
Journal of Network Intelligence ©2022 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 7, Number 4, November 2022

SFM-Defence: Filtering Adversarial Perturbation by
Sparse Feature Masker

Tingyue Yu

School of Cyberspace Science
Harbin Institute of Technology

92 Xidazhi Street, Harbin, 150000, China
xklsbl@126.com

Shen Wang∗

School of Cyberspace Science
Harbin Institute of Technology

92 Xidazhi Street, Harbin, 150000, China
wangshenhit@163.com

Zhenbang Wang

State Grid Heilongjiang Power Co., Ltd
301 Hanshui Road, Harbin, 150000, China

wangzhenbang power@163.com

Shigang Tian

State Grid Heilongjiang Power Co., Ltd
301 Hanshui Road, Harbin, 150000, China

tianshigang power@163.com

Xiangzhan Yu

School of Cyberspace Science
Harbin Institute of Technology

92 Xidazhi Street, Harbin, 150000, China
yuxiangzhan hit@163.com

∗Corresponding author: Shen Wang

Received July 25, 2022, revised September 30, 2022, accepted October 27, 2022.

Abstract. Among the researches on the security problem of adversarial examples, it is
an important way to prevent adversarial examples by inhibiting the impact of adversarial
perturbation. However, those existing defense methods based on image pre-processing or
image reconstruction cannot achieve a satisfactory balance in terms of time complexity
and defense effect. In order to solve this problem, we first qualitatively analyze the rea-
sons why the defense methods based on succinct image pre-processing cannot achieve good
performance. On this basis, an adversarial examples defense method based on non-robust
feature inhibition combined with traditional image pre-processing methods is proposed in
this paper, which is called SFM-Defense. It can eliminate redundant semantic informa-
tion by training a sparse feature masker, so as to compress the features that can be used
for attacks. The experimental results on CIFAR10, SVHN and Tiny-ImageNet show that
the proposed method can achieve competitive defense performance with the existing SOTA
method on the black box threat model, which can surpass the existing methods.
Keywords: Deep learning, Adversarial examples, Adversarial perturbation filtering.
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1. Introduction. In recent years, with the continuous improvement of software and
hardware performance, as well as the emergence of new theories and technologies, deep
learning has played an important role in many fields of artificial intelligence. In many
fields concerned by traditional machine learning technology, deep learning technologies
have shown significant performance progress, such as image recognition [1], speech recog-
nition [2], recommendation system [3] and machine translation [4]. In many related fields,
deep learning has even achieved better performance than human beings. However, recent
researches have shown that, when deep learning models are deployed in an adversarial
environment, its security cannot be fully guaranteed. For several key points of the deep
learning model, including training data [5], network parameters [6], test data [7] and
model output [6], different types of security threats have been found.

Among the threats on deep learning models, the research on adversarial examples has
become one of the central themes of the security research on deep learning models, the
reason of which is that compared with other threats, adversarial attacks do not require to
obtain privacy information which is difficult to obtain or affect in most cases, including
training data and network parameters. In an ideal situation, the attacker can mislead the
normal operation of the target deep learning model by adding adversarial perturbation
that is difficult to detect and distinguish by human beings to the input samples, even
with little knowledge of the target model. Recently, the adversarial examples threat has
changed from a pure theoretical problem to an important security threat to the artificial
intelligence system deployed in reality, as deep learning technology has been widely used
in many security sensitive fields, such as face recognition [8], autopilot [9] and malicious
detection [10]. This brings a very urgent motivation to enhance the security of deep
learning system oriented to adversarial examples.

Briefly, the defense methods of adversarial examples are mainly divided into two cate-
gories: adversarial examples detection and adversarial robustness enhancement. The kind
of method attempts to distinguish adversarial examples to clean samples by extracting
the statistical difference between clean samples and adversarial samples, so as to directly
refuse the detected adversarial examples. However, the existing detection methods cannot
achieve the correct classification of adversarial examples, which limit the defense effect
obviously, so it can only be used as an auxiliary defense measure. Therefore, most of the
current works still focus on enhancing the adversarial robustness, which is to improve the
recognition ability of adversarial examples by modifying the training process or inference
process of the model.

In recent studies, adversarial training [11] and its latest variant [12] are considered
the most effective way to improve adversarial robustness, in which the defender actively
generates adversarial examples and adds them to the training data, so that the defended
model can learn how to correctly identify adversarial examples. However, the effectiveness
of adversarial training often depends on the intensity of active adversarial attacks, mak-
ing the time cost of adversarial training that achieve high adversarial robustness much
higher than that of the standard training process [13], which makes it difficult to deploy
adversarial training on large datasets and models. Other works based on changing the
training process often have similar problems [14, 15]. Therefore, other researchers choose
to eliminate the negative impact caused by adversarial perturbation through denoising or
other pre-processing operations on the adversarial examples, so as to ensure the correct
classification of adversarial examples.

Up to present, it is difficult to balance the time cost and defense effect of the adversarial
examples defense method based on input transformation. On the one hand, although the
defense method based on simple image pre-processing hardly increases the time cost of
the interface stage, its defense effect on color image datasets is very limited. On the
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other hand, the defense method based on complex image reconstruction algorithms can
achieve a good defense effect, but it often cannot guarantee the real-time performance
of the defended models, which makes it difficult to be applied in practical applications.
However, we believe that the potential of image pre-processing in adversarial examples
defense has not been fully exploited. Thus we first analyze the reasons why the existing
defense methods based on simple image pre-processing are difficult to work, and then
assume that by inhibiting non-robust features, simple image pre-processing methods can
achieve considerable defense effects.

Based on our assumption, an adversarial examples defense method based on sparse
feature masker is proposed in this paper, which is called SFM-Defense. This method
design and implement a sparse feature masker to inhibit the redundant features in the
input samples. Combined with a simple image pre-processing method, it can realize the
defense against the adversarial perturbation. The main contributions of this paper are as
follows:

1) Based on the analysis of the limitations of existing defense methods, a new defense
framework for adversarial examples is proposed in this paper. The framework combines
non-robust feature inhibition and simple image pre-processing methods to filter the impact
of adversarial perturbation.

2) As the core of the proposed framework, a training method of sparse feature masker
is proposed. By balancing the three loss functions including sparsity loss, semantic loss
and reconstruction loss in the training process, the proposed sparse feature masker can
succeed to inhibit the redundant information in the input image while ensuring the normal
operation of the defended models.

3) The experimental results on CIFAR10, SVHN and Tiny-ImageNet show that the
performance of the proposed method matches the existing SOTA method under the black
box attacks, and exceeds the performance of the existing methods under the gray box
attacks. What’s more, the proposed method provides the ability on resisting adaptive
attacks to a certain extent.

2. Related Works. In the task of image classification concerned in this paper, the
attacker can make the image classifier based on deep learning models misclassify the
input image with random or pre-selected categories by adding perturbation to the clean
images sampled from the training distribution. This kind of attack is called adversarial
attack, the added malicious perturbation is called adversarial perturbation or adversarial
noise, and the malicious samples generated for attack are called adversarial examples.
Theoretically, adversarial attacks are formalized to solve the optimization problems in
Eq.1:

argmin
δx

∥δx∥p
s.t. F (x+ δx) ̸= y

(1)

where F |(·|) is the image classifier based on deep learning, x is the clean sample for attack,
and y is the ground true category label of clean sample x.

In order to resist the threat of adversarial attacks, Goodfellow et al. [11] proposed ad-
versarial training, in which adversarial perturbation is actively generated and added to the
training data, so that the model can learn how to correctly handle adversarial examples.
In [13], the adversarial training is formalized as a max-min dual optimization problem.
It is declared that the defense effect of adversarial training depends on the effectiveness
of the adversarial examples generated in the internal loss maximization problem. On this
basis, [16, 17, 18] expand the work of [11] from different angles. In [12], the latest variant
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of adversarial training called Trades is proposed, which can achieve a balance between
standard generalization and robust generalization.

However, on the one hand, adversarial training and its variants still cannot achieve
satisfactory performance in the classification of adversarial examples, and there is a big
gap between the robust risk of the training set and the test set. On the other hand,
adversarial training methods that achieves high adversarial robustness need to generate
strong adversarial examples through iterative optimization processes, which makes the
time cost of adversarial training often increase by nearly 10 times compared with standard
training methods. Therefore, more and more works have focused on eliminating the
possible adversarial perturbation in the input samples to enhance the ability to resist the
threat of adversarial examples in the interface process.

In the early works on eliminating adversarial perturbation, adversarial perturbation is
regarded as a kind of high-frequency noise in the legal samples. They try to eliminate the
influence of malicious noise in the input image by image denoising or pre-processing, so
as to restore the adversarial examples to the legal category. This kind of works mainly
rely on the use of conventional or artificially designed feature processing algorithms to
transform the input image, including color bit depth compression, local smoothing, non-
local smoothing filtering [19], layered feature denoising [20], JPEG compression (feature
distillation) combined with adaptive quantization [21]. Although the defense methods
based on simple image preprocessing hardly increase the time cost of interface, their
defense effect is very limited. To solve this problem, other researchers attempt to learn
the prior distribution of legal samples, so as to map the adversarial examples to the
manifold of legal samples. This kind of method can recover adversarial examples from
the semantic level rather than the signal level, so it can obtain a better recovery effect in
theory.

The PixelDefense [22] proposed by Song trains a variant of the PixelCNN model to
learn the distribution of legitimate training data, and search for the nearest point on the
training distribution for a possible adversarial example through greedy algorithm, so as to
filter the impact of adversarial perturbation in the representation space. The DefenseGan
[23] proposed by Samangouei adopts a similar filtering framework to [22], but they learn
the distribution of legitimate training samples by training a GAN. The ComDefend [24]
proposed by Jia inputs the adversarial examples into the compressed CNN to eliminate
the adversarial perturbation while maintaining the structure information of the original
image.

In recent research, Dai proposed the adversarial examples reconstruction method based
on the Deep Image Prior (DIP) [25] to minimize the reconstruction error through the
reconstruction network of DIP, so as to reconstruct the adversarial examples into legal
samples. Although the performance of this method is outstanding, its time cost is very
large, which makes it difficult to be applied in the actual scene. Zhao [26] divided the
image pixels into high sensitivity points and low-sensitivity points, and respectively uses
the norm based total variation image smoothing algorithm and low-rank image completion
algorithm to eliminate the adversarial perturbation. This method has achieved a good
balance between time cost and defense effect, but its performance still has some room for
improvement.

Generally speaking, the defense methods based on image reconstruction can achieve a
good defense effect, but most of them may take much more time to reconstruct an image
than the normal interface process, resulting in the inability to guarantee the real-time
performance of the defended model. Therefore, in view of the problems of the two kinds
of existing methods, we try to propose an effective defense method against adversarial
perturbation without significantly increasing the time complexity of the defended model.
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3. Framework of proposed method.

3.1. Theoretical motivation. Reviewing the existing works of filtering adversarial per-
turbation to achieve the correct classification so as to defend against adversarial examples,
they can be roughly divided into three categories, including methods based on image pre-
processing, manifold mapping, and end-to-end filters. The first kind of early works regard
the adversarial perturbation as the abnormal noise in the legal samples, and then they
eliminate the influence of noise through denoise on the input images. Although the imple-
mentation of this kind of method is very simple and hardly increases the computational
cost of the model, empirical research also shows that it can hardly achieve satisfactory
defense effects on complex datasets, such as CIFAR10 and ImageNet. In this paper, we
first attempt to analyze the reasons why this kind of method cannot achieve satisfactory
results, and then we propose an improved filtering method on this basis.

For a potential adversarial input sample, the defense method based on image prepro-
cessing first inputs it into a preprocessing function, which often removes the adversarial
perturbation by image filtering, reconstruction and other measures, then the processed
samples are input into the target model for normal classification. However, Geirhos et al.
[27] pointed out that deep learning models tend to rely on texture features rather than
shape for classification. This means that adversarial perturbation often changes the char-
acteristics of legal samples in the unit of local invisible textures rather than independent
individual pixels. It can be found that though image preprocessing methods can destroy
uncorrelated adversarial pixels, it is quite difficult to destroy adversarial texture features
from a global perspective. Weakening all pixels on the adversarial textures doesn’t mean
that the corresponding adversarial features can be inhibited. The third row of Figure 1
shows the visualization of the adversarial perturbation generated by the attacker when
using the defense based on image preprocessing. It is easy to find that in this case,
the generated adversarial perturbation has obvious semantic features, and simple image
preprocessing operations are difficult to destroy such adversarial features. But when no
defense is performed, as shown in the second row, the adversarial perturbation is similar
to random noise, which is easily destroyed by the image processing measures.

Figure 1. visualization of perturbation with no defense (second row) and
with image pre-processing defense (third row) on CIFAR10

Ilyas et al. [28] also pointed out that adversarial examples are not bugs in the deep
learning models, but inherent attributes of features in the data distribution. They divided
the features in the data distribution into robust features that can resist adversarial per-
turbation and non-robust features that have a large amount of redundant information and
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cannot resist adversarial perturbation. We believe that the reason for the limited effect of
defense methods based on image preprocessing is that such methods can only eliminate
the adversarial noise on robust features, but cannot effectively eliminate the adversarial
noise on non-robust. By modifying a large amount of redundant semantic information,
the attacker can produce adversarial features causing misclassification which cannot be
distinguished by the naked eye in a global sense.

Therefore, if most of the redundant information in the adversarial image is removed, the
influence of non-robust features can be fully inhibited, so that the adversarial perturbation
filtering method based on image preprocessing can also play a sufficient defense effect.
Based on the above analysis, in order to achieve effective adversarial examples defense,
a method that can effectively inhibit non-robust features is first proposed in this paper.
Combined with simple image pre-processing methods, it can be used to eliminate the
negative impact caused by adversarial examples.

3.2. Methodological framework. Although a method of extracting robust features
through iterative search has been proposed in [28], this method is difficult to be used
in the actual case due to the high time cost, similar to [25]. Meanwhile, other works
of reconstructing adversarial examples by training end-to-end models adopt completely
different design ideas. Although they indirectly limit the influence of non-robust features,
they cannot directly inhibit non-robust features, so the defense effect is relatively limited.
This paper attempts to propose a method to inhibit non-robust features by eliminating
redundant information in input samples, which is called SFM-Defense. Combined with
some image preprocessing methods of which the defense effect has been proven to be
insufficient in experience, the proposed method can effectively defend against adversarial
examples. The framework of the proposed method is shown in Figure 2.

Mask m

Figure 2. Framework of proposed method

For a potential adversarial image x ∈ RC×W×H , it is first input into the mask generation
network G(·) to produce a corresponding mask m = G(x). Each element in xand m is
restricted to [0,1]. Then the pixels on each color channel on the input sample x are
multiplied pixel-wised with mask m to obtain the masked sample x̃ ∈ RC×W×H . It
should be noted that for an input image with C color channels, a mask with only one
single channel is produced so as to reduce the training complexity of the mask generation
network and prevent it from excessively interfering with the normal operation of the
model. The masked sample is input into the image pre-processor to obtain the defensed
sample that finally eliminates the impact of adversarial perturbation. The defensed image
is input into the target classification network for final classification.

It is easy to find that the core content of this paper is to train the mask generation
network which is used to remove the redundant information in the image and inhibit the
non-robust features in the data. We will first introduce the training objectives of the
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mask generation network, and then describe the training process and implement details
of the defense model.

4. Loss function of sparse feature masker. In order to eliminate the redundant
information in the input samples and inhibit the non-robust features, in this paper a
novel masker generation network needs to be designed. We propose a mask generation
network, which is called sparse feature masker (SFM), to achieve the following two design
goals: First, it should make the output samples as sparse as possible, that is, the output
samples retain as little pixel information as possible. Then on the basis of output sparsity,
it’s designed for retaining the important semantic information in the original sample, so
that it does not seriously affect the normal classification of the target model.

The phrase ’sparse feature’ means that, unlike the traditional generation models which
mainly focus on learning (sparse) representations of input samples, the training goal of
SFM is to remove redundant information and make the input features sparse. At the
same time, unlike the existing adversarial perturbation filtering methods based on adding
restorative noise, SFM masks the redundant features in the input samples by multiplying
the generated mask and the input samples. In addition, it should be noted that a variant
of Auto-encoder is called Sparse Auto-Encoder (SAE), but its purpose is to generate
sparse representations rather than sparse reconstruction samples, which is different from
the design objective of SFM. To sum up, the training goal of SFM proposed in this paper
is to minimize the following loss function in Eq.2:

Lmask = w1 · Lsp + w2 · Lseg + w3 · Lrecon (2)

The loss function of SFM is composed of three components, and their weights are
adjusted by three different hyper-parameters, including w1, w2 and w3. Lsp is the sparsity
loss. Minimizing Lsp will make the generated masked samples retain as few brightness as
possible in the original images, so as to achieve the purpose of feature sparsity. Lseg is
the semantic loss, which is used to guide the parts of the mask that should be retained
and discarded, by the standard that SFM should remove redundant information and
retain features that make an important contribution to normal classification. Lrecon is the
reconstruction loss, which is used to moderate the decrease of sparsity loss and prevent
SFM from generating a mask of all 0. The following contents will discuss the design of
the three main components of the loss function.

4.1. Design of sparsity loss. In order to retain as few pixels or pixels as possible in
the masked samples, an intuitive choice is to limit the L0 norm of the masked samples,
that is, to minimize the number of non-zero elements in the masked samples:

∥x̃∥0 = #|(i | x̃i ̸= 0|)

However, as the regularization of L0 norm is a dis-continuous and non-convex process, it
cannot be solved directly by optimization, and should traverse all feasible solutions on
paper. Therefore, this problem is NP-hard, which means that L0 norm cannot be directly
used in designing sparsity loss.

However, according to the theory in [29], L1 norm is the optimal convex approximation
of L0 norm. By minimizing the L1 norm of the masked sample, the goal of minimizing
its L0 norm can be approximately achieved. Therefore, as an alternative, we select the
L1 norm of the masked samples as the sparsity loss, that is, minimize the sum of the
absolute values of each pixel in the masked sample. Therefore, the sparsity loss Lsp is
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defined according to Eq.3

Lsp = |∥x̃|∥1 =
C×H×W∑

i=1

||x̃i|| (3)

4.2. Design of semantic loss. In addition to making the masked samples retain as
little brightness or pixels as possible, another pivotal task is to make the masked samples
retain as much important semantic information as possible, so that it can be correctly
recognized by the classification model. An intuitive idea is to take the classification error
of the masked samples on the target model as the semantic loss, which can be measured
by the Cross-Entropy loss (CE loss) commonly used in the training process of classifiers.
However, the main problem with using CE loss guide SFM training is that the generator
may overfit the features related to classification. Although such retained features can also
make the masked samples correctly classified, they may not belong to the features in the
original samples, but produce new non-robust features similar to adversarial perturbation.

The possible reason for this phenomenon is that although both robust and non-robust
features in the data have obvious contributions to model classification, non-robust features
can provide richer information related to categories, which is essentially the over-fitting
of the target model to non-robust features [28]. For an SFM based on classification error
trained from scratch, it will tend to learn features that can reduce the classification error
as soon as possible, that is, non-robust features related to the correct category. Therefore,
the masked samples generated by SFM become a special kind of adversarial examples,
which is ”adversarial examples aiming at the correct category”. It will lead to the fact that
SFM cannot really be used to extract important semantic information from the original
input samples.

In order to solve this problem, rather than the classification error measured by CE loss,
the (negative value of) cosine similarity between the outputs of the original sample and
the masked sample on the target model is selected in this paper to be the semantic loss
of SFM. So Lseg is defined according to Eq.4:

Lseg = 1− cos(F (x), F (x̃)) = 1− F (x) · F (x̃)

|∥F (x)|∥2|∥F (x̃)|∥2
(4)

The reasons for using cosine similarity as semantic loss are as follows. Firstly, making
the output vector of the original sample and the masked sample more similar to the target
model, rather than only using the information related to the category label, can retain
richer semantic information in the original sample. Secondly, by preventing the category
labels from directly participating in the training of SFM, we can effectively avoid the over-
fitting of the masked samples to the non-robust features related to the correct category.
Finally, cosine similarity is more appropriate than Euclidean distance with a similar effect,
because the existence of Lsp makes original samples and masked samples have different
distributions, and their eigenvectors may have different norms. Compared with Euclidean
distance, cosine similarity makes features belonging to different distributions align with
each other through normalization, so that the training process of the model will become
more stable.

4.3. Design of reconstruction loss. Intuitively, sparsity loss and semantic loss are
enough to achieve the design goal of SFM. However, in practice, only using the above
two loss functions would tend to output masked samples with all pixels being 0s. The
fundamental reason is that sparsity loss and semantic loss are contradictory in nature.
With the decrease of sparsity loss, the generated masked samples will become sparser,
and less semantic information will be retained. At the beginning of SFM training, the
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generated mask is almost random, so it is difficult to quickly find the training direction
to reduce semantic loss. At this time, sparsity loss occupies the dominant position of
training loss. As a result, the sparsity loss will quickly decrease to zero and make SFM
generate masked samples with all 0s. At this time, although the sparsity loss would
no longer decrease, the vanishing gradient phenomenon caused by the zeroes output by
target models makes the model unable to decrease the semantic loss through gradient
descent. Finally, the trained SFM will only generate masked samples with all 0s or with
no semantics.

In order to solve this problem, we need to introduce an additional loss to mitigate the
decrease of sparsity loss, which is defined as reconstruction loss Lrecon. Lrecon is defined
as the Euclidean distance between the original input sample and the masked sample, as
shown in Eq.5.

Lrecon = |∥x− x̃|∥2 =

√√√√C×W×H∑
i=1

(xi − x̃i)
2 (5)

Minimizing the reconstruction loss means making the masked sample as close to the
original sample as possible, that is, increasing the L2 norm of the mask generated by SFM
as much as possible. In the training process, although the sparsity loss still plays a leading
role, the existence of reconstruction loss makes the model not rush to the completely sparse
state quickly, so that the semantic loss can get a space to play a guiding role. Balancing
the above three losses can make the masked samples sparse and retain the necessary
semantic features.

5. Detailed Implement of SFM-Defense. After introducing the training loss of the
sparse feature masker (SFM), we can comprehensively describe the complete working pro-
cess of the proposed defense method, SFM-Defense. The working process of the proposed
method is mainly divided into three stages, including the target model pre-training stage,
the defense model training stage and the defense model operation stage. The working
process and relevant implementation details of the three stages are introduced in detail
below.

5.1. Pre-training of the target model. Since the training process of SFM includes
semantic loss which is to minimize the output changes of the masked samples on the target
model, if the target model can extract the semantic information of the input samples more
accurately before the training process of SFM, SFM can learn how to retain the semantic
information more quickly, which can speed up the training convergence of SFM. Therefore,
before the defense model starts training, we choose to carry out several epochs of pre-
training on the target model at first. The pre-training process is completely consistent
with that of the ordinary deep neural network, so it will not be introduced in detail.

5.2. Training process of the Defense Model. The training process of SFM is the
pivotal part of the proposed method, and its process is shown in Algorithm 1. The
objective of the training phase of the defense model is to obtain an SFM that can effectively
sparse the input samples while retaining the semantic information of the input samples.
A simple training strategy is to train the target model completely at first, then freeze
the parameters of the trained target model, and then train SFM independently. But in
practice, through this simple strategy, we cannot get the SFM that achieves the objective.
Specifically, using a target model with fixed parameters to guide the training of SFM
will make it quickly fall into local minima under the joint action of semantic loss and
reconstruction loss, which means that it tends to generate masks with all positions of 1.
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Algorithm 1: Training process of sparse feature masker
Input: Data: Training Set; w1, w2, w3: Hyper-parameters for proposed method; E : total

epoches of training; T (·): Image preprocessing method.
Output: Fθ: Trained classifier; Mη: Trained SFM.
for e < E do

// Training for classifier
for sample (x, y) as a mini-batch of Data do

x = T |(x|)
Lc = Lce|(Fθ|(x|), y|)
Updating Fθ using SGD by descending Lc.

end
// Training for SFM
for sample (x, y) as a mini-batch of Data do

x = T |(x|)
x̃ = Mη(x)

Lsp = |∥x̃|∥1 =
C×H×W∑

i=1
||x̃i||

Lseg = 1− F (x) · F (x̃)

|∥F (x)|∥2|∥F (x̃)|∥2

Lrecon =

√
C×W×H∑

i=1
(xi − x̃i)

2

Lmask = w1 · Lsp + w2 · Lseg + w3 · Lrecon

Updating Mη using SGD by descending Lmask.
end

end

In this case, the sparse loss will lose its guiding role in SFM training, and the model will
lose the ability to sparse the input samples.

Therefore, we adopt an improved training strategy to avoid the above problems, where
the target model and the SFM are trained alternately. In this way, in the early stage of
the training process of SFM, the target model will not produce fixed output temporarily,
and the sparse loss will dominate the training loss, which will make SFM tend to learn
the mask for sparse output at first. After that, in the later stage of training, when the
output of the target model is relatively fixed, the sparse loss and reconstruction loss are
in a relatively balanced stage, and the semantic loss will dominate in turn, making SFM
learn how to retain the semantic information of the input samples.

Another problem that needs to be noticed is that whether in the training process of
SFM or target model, it is necessary to carry out pre-processing on the training data, and
the pre-processing method used is recommended to be consistent with that used in the
test phase. As the image pre-processing method will be used to filter the input image in
the test stage, if the same pre-processing process would not used in the training stage, it
will cause inconsistency between the training distribution and the test distribution, which
would create a distribution shift problem and affect the accuracy of the defended model
to clean samples.

5.3. Interface process of defended Model. After the training of the target model
and SFM, the defense model can be used for defending adversarial examples. First, the
input samples are sent to the SFM to generate the sparse mask, and the sparse mask
and the input samples are multiplied by the color channel to obtain the masked samples.
Then a specified image pre-processing method is applied to the masked samples to obtain



982 T.Yu, S. Wang, Z. Wang, S. Tian and X. Yu

the final robust samples that can be classified correctly. In order to facilitate comparison,
the simple image pre-processing methods used for defense in [19] are selected in this
paper, including color bits squeezing, local smoothing (local median filtering) and non-
local Smoothing (global mean filtering). The image pre-processing methods involved are
briefly introduced below.

1) Color bit depth squeezing
As a differentiable model, a neural network always assumes that the input space is

continuous. However, digital computers only support discrete data representation as an
approximation of continuous natural data. Two common styles of the color standard are
used in the image classification datasets, which are 8-bit grayscale images and 24-bit color
images. An 8-bit grayscale image provides 28 = 256 possible values for each pixel, where
0 is black, 255 is white, and the middle number represents different gray shadows. Color
images expand the 8-bit gray image to contain the color information of red, green and
blue channels respectively. Therefore, each pixel of the color image provides more than
224 ≈ 1600 different colors. Xu et al. [19] assume that reducing the bit depth of the image
can reduce the success rate of adversarial perturbation without damaging the accuracy of
the classifier.

Specifically, it is often difficult for the human eye to distinguish between the original
image with 8-bit color per channel and the image with only 4-bit color depth. Therefore,
the original 8-bit image (with each RGB channel) can be reduced to fewer bits without
significantly reducing the human image recognition rate. In order to reduce a color channel
from 8 bits to i-bit depth (1 ≤ i ≤ 7), we first multiply the input value by 2i−1 (and then
subtract 1), and then round it to an integer. Next, we scale the resulting integer to |[0, 1|]
and divide it by 2i−1. Through the integer rounding operation, the information capacity
of the representation is reduced from 8 bits to i bits.

Theoretically, this strategy can obviously narrow the color space that attackers can
use, so as to decrease the feasible region of adversarial examples and reduce the success
rate of adversarial attacks. However, in practice, this strategy plays a certain role in
filtering adversarial perturbation on grayscale images, represented by MNIST, but it has
little defense effect on color image datasets, such as CIFAR10 and Tiny-ImageNet. This
may be due to the fact that gray-scale images have a small color space originally. After
bit depth squeezing where the available color space of an image is further compressed,
it is more difficult for adversarial attacks to find a feasible solution. However, for color
images with relatively large color space, even after bit depth squeezing, the color space
that attackers can search in is still large enough to ensure the success rate of adversarial
attacks.

2) Local median filtering
The local median filter runs a sliding window on each pixel of the image, in which

the central pixel is replaced by the median of adjacent pixels in the window. Unlike bit
depth squeezing, median filtering does not reduce the number of pixels in the image,
but spreads the pixel values to nearby pixels. Median filtering is particularly effective in
removing sparse black-and-white pixels in the image (like salt and pepper noise), while
preserving the edge of the object well. As the pixel values are averaged in a certain part,
local median filtering essentially limits the number of features that attackers can use by
making adjacent pixels more centralized.

In practice, median filtering has an obvious filtering effect on the adversarial perturba-
tion generated by the attack constrained by L2 norm. The characteristic of this kind of
perturbation is that the perturbation amplitude is relatively small locally, but the num-
ber of disturbed pixels is large, which is widely distributed in the whole image. However,
its defense effect on L∞ constrained attack is limited. At the same time, due to the
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existence of adaptive attacks, median filtering has little defense effect against adversarial
perturbation in the white box threat model.

3) Global mean filtering
Global mean filtering is a kind of non-local smoothing method. Unlike local smoothing,

non-local smoothing methods smooth similar pixels in a larger area, not just adjacent
pixels. For a given image block, non-local smoothing methods find several similar blocks
in a large range of the image, and then replace the middle block with the average value
of these similar blocks. Assuming that the average value of the noise is zero, averaging
similar small blocks can cancel the noise while preserving the edge of the object in a wide
region of the image. In practice, the fast non-local denoising method implemented in
OpenCV is used. It first converts the color image into CIELab color space, then denoises
its L and AB components respectively, and then converts it back to RGB space.

From experience, the defense effects of the global mean filter and local median filter
are very similar, and both of them have obvious defense effects against the wide-range
and small-scale perturbation caused by L2 norm constrained attacks, while it is difficult
to defend against the large-scale perturbation caused by L∞ norm constrained attacks.
These two methods also have similar weaknesses in the white box threat model, that is,
they are completely unable to resist adaptive attacks.

6. Experiment.
6.1. Experimental settings.
(1) Datasets and models

In this paper, experiments are carried out on CIFAR10[30], SVHN[31] and Tiny-
ImageNet [32] datasets. The following describes the experimental settings in different
datasets.

CIFAR10 is a universal item dataset with 50000 training samples and 10000 test
samples, in which each sample contains 32× 32× 3 pixels and 10 categories of real labels.
The experiment in the white box environment uses ResNet18 as the defended classifier
[33], and the experiment in the black box environment uses another independently trained
ResNet18 as the source model.

SVHN is a house number dataset, including 73257 training samples and 26032 test
samples, each of which contains 32 × 32 × 3 pixels and a real label from 10 categories.
The experiment in the white box environment uses ResNet18 as the classifier [33], and the
experiment in the black box environment uses another independently trained ResNet18
as the source model.

Tiny-ImageNet is an item identification dataset with 200 categories, each of which
has 500 training images, 50 verification images and 50 test images. It is a subset of
ILSVRC, and each sample contains 64× 64× 3 pixels. Resnet50[33] is used as the target
model of the white box experiment, and another model with the same architecture is used
as the source model of the experiment under the black box setting.

In addition, on all of the above three datasets, we use Attention Unet [34] as the
backbone architecture of the mask generator. Attention Unet is one of the most important
improved versions of Unet[35], which is usually used in the field of image segmentation.

(2) Threat models
The proposed method is tested by attacks on the black box, gray box and white box

threat models. In the black box environment, adversarial examples of the test data on an
alternative model are generated, and they are input into the target defended model. The
ability to resist black box attacks is measured by the average accuracy of the adversarial
examples on the target model. It should be noted that the black box setting in this
experiment is stricter than the general black box setting, where attackers can obtain
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the parameters of the target model to obtain stronger attack ability. In many cases, this
setting would be attributed to the gray box threat model. However, in order to distinguish
from the gray box threat model in the following, we call this setting black box threat in
a compromise way.

In the grey box threat model, in addition to the parameters of the target model, the
attacker can also obtain the parameters of the sparse feature mask (SFM) involved in the
defense. Based on SFM parameters, attackers hope to bypass SFM’s filtering of redundant
features while changing the classification results of the target model. Further speaking,
in the white box threat model, in addition to the above knowledge, the attacker can
also use adaptive attack algorithm to deal with the further filtering through the image
pre-processing algorithm against adversarial perturbation.

(3) Attack settings
On both of CIFAR10, SVHN and Tiny-ImageNet, the same attack methods are used

to test the defense proposed method. Under the black box threat model, the used attacks
include PGD attacks with L∞ norm of 8/255 and 16/255, MIM attacks with L∞ norm
of 8/255 and 16/255, and the Diverse attack [36] with L∞ norm of 8/255 and 16/255
proposed. In grey box and white box environment, the used attacks include FGSM attack
with L∞ norm of 8/255 and 16/255, PGD attack L∞ norm of 8/255 and 16/255, and CW
attack. The number of iterations of PGD attack and MIM attack is set to 30, and the
iteration step is set to 1/255. The binary search times of CW is set 5, the number of
iterations each round is set to 20, and the initialization weight parameter is set to 0.1.

6.2. Hyper-parameter selection experiment. In order to make the proposed method
achieve the best defense effect, it’s needed to experiment and evaluate on different com-
bination of hyper-parameters. However, due to the large number of hyper-parameters in-
volved in this method, the grid search strategy is selected to select the hyper-parameters.
Specifically, the hyper-parameters within the feasible range are sampled and traversed at
fixed intervals, and the optimal combination of hyper-parameters are selected through the
experimental results. It can be found that, when the appropriate combination of w2and
w3 are selected, and the value of w1is located in the feasible region, the classification
result of the model on clean samples is negatively correlated with the value of w1, while
the classification accuracy on adversarial examples is positively correlated with the value
of w1.
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Figure 3. Clean and adversarial accuracy with different w1

In addition, through empirical observation, it can be found that on CIFAR10 and
SVHN datasets, fixing w2 to 1.0 and w3 to 1.0 can achieve the best performance; While
on Tiny-ImageNet, fixing w2 to 0.01 and w3 to 100 can achieve the best performance.
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Figure 3 shows the accuracy of the defense model under no attack, black box attack, gray
box attack when using the appropriate w2 and w3 on CIFAR10, where the adopted attack
method is PGD with L∞ norm of 8/255.

Since when the appropriate hyper-parameters are selected, the classification accuracy
on the clean samples are negatively correlated with the value of w1, while the accuracy on
the adversarial examples are positively correlated with the value of w1, in the subsequent
experiments on each dataset, we will report the experimental results with the highest sum
of the clean accuracy and the adversarial accuracy in black box environment. Specifically,
the w1 values used on CIFAR10 and SVHN are 2.5e-3, and the w1 value used on Tiny-
ImageNet is 0.1.

6.3. Defense effect comparison experiment. In order to measure the effectiveness of
the proposed method, we will first test the defense effect of the proposed method under
the black box threat model, of which the average accuracy of the defended clean samples
and the adversarial examples on the target model are used as evaluating indicators. At
the same time, in order to test the ability of the proposed method to resist the threat
of more powerful adversarial examples, we will test the proposed method under gray box
and white box models respectively in the next two sub-sections.

The proposed defense method is compared with the following most advanced defense
methods for adversarial examples based on image denoising or pre-processing: feature
squeezing [19] (which is also the baseline method in this paper, referred as FS); image
quilting [37] (referred as Quilt); total variation minimization [37] (referred as TVM);
Pixeldefend [22] and high-low sensitivity adaptive defense method [26] (referred as Sen-
sitivity). The method without defense is represented by Vanilla. Similar to the method,
these methods are based on image denoising or pre-processing to remove the impact of
adversarial perturbation and try to ensure the correct classification of images.

Experiment result on CIFAR10. The performance under black box attack on
CIFAR10 is shown in Table 1. It can be found that the defense effect of the proposed
method is better than all existing methods under small perturbation (8/255). While In
the case of large-scale perturbation (16/255), the defense effect of the proposed method
is not better than Sensitivity [26], but obviously better than other existing methods. In
addition, the accuracy of the proposed method on clean samples is significantly higher
than Sensitivity [26], which is close to the accuracy in the case of no defense.

Table 1. Defense performance comparison in black box environment on CIFAR10

Method Clean PGD-8 PGD-16 MIM-8 MIM-16 Diverse-8 Diverse-16

Vanilla 87.1% 34.8% 21.3% 24.4% 12.2% 20.8% 10.4%
FS 85.0% 44.5% 28.4% 32.5% 15.4% 28.3% 13.5%
TVM 82.7% 50.5% 23.6% 36.6% 16.2% 32.4% 14.1%
Quilt 77.5% 64.8% 52.9% 53.6% 34.1% 51.3% 30.5%
PixelDefend 78.9% 46.9% 29.1% 34.9% 16.0% 31.1% 13.8%
Sensitivity 77.6% 62.2% 56.3% 53.8% 45.4% 51.0% 44.5%
Ours 86.2% 64.6% 40.3% 59.7% 33.3% 55.1% 31.3%

The performance under gray box attack on CIFAR10 is shown in Table 2. It can be
found that the defense effect of the proposed method under all attacks exceeds that of
the existing methods. Specifically, under small perturbation (8/255), the performance of
the proposed method significantly exceeds existing methods. However, the performance
advantage of the proposed method is relatively small under large perturbation (16/255)
compared with Sensitivity [26]. Otherwise, the proposed method can almost completely
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prevent the CW attack which generates the minimum amplitude of adversarial perturba-
tion.

Table 2. Defense performance comparison in gray box environment on CIFAR10

Method Clean FGSM-8 FGSM-16 PGD-8 PGD-16 CW

Vanilla 87.1% 14.2% 11.8% 7.2% 6.8% 8.2%
FS 85.0% 18.4% 13.4% 8.2% 6.9% 8.6%
TVM 82.7% 25.5% 13.3% 7.9% 6.8% 8.6%
Quilt 77.5% 32.4% 17.8% 25.8% 10.8% 35.5%
PixelDefend 78.9% 18.2% 13.0% 8.2% 6.8% 10.2%
Sensitivity 77.6% 34.3% 27.0% 43.8% 33.4% 51.1%
Ours 86.2% 56.8% 34.2% 51.5% 34.7% 84.9%

Experiment result on SVHN. The performance under black box and gray box at-
tacks on SVHN is shown in Table 3 and Table 4 respectively. It can be found that the
defense effect of the proposed method both in black box environment and gray box envi-
ronment is better than the existing methods. Specifically, in the black box environment,
the performance of the proposed method significantly exceeds that of the existing methods.
While in the gray box environment, the performance advantage of the proposed method
under FGSM attack is relatively large, but the performance advantage under PGD attack
is relatively small. Similar to CIFAR10, the proposed method can almost completely
prevent CW attack that generate the minimum amplitude of adversarial perturbation.

Table 3. Defense performance comparison in black box environment on SVHN

Method Clean PGD-8 PGD-16 MIM-8 MIM-16 Diverse-8 Diverse-16

Vanilla 93.8% 30.2% 13.6% 30.0% 10.0% 28.8% 9.3%
FS 92.7% 33.2% 15.5% 32.6% 11.4% 31.6% 10.7%
TVM 92.6% 34.3% 15.3% 33.6% 11.1% 32.7% 10.4%
Quilt 93.3% 36.0% 16.7% 35.1% 11.6% 34.2% 11.1%
PixelDefend 92.5% 30.9% 13.6% 30.6% 9.9% 29.4% 9.3%
Sensitivity 92.5% 57.9% 29.8% 60.6% 25.2% 60.4% 24.2%
Ours 91.3% 70.0% 52.6% 67.1% 50.3% 65.8% 48.1%

Experiment result on Tiny-ImageNet. The performance under black box attack on
Tiny-ImageNet is shown in Table 5. It can be found that the defense effect of the proposed
method is better than all existing methods under small amplitude of perturbation (8/255).
And in the case of large-scale perturbation (16/255), the defense effect of the proposed
method is worse than Sensitivity [26] with small disadvantage. However, the accuracy of
the proposed method on clean samples is slightly lower than Sensitivity [26].

The performance under gray box attack on Tiny-ImageNet is shown in Table 6. It
can be found that the defense effect of the proposed method under all attacks exceeds
that of the existing methods. Specifically, the defense effect of the proposed method is
obviously better than the existing methods against FGSM attack. And under PGD attack,
the performance advantage of the proposed method is relatively small. In addition, the
proposed method can prevent CW attack with high accuracy, which is similar to the
performance on other two datasets.

In general, the performance of the proposed method in black box environment is com-
petitive with that of the current SOTA method. For the adversarial examples with small
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Table 4. Defense performance comparison in gray box environment on SVHN

Method Clean FGSM-8 FGSM-16 PGD-8 PGD-16 CW

Vanilla 93.8% 18.0% 5.9% 8.8% 3.7% 3.8%
FS 92.7% 20.2% 6.6% 11.1% 4.6% 5.1%
TVM 92.6% 92.6% 27.1% 7.3% 10.5% 3.8%
Quilt 93.3% 21.7% 6.8% 12.1% 4.4% 4.7%
PixelDefend 92.5% 18.2% 5.5% 9.4% 3.6% 3.9%
Sensitivity 92.5% 35.8% 16.5% 40.4% 17.5% 35.5%
Ours 91.3% 64.1% 50.7% 42.1% 17.9% 87.9%

Table 5. Defense performance comparison in black box environment on
Tiny-ImageNet

Method Clean PGD-8 PGD-16 MIM-8 MIM-16 Diverse-8 Diverse-16

Vanilla 69.9% 19.3% 10.3% 17.4% 8.3% 14.8% 7.5%
FS 66.6% 20.2% 10.3% 17.1% 8.4% 14.8% 7.4%
TVM 67.1% 20.2% 10.9% 17.5% 8.7% 14.8% 7.7%
Quilt 64.6% 35.1% 24.6% 31.6% 14.2% 28.1% 12.4%
Sensitivity 60.1% 37.8% 32.8% 36.1% 23.0% 33.8% 19.9%
Ours 58.4% 40.3% 30.1% 38.7% 22.5% 37.2% 18.2%

perturbation amplitude, the proposed method has better defense effect. While for the
adversarial examples with large amplitude of perturbation, the effect of the proposed
method cannot exceed Sensitivity[26] in most cases. In consideration of the fact that ad-
versarial examples need to be invisible to the naked eye in most cases, small perturbation
amplitude is usually adopted. Therefore, the defense effect on adversarial perturbation
with relatively small amplitude may bring more practical advantages. In addition, in the
gray box environment, the proposed method achieves the best defense effect under all con-
ditions. This shows that the proposed method can provide better defensive performance
when resisting attackers with stronger ability.

Table 6. Defense performance comparison in gray box environment on
Tiny-ImageNet

Method Clean FGSM-8 FGSM-16 PGD-8 PGD-16 CW

Vanilla 69.9% 7.4% 4.5% 7.1% 5.9% 11.4%
FS 66.6% 8.0% 6.1% 8.7% 6.4% 0.0%
TVM 67.1% 12.3% 6.4% 8.0% 5.5% 12.3%
Quilt 64.6% 15.4% 8.2% 12.8% 8.8% 20.4%
Sensitivity 60.1% 17.1% 9.9% 23.0% 17.2% 35.0%
Ours 58.4% 24.9% 15.6% 25.3% 19.9% 53.0%

6.4. Adaptive attack experiment. In order to evaluate the defense effect of the pro-
posed method in the worst case and analyze whether the effect depends on the obfuscated
gradients effect [38], the proposed method is tested with adaptive attack in the white box
environment. The settings in the white box environment have been described in Section
6.1. Its result is shown in Table 7.

It can be found that the proposed method can effectively resist adaptive attacks on
SVHN. But on the other two datasets, the ability to resist adaptive attacks is worse.
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Table 7. Defense performance comparison in white box environment
against adaptive attacks on all datasets

Clean FGSM-8 FGSM-16 PGD-8 PGD-16 CW

CIFAR10 86.2% 51.5% 37.4% 11.0% 4.7% 1.6%
SVHN 91.3% 66.2% 43.4% 29.6% 17.1% 31.7%
Tiny-ImageNet 58.4% 10.4% 7.6% 0.4% 0.1% 0.2%

Especially on Tiny-ImageNet, the proposed method can hardly resist the adversarial ex-
amples generated by iterative attacks, including PGD and CW. The effect difference on
different datasets may be related to the identification objects and the number of categories
concerned by these datasets. SVHN focuses on house numbers and its data manifold is
relatively simple, while CIFAR10 and Tiny-ImageNet focus on complex objects identifi-
cation task. In addition, the number of categories of Tiny-ImageNet is much larger than
the other two datasets, where the attacker may be able to move the clean samples to
other similar categories, such as different kinds of fish or dogs. The factors affecting the
defense effect on adaptive attacks need to be further studied in the future work.

6.5. Time cost experiment. The time cost of defense methods is divided into the time
cost of the training phase and the time cost of the testing phase. As the proposed SFM-
Defense only needs to train the SFM network in the training phase, so the increased
training time cost will be roughly the same as that of a standard model, depending on
the architectural complexity of the SFM network. At the same time, the testing time cost
only includes the running cost of the SFM network and the time cost of simple image
denoising algorithms which can be almost ignored. Therefore, the time cost of the testing
phase is about twice that of a standard model. To intuitively illustrate this point, we
carry out experiment on the time cost of proposed method and several typical compared
methods on the CIFAR10 dataset, and the results are shown in Table 8. It should be
noted that in order to facilitate visual comparison, the training time cost includes the
time cost of target model training and defense model training, and the testing time cost
includes the running time cost of defense model and target model.

Table 8. Comparison of time cost for different filtering methods on CIFAR10

Time Cost None FS(Baseline) PixelDefend Sensitivity Ours

Training Cost 78.9min 78.9min 208.3min 78.9min 231.7min
(50 epochs)

Defending Cost 0.3min 0.3min 0.8min 9.6min 0.8min
(10000samples)

It can be found that, compared with simple image denoising methods(FS), the propoed
method and PixelDefend [22] based on manifold mapping need to train an additional
network, so the training time cost is increased, but still within an acceptable range.
Compared with the methods based on complex image reconstruction, such as Sensitivity
[26], the time cost of the proposed method is very small, and will almost does not affect the
real-time performance of the defended model. Considering that only the heuristic image
reconstruction method has the similar defense performance with the proposed method,
the time efficiency advantage of proposed method in the testing phase is obvious.
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6.6. Visualization. In order to intuitively show the impact of the proposed method and
explain the reason how the defense method works, part of input samples and defended
samples on different datasets are shown in Figure 4. It can be found that on CIFAR10
and Tiny-ImageNet datasets, the proposed method tends to remove the pixels on the
background, thus only retaining the features that have important contributions to classi-
fication. While On the SVHN, the proposed method tends to enhance semantic features,
thus indirectly weakening the influence of non-robust features. As mentioned earlier, this
difference may be related to the different types of classified object.

Figure 4. Visualization of defended samples on different datasets

In addition, in order to reflect the impact of different components of the loss function on
the proposed method, we show the defended samples generated by the proposed method
under the conditions of no semantic loss (No Seg), no reconstruction loss (No Recon) and
complete loss function (Complete) respectively in Figure 5. It can be found that when
semantic loss or reconstruction loss is not used, part of the defense samples generated
by SFM-Defense retain very little semantic information, while the other part generates
defense samples with almost all 0s, which is consistent with the qualitative analysis in
Section 4. In addition, when semantic loss or reconstruction loss is not used, the clean
accuracy and confrontation accuracy of the defended model are basically the same as
those of random guess, and no additional demonstration will be made here.

7. Conclusion. Image transformation is an important way to inhibit the impact of ad-
versarial perturbation to defend adversarial examples. In view of the imbalance of defense
effect and time cost existing in the previous works, a defense method based on non-robust
feature inhibition and image pre-processing is proposed in this paper, which is called SFM-
Defense. In this method, a sparse feature masker is designed and trained to attenuate
redundant information in the input image, and combined with simple image processing
methods. SFM-Defense has the following two advantages:

1) SFM-Defense has little change to the interface process of the target model, and the
added time cost in interface process is only the running cost of the mask generation net-
work. Compared with DefenseGan [23], Dip [25] and other optimization based methods,
the proposed method hardly affects the real-time performance of the model, so it is more
suitable for application in the actual system.

2) SFM-Defense hardly needs to make any changes to the training process of the target
model. The increased training time cost is only the training cost of the SFM network,
which is much lower than the time cost of the standard adversarial training [13], which
makes this method more practical in the large-scale datasets and networks compared with
adversarial training.
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Figure 5. Visualization of defended samples with different loss function components

Experiments were carried out on CIFAR10, SVHN and Tiny-ImageNet. The experi-
mental results in the black box environment show that the proposed method has a better
defense effect against small amplitude of adversarial perturbation, while the performance
against large perturbation is relatively lower. At the same time, in the gray box en-
vironment, the proposed method has an obvious advantage compared with the existing
methods. However, the proposed method don’t have an impressive effect on defending
the adaptive attack in the white box environment, which is an important issue that needs
to be improved in the future work.
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