a logic matrix Bt by Eq.(29)
4: Generate the dispersed distance matrix by ∆t Eq.(28)
5: Update the position of search agent by Eq.(27)

basis. The formula looks like this:

xi, iter +1 =

{
xi, iter + rand , if r ≥ 0.2

xi, iter ×Gaussian(µ, δ), otherwise
(31)

Where rand is randomly selected in [0,1] and rj is the probability of choosing to perform
a random perturbation. The Gaussian variation distribution function is as follows:

Gaussian(µ, δ) = (1/
√
2πδ) exp

(
−(x− µ)2/2δ2

)
(32)

Where µ is the mean and δ2 is the variance.

4.4. Numerical experiments on benchmark functions. To validate the optimal ca-
pability of the proposed algorithm in this paper, the performance of IGEO, GEO, PSO,
WOA and GWO were compared under the CEC2013 test suite. There are three types
of benchmark functions in the CEC2013 test suite, and four benchmark functions are
selected for each type of benchmark function in this paper. The function expressions and
related information are shown in Table 1. The dimension of the benchmark function is set
to 50. The initial solution is in the range [-100, 100]. This paper carries out 30 indepen-
dent tests on each algorithm to ensure the reliability of the experiment. The maximum
number of values of functions (NFES) is 100,000. Take the fitness error f = fi − f ∗ as
the objective function. If the f value is smaller, the optimization result of the algorithm
is better. All experiments are carried out in the computing environment of MATLAB
2018b.

According to the results in Tables 2 and 3, the IGEO algorithm is outstrip to other
algorithms. This shows that the improvement of the algorithm in this paper is effective.
The main reason is that the individual sample learning and random perturbation strategy
can improve the search ability of GEO by learning the excellent individuals in the sample
pool and prevent GEO from falling into local optimum. The disperse foraging strategy
enables some individuals to search a promising area through an automatically adjusted
parameter, so that the algorithm can achieve a good balance between development and
search, thereby improving the velocity of convergence of the algorithm.

It can be seen from the function convergence curve that the convergence accuracy of
IGEO on F4 and F10 is not as good as that of PSO and GWO, but the accuracy of
convergence optimization of IGEO is better compared with other algorithms on other
benchmark functions. In terms of convergence rate, the convergence speed of IGEO
algorithm has obvious advantages over GEO. However, other algorithms are easy to fall
into local extremum in the iterative process, which leads to the rapid convergence of
the algorithm, so the convergence rate on some benchmark functions is not as fast as
miscellaneous arithmetic, but the final optimization accuracy is also better than other
algorithms. This is due to the introduced personal example learning strategy increases the
population multiplicity of the algorithm, while the disperse foraging strategy can enhance
the convergence rate and optimization accuracy of GEO, and the random perturbation
strategy can further recede the chance of the algorithm falling into the local extremum
and increase the search performance of the algorithm.
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Table 1. Benchmark functions

 No. Function Name Dim Space 𝑓𝑚𝑖𝑛 = 𝑓𝑖 − 𝑓∗ 

Unimodal 

Functions 

1 Sphere Function 50 [−100,100] 0 

2 
Rotated Bent Cigar 

Function 
50 [−100,100] 0 

3 
Rotated Discus 

Function 
50 [−100,100] 0 

4 
Different Power 

Function 
50 [−100,100] 0 

Basic 

Multimodal 

Functions 

5 
Rotated Schaffers 

F7 Function 
50 [−100,100] 0 

6 Rastrigin’s Function 50 [−100,100] 0 

7 
Rotated Rastrigin’s 

function 
50 [−100,100] 0 

8 

Lunacek 

Bi_Rastrigin 

Function 

50 [−100,100] 0 

Composition 

Functions 

9 

Composition 

Function 4 

(n=3,Rotated) 

50 [−100,100] 0 

10 

Composition 

Function 5 

(n=3,Rotated) 

50 [−100,100] 0 

11 

Composition 

Function 6 

(n=5,Rotated) 

50 [−100,100] 0 

12 

Composition 

Function 6 

(n=5,Rotated) 

50 [−100,100] 0 

 

Figure 4 is the convergence curve of the five algorithms. As can be seen from the
convergence curve, IGEO has better convergence rate and accuracy. Combining with
Tables 2 and 3, it can be seen that in the CEC2013 test function, IGEO performs better
than other algorithms.

5. Application of improved algorithm in energy storage capacity optimization.

5.1. System parameter settings. Taking a wind-solar hybrid power generation system
as an example, Figure 5 shows the annual power generation of the wind turbine, Figure
6 shows the solar power generation, and Figure 7 shows the annual power consumption
of the load. The LPSPmax of the inverter is set to 0.95, and the power supply shortage
rate of the system is 0.05. The parameters of batteries and super capacitors are shown in
the Table 4.

5.2. Simulation results and analysis of examples. According to the previously de-
termined objective function, constraints and various parameters, use IGEO, GEO, PSO,
WOA, GWO algorithms to solve, simulate in matlab. The population size of the algo-
rithm is 20, and the maximum number of iterations is 100. The change curve of the
obtained optimal individual fitness value is shown in Figure 8. The full life cycle cost of
the energy storage system after optimization is shown in Table 5 .
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Table 2. Performance Comparison of Algorithms

50D GEO PSO IGEO 

 Best Ave Std Best Ave Std Best Ave Std 

F1 8.46E-06 2.01E-05 7.03E-06 3.74E-04 1.07E+02 2.52E+02 6.57E-09 3.08E-08 1.98E-08 

F2 4.64E+08 1.29E+09 6.26E+08 2.57E+08 3.27E+09 3.31E+09 1.14E+08 8.91E+08 4.76E+08 

F3 3.92E+04 5.24E+04 6.37E+03 1.64E+04 2.73E+04 5.94E+03 1.51E+04 2.45E+04 5.07E+03 

F4 2.38E+01 3.62E+01 6.80E+00 7.66E-02 6.10E+00 2.33E+01 7.60E-01 5.95E+00 4.37E+00 

F5 4.49E+01 5.55E+01 6.08E+00 5.34E+01 9.69E+01 2.48E+01 3.30E+01 4.59E+01 6.96E+00 

F6 1.05E+02 1.39E+02 1.73E+01 1.53E+02 2.36E+02 3.74E+01 6.77E+01 1.13E+02 1.62E+01 

F7 9.42E+01 1.28E+02 1.64E+01 1.61E+02 2.59E+02 5.66E+01 7.57E+01 1.11E+02 2.81E+01 

F8 1.52E+02 2.45E+02 7.26E+01 1.17E+02 1.71E+02 2.95E+01 1.06E+02 1.47E+02 2.35E+01 

F9 2.73E+02 2.88E+02 6.95E+00 2.94E+02 3.25E+02 1.61E+01 2.63E+02 2.79E+02 1.13E+01 

F10 3.49E+02 3.67E+02 9.06E+00 3.35E+02 3.84E+02 1.76E+01 3.24E+02 3.51E+02 1.36E+01 

F11 2.02E+02 3.80E+02 4.93E+01 3.67E+02 4.08E+02 1.59E+01 2.01E+02 3.32E+02 8.07E+01 

F12 1.08E+03 1.28E+03 9.39E+01 1.24E+03 1.51E+03 1.27E+02 8.81E+02 1.19E+03 1.09E+02 

Win 

Draw 

Lose 

12 

0 

0 

12 

0 

0 

8 

0 

4 

11 

0 

1 

12 

0 

0 

11 

0 

1 

- 

- 

- 

- 

- 

- 

- 

- 

- 

 

Table 3. Performance Comparison of Algorithms

50D WOA GWO IGEO 

 Best Ave Std Best Ave Std Best Ave Std 

F1 1.23E+02 3.69E+02 1.58E+02 1.01E+03 3.00E+03 1.16E+03 6.57E-09 3.08E-08 1.98E-08 

F2 2.40E+10 5.72E+10 1.83E+10 6.94E+09 1.56E+10 5.65E+09 1.14E+08 8.91E+08 4.76E+08 

F3 5.37E+04 7.57E+04 1.37E+04 3.09E+04 5.16E+04 9.96E+03 1.51E+04 2.45E+04 5.07E+03 

F4 2.83E+02 4.86E+02 1.28E+02 3.80E+02 9.15E+02 3.44E+02 7.60E-01 5.95E+00 4.37E+00 

F5 1.76E+02 8.10E+02 9.84E+02 3.69E+01 6.69E+01 1.57E+01 3.30E+01 4.59E+01 6.96E+00 

F6 6.28E+02 7.91E+02 1.02E+02 1.28E+02 2.16E+02 5.13E+01 6.77E+01 1.13E+02 2.76E+01 

F7 6.75E+02 9.20E+02 1.17E+02 1.76E+02 2.81E+02 8.98E+01 7.57E+01 1.11E+02 2.81E+01 

F8 1.00E+03 1.18E+03 8.68E+01 2.06E+02 3.43E+02 8.43E+01 1.06E+02 1.47E+02 2.35E+01 

F9 3.94E+02 4.17E+02 1.42E+01 2.88E+02 3.06E+02 1.14E+01 2.63E+02 2.79E+02 1.13E+01 

F10 4.09E+02 4.34E+02 1.42E+01 3.28E+02 3.48E+02 1.17E+01 3.24E+02 3.51E+02 1.36E+01 

F11 2.05E+02 4.78E+02 5.22E+01 3.75E+02 4.01E+02 9.42E+00 2.01E+02 3.32E+02 8.07E+01 

F12 2.03E+03 2.26E+03 1.12E+02 1.12E+03 1.35E+03 1.11E+02 8.81E+02 1.19E+03 1.09E+02 

Win 

Draw 

Lose 

12 

0 

0 

12 

0 

0 

12 

0 

0 

12 

0 

0 

11 

0 

1 

10 

0 

2 

- 

- 

- 

- 

- 

- 

- 

- 

- 

 

Table 5. Energy storage parameters
 

Optimization 

parameters 
WOA GWO PSO GEO IGEO 

battery/pc 31474 38835 43975 49060, 49060, 

Super 

capacitor/pc 
5758741 5670286 5607062 5545390 5545369 

LPSP 0.0365 0.0365 0.0365 0.0365 0.0365 

cost /yuan 157064 156911 156766 156646 156545 
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(a) F1

 

(b) F2

 

(c) F3

 

(d) F4

 

(e) F5

 

(f) F6

 

(g) F7

 

(h) F8

 

(i) F9

 

(j) F10

 

(k) F11

 

(l) F12

Figure 4. Convergence curve comparison of all algorithms.

It can be seen from Figure 8 that the IGEO algorithm has the fastest convergence
speed compared with other algorithms. According to Table 5, when the IGEO algorithm
is used, 49,060 batteries and 5,545,369 super capacitors are required, the full life cycle
cost at this time is 156,545 yuan, and the load power shortage rate is 0.0365. Compared
with other algorithms, the IGEO algorithm has the lowest life-cycle cost and the lowest
number of super capacitors.

6. Conclusions. This paper proposes an improved strategy of the Golden Eagle opti-
mizer. Improved strategies include individual example learning, decentralized foraging
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Figure 5. Wind power generation.
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Figure 6. Solar power generation.
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Figure 7. Load consumption.

strategies, and random perturbations. Personal example learning can increase the search
acapabilities of GEO and decrease the likelihood that GEO will fall into local optimality.
The decentralized foraging strategy can enhance the optimization precision of GEO and
make GEO have faster convergence speed. The improved algorithm will be tested under
the CEC2013 test suite. The simulation results show that for most benchmark functions,
this algorithm is superior to other algorithms in terms of convergence speed and accuracy.
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Table 4. Energy storage parameters
 

 battery capacitor 

Rated voltage 12 2.7 

Rated Capacity 100 - 

charging power 0.75 0.98 

Discharge efficiency 0.85 0.98 

depth of discharge 0.4 - 

Operating parameters 0.1 0.01 

maintenance factor 0.02 - 

Cycle life/time 1500 500000 

Unit price/yuan 400 350 

Processing factor 0.08 0.04 

 

 

Figure 8. Load consumption.

Moreover, IGEO has high population diversity, which makes the algorithm abtain a good
balance in the search and development process.

Apply IGEO to wind-solar hybrid hybrid energy storage model. Taking the whole
life cycle cost of the system as the minimum goal and operating indicators such as power
shortage rate as the corresponding constraints, the capacity allocation of energy storage is
optimized. The simulation results indicate that the proposed IGEO algorithm can obtain
the optimal capacity allocation of energy storage, the system has the least life cycle cost,
and the convergence rate of the IGEO algorithm is better than that of the GEO, PSO,
GWO, and WOA algorithms.
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