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ABSTRACT. Short-term load prediction plays a critical role in the stable operation of
power systems. With the development of artificial intelligence, many advanced algorithms
and models have been applied in short-term load prediction. To address the problem of
inconsistent sampling intervals of meteorological data and load data, a short-term load
prediction model based on multi-channel convolutional neural networks - long short-term
memory (CNN-LSTM) was proposed. In this model, load data was input into multi-
channel CNN-LSTM to extract the multi-scale and dependency features of the data, me-
teorological data was input into LSTM channels to extract the dependency features of
the data, and the feature information of load data and meteorological data were concate-
nated and then input into the fully connected layer to output the final prediction results.
The experimental results indicated that multi-channel CNN-LSTM addressed the issue of
inconsistent sampling intervals and effectively extracted the multi-scale and dependency
features of load data and dependency features of meteorological data, thus improving the
short-term load prediction accuracy.

Keywords:Load prediction; Sampling interval; Multi-scale features; Dependency fea-
tures; Convolutional neural network; Long short-term memory

1. Introduction. Power load prediction is the prediction of power load, demand, situ-
ation, and other indicators at a certain time in the future based on historical data and
other factors. According to the prediction time span, power load prediction is divided
into three types, that is, long-term, mid-term, and short-term load prediction. Herein,
short-term load prediction is of great significance for the stable operation of power sys-
tems, plays a key role in the power distribution planning of power systems, and can help
improve the economic efficiency of power systems [1]. Nevertheless, since power load is
featured by instability, limited by conditions and time [2], and affected by various factors
such as atmosphere temperature, precipitation, humidity, and holidays, which increases
the difficulty of load prediction, the development of load prediction methods with high
accuracy has become a necessity [3].

Conventional load prediction methods include multiple regression analysis (MRA) [4],
auto regressive moving average (ARMA) [5], and Kalman filtering (KF) [6]. These meth-
ods only consider the time-series features of load data and show poor nonlinear load data
fitting performance [7]. In virtue of great advances in artificial intelligence [8, 9], advanced
machine learning algorithms have been widely applied in swarm intelligence optimization
algorithm [10], speech synthesis [11], medical image [12, 13|, and outher fields [14, 15, 16].
Also, machine learning algorithms have been applied in short-term load prediction. Load
prediction methods based on machine learning include support vector machine (SVM)
[17], random forest (RF) [18], and artificial neural network (ANN) [19]. ANN is a com-
plex network structure consisting of a large number of interconnected neurons and is an
abstraction of the organizational structure and operation mechanism of the human brain.
ANNSs consist of an input layer, a hidden layer, and an output layer and perform well
in load prediction. ANNs mainly include convolutional neural networks (CNNs) and re-
current neural networks (RNNs). CNNs have the advantages of sharing convolutional
kernels and being suitable for extracting potential features of high-dimensional data [20],
but CNNs have no memory and cannot extract the dependency features of data. RNNs
have the characteristics of parameter sharing and memory and can overcome the problem
of poor non-linear data fitting performance of conventional prediction methods. Vermaak
and Botha [21] proposed a short-term load prediction model based on RNNs. The model
effectively captured the features of the input data, but the gradient disappearance and
explosion problems of RNNs were not alleviated in short-term load prediction. Hence,
Hochreiter et al. proposed the long short-term memory (LSTM). The LSTM introduced
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a gate mechanism to control information transfer and effectively compensated for the
shortcomings of RNNs. Kong et al. [22] applied LSTM in load prediction and demon-
strated the superior performance of LSTM in load prediction as it solved the gradient
disappearance and explosion problems of RNNs.

Power load is affected by many factors, and load data have multi-scale features, mainly
in the time period such as year, month, and day. Xiao et al. [23] proposed a short-term
load prediction model based on multi-scale jump-connected LSTM with the concatenated
load data and meteorological data such as the data of temperature, humidity, and pre-
cipitation as the input of LSTM, greatly improving short-term load prediction accuracy.
Additionally, the multi-scale features of load data could be extracted by an integrated
model. Zhang et al. [24] used orthogonal wavelet decomposition to decompose load data
into multiple scales and then used LSTM to model the decomposed data. To better ex-
ploit the effective information contained in the massive data so as to improve short-term
load prediction accuracy, Lu et al. [25] proposed a short-term load prediction method
based on CNN-LSTM integrated neural network model. In this model, CNN was used to
extract feature vectors, and the feature vectors were constructed into a form of time series
and used as the input data of LSTM, and then LSTM was employed for short-term load
prediction. Wang et al. [26] pointed out that the need for multi-step forecasting is more
urgent in actual power load forecasting. According to the characteristics of CNN and bidi-
rectional long short-term memory network (BiLSTM), a CNN-BiLSTM load forecasting
model was established, and the offline mode was improved to achieve online multi-step
prediction.

The above-mentioned studies considered the multi-scale features of load data. However,
since inconsistent sampling intervals of meteorological data and load data, including daily
average temperature and humidity, may lead to varying scale features, inputting the two
types of data into the model at the same time seems inappropriate. In this study, a short-
term load prediction model based on multi-channel convolutional neural networks - long
short-term memory (CNN-LSTM) was proposed. In the proposed model, a multi-channel
network model was designed, and the multi-scale features of load data were extracted
by setting CNNs with different void coefficients, then the data was input into LSTM to
extract dependency features; meanwhile, LSTM was used to process meteorological data
and then extract the dependency features of meteorological data; after that, the feature
information of load data and meteorological data was concatenated and input into the
fully connected layer for short-term load prediction. This model not only solves the
problem of inconsistent sampling intervals of load data and meteorological data but also
effectively extracts the multi-scale and dependency features of load data and dependency
features of meteorological data, greatly improving short-term load prediction accuracy.

2. Basic Network Architecture.

2.1. CNN. Lecun et al. [27] proposed the CNN model and applied it in image processing
fields such as image recognition and computer vision [28]. CNN uses local connection
and weight sharing to abstract the original data and automatically extract the internal
features of the data, and it mainly consists of a convolution layer, a pooling layer, and a
fully connected layer. 1D convolution network is often used to process time series data.
Suppose the time series data is [x1, T, T3, 24|€ER™™, where ¢ is the input time step and n
is the number of features of the input data. Then, the convolutional operation formula is:

y= f(x®Wo + bo) (1)

where X is the input data, W, is the 1D convolutional weight, b, is the bias, ® denotes
the convolutional operation, and f() is the activation function, where relu() function as
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follows is generally used:

relu(x) = {g zioo (2)

2.2. LSTM. To address the problem that RNNs cannot extract long-term dependencies
effectively, Hochreiter [29] proposed the LSTM and solved the gradient disappearance
and explosion problems. Different from RNNs, LSTM introduced a gate mechanism to
control information transfer [30]. Figure 1 shows its unit structure. Herein, forget gate
f+ indicates how much of the state information from the previous cell is used to calculate
the current cell information:

fo = oWy [hi—1, 2] + by) (3)

where W; is the weight of the forget gate, hy_; is the state information of the previous
time step, z; is the input information of the current time step, by is the bias of the forget
gate, and o() is sigmoid() activation function.

1
sigmoid(x) = 4
gmoid(z) = 1 (4)
The input gate 7; determines how much information of the current time step is retained,

and the formula is as follows:

ir = o (Wi lhe—1, z¢] + ;) (5)
C~t = tanh(Wc'[ht_l, I’t] + bc> (6)
Cy = fixCi_y + %6 (7)

where W; is the weight of the forget gate, W, is the weight of the updated state infor-
mation, b; is the bias of the forget gate, b. is the bias of the update state information, ¢
is the updated value of the cell state at moment ¢ , and C} is the internal state used to
record all historical information.

The output gate o; is the output of the current time step, and the formula is as follows:

O = U(Wo'[ht,b ﬂft] + bo) (8)
hy = ogxtanh(Cy) 9)

where W, is the weight of the output gate; b, is the bias of the output gate; h; is the
hidden information at moment ¢.

- ™
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FIGURE 1. Structure of LSTM
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3. Short-Term Load Prediction Model Based on Multi-channel CNN-LSTM.
The short-term load prediction model based on multi-channel CNN-LSTM consists of
multiple layers of networks operating in parallel and Figure 2 shows the model results.
Load data and meteorological data are input into multi-channel CNN-LSTM and LSTM,
respectively. Herein, CNN uses 1D CNN to extract the multi-scale features of the load
data by varying void coefficients; meteorological data are input into LSTM channels to
extract the long short-term dependency information of the meteorological data; then the
extracted feature information of load data by CNN-LSTM and the extracted long short-
term dependency feature information of meteorological data by LSTM are concatenated,
and the final output of the fully connected layer is the prediction value.

LSTM

Conv] |[—| LSTM

Load data > Concat *| Dense |—*| Outputs

Conv2 |—| LSTM

Conv3d |[—| LSTM

weather data LSTM

FIGURE 2. Structure of short-term load prediction model based on multi-
channel CNN-LSTM

As shown in Figure 2, Covl , C'ov2 and C'ov3 are convolution layers with different void
coefficients, denotes matrix concatenation, and denotes the fully connected layer.

Assuming that the convolution layer input is [z1, 2z, -, 237], as shown in Figure 3,
the output obtained after the 1D convolutional operation is [y, Yo, - - -, y7|, i.€., the scale
feature at time scale T' extracted.

[P s d
L .

i

Yara  %ara

FI1GURE 3. 1D void convolution
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4. Case Study.

4.1. Data Analysis. Although load data are fluctuating, the fluctuation shows periodic-
ity and continuity, and the periodicity is mainly reflected in the cycle period such as year,
month, and day. Figure 4 shows the load data in one month with a sampling interval of
15 min. Time is an important factor influencing short-term power load prediction, which
makes the load data show regular fluctuations. Given the periodic feature of short-term
power load data, multi-channel CNN-LSTM used 1D convolution layers with varying void
coefficients to extract the multi-scale features of load data.
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F1GURE 4. Curve of power load as a function of time

Meteorological data such as daily average temperature cannot be sampled once every 15
min. The daily average temperature data in January is shown in Figure 5. As observed,
the data shows no obvious periodic pattern. Therefore, if meteorological data and load
data are concatenated and then input into the load prediction model at the same time,
inconsistent sampling intervals would lead to limited prediction accuracy.

4.2. Data Pre-processing. The experimental data are obtained from the power load
data of some city from 2012 to 2015 with a sampling interval of 15 minutes and the unit
of megawatts (MW). The data also include daily maximum temperature, daily minimum
temperature, daily relative humidity, and other meteorological data. In this paper, 30
days of historical load data and meteorological data were used to predict the load for the
next 24 hours (96 sampling points). Due to the large differences between load data and
meteorological data, which is inconducive to model training, the data were normalized
before the experiment. Also, the data were divided into training and testing sets in
the ratio of 8:2, the training process uses the test set as the validation set. The data
normalization formula is as follows:

P X — min(X) (10)

max(X) — min(z)

where X is the input data, min() is the minimization function, and maz() is the maxi-
mization function.

4.3. Experimental Set-up. The experimental environment was set as follows: proces-
sor: Intel(R) Xeon(R) Gold5118 CPU @ 2.30GHz; memory: 64G; graphics card model:
NVIDIA GeForce RTX 2080 Ti; operating system: Windows 10 Professional Workstation
Edition; the deep learning framework Tensorflow was used to build all neural network
models.
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F1cURE 5. Daily average temperature curve

Four short-term load prediction models (RNN [21], LSTM [24], support vector re-
gression (SVR) [31], and CNN-LSTM) were used to compare with the short-term load
prediction model based on multi-channel CNN-LSTM. Herein, the CNN-LSTM was set to
compare with multi-channel CNN-LSTM, so as to verify that multi-channel can effectively
improve short-term load prediction accuracy.

The multi-channel CNN-LSTM was set as follows: four channels were set, where the
first channel contains one layer of LSTM and the other three channels contain one layer
of LSTM and one layer of 1D CNN; the number of neurons in LSTM was set to 16, and
for the first channel, the number of convolutional kernels was set to 12, the size of the
convolutional kernel was 10, the step size was 1, and the void coefficient was set to 96;
for the second channel, the number of convolutional kernels was set to 12, the size of the
convolutional kernel was 8, the step size was 1, and the void coefficient was set to 192;
for the third channel, the number of convolutional kernels was set to 12, the size of the
convolutional kernel was 4, the step size was 1, and the void coefficient was set to 288.
The RNN model was set with one layer of neural network and the number of neuron units
of 60. The LSTM model was set with one layer of neural network and the number of
neuron units of 60. The CNN-LSTM model was set with a 1D CNN convolutional kernel
size of 10, a step size of 1, and no void coefficients, and the number of neuron units in
LSTM was set to 16. Gaussian kernel function was used as the kernel function of SVR.

1D CNN uses relu() as the activation function, while other network layers use tanh()
as the activation function. The model was optimized using Adam’s algorithm with 500
iterations and a learning rate of 0.001. To speed up the operation, the mini-batch tech-
nique was used, and the batch size was set to 320.
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Mean square error (MSE) was used as the loss function to train the model, and mean
absolute error (MAE) was used as the evaluation function to evaluate the prediction
performance of the model. The formula is as follows:

1 7 7
MSE = E Z(ypred - ytrue)2 (11)

1

L i
MAFE = ﬁ‘ypred - ytrue' (12)

where 7 is the number of samples, ¥ ., is the prediction value, and yj,,, is the practical
value.

4.4. Experimental Results and Analysis. In this experiment, five testing sets were
used to test different models, and the results were shown in Table 1. Among the five
testing sets, the mean prediction error obtained using Multi-channel CNN-LSTM was
210.9436, which was much lower than the mean error obtained using the other four pre-
diction models; The prediction error obtained using multi-channel CNN-LSTM was the
lowest, which was 69.7485, indicating that multi-channel CNN-LSTM exhibited maximum
prediction accuracy.

As shown in Table 1, since SVR is not applicable to load data and has poor gener-
alization ability, compared with neural network models, SVR is higher in terms of the
mean load prediction error, which reaches 2470.4871. RNN cannot obtain the long-term
dependency of load data, while LSTM can extract the long-term dependency of load data
by setting a gate structure, so the prediction error obtained by RNN is higher than that
obtained by LSTM. Nevertheless, load data has multi-scale features, which can barely be
extracted by SVR, RNN, and LSTM models. Hence, CNN-LSTM extracts the multi-scale
features of load data by means of CNN, effectively improves the short-term load predic-
tion accuracy, and decreases the mean prediction accuracy error to 324.0744. In addition
to extracting the multi-scale features of load data, multi-channel CNN-LSTM considers
the inconsistent sampling intervals of meteorological data (e.g., daily average atmosphere
temperature, precipitation) and load data. By designing a multi-channel model and tak-
ing weather factors into account, multi-channel CNN-LSTM increases short-term load
prediction accuracy and decreases the mean prediction error to 210.9436. In summary,
multi-channel CNN-LSTM exhibited maximum prediction accuracy.

TABLE 1. Mean prediction errors of different models

Models Test Sets Average
1 2 3 4 5)
Multi-channel CNN-LSTM  168.9328 351.7530 282.1417 69.7485 182.1417 210.9436
RNN 1623.7393 1864.7606 1748.8400 1835.9477 2074.4530 1829.5481
LSTM 895.2815  782.0772 1204.5942 689.4718  857.7419  885.8333
CNN-LSTM 427.3559  469.2293  294.1838  135.9040 293.6989  324.0744
SVR 2951.1747 3091.4231 3288.2584 1429.8903 1591.6891 2470.4871

Figure 6 illustrates load curves predicted by different models and the practical load
curve. As observed, huge differences exist between the SVR prediction curves and the
practical load curves. In short-term load prediction, the gradient disappearance and
explosion problems of RNN are not alleviated, which leads to a large difference in the
prediction results of RNN. Since LSTM compensates for the shortcomings of RNN; the
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prediction curve of LSTM is relatively close to the practical load curve. On the basis
of LSTM, CNN-LSTM improves the feature extraction of load data by adding CNN and
thus has its load prediction curve closer to the practical load curve than LSTM. All
the above models use the concatenated load data and meteorological data as the input
of the models to predict the future load, but multi-channel CNN-LSTM considers the
inconsistent sampling intervals of load data and meteorological data, and designs multiple
channels to extract the multi-scale features of load data, and input the meteorological data
and load data into different channels for prediction, and obtained the prediction curve
that is the closest to the practical load curve, indicating the highest prediction accuracy.
The results shown in Figure 6 and Table 1 demonstrate that multi-channel CNN-LSTM
performs better than other models.

Multi-channel CNN-LSTM
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F1GURE 6. Load predictions by different models

5. Conclusions. Aimed at inconsistent sampling intervals of load data and meteoro-
logical data, we proposed the short-term load prediction model based on multi-channel
CNN-LSTM. The proposed model extracted the multi-scale features of load data by set-
ting CNNs with different void coefficients and then extracted the dependency features of
load data by LSTM in each channel; after that, the feature information of meteorological
data and load data processed by LSTM were fused and input into the fully connected
layer to complete short-term load prediction. The experiment verified that multi-channel
CNN-LSTM can effectively extract the multi-scale and dependency features of load data
and the dependency features of meteorological data and solve the issue of inconsistent
sampling intervals of load data and meteorological data, thus improving short-term load
prediction accuracy.
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