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ABSTRACT. The rapid and accurate measurement of rice Leaf Area Index (LAI) is of
great significance for evaluating rice growth and improving field management efficiency.
Based on the PROSAIL model, this paper proposed a method to first extract characteris-
tic bands using Two-Dimensional Correlation Spectrum (2DCOS), and then construct a
GRU-SVR network to invert rice LAI. The experimental results show that the proposed
method has higher inversion accuracy (R?> = 0.92648, RMSE=0.63732), and is more
suitable for the actual rice LAI inversion task. In addition, the generated LAI grading
distribution map of rice within the study area makes it possible to master the growth sit-
uation of rice on a macro level, which could provide guidance and a broader perspective
for subsequent field management.

Keywords: Remote sensing; Rice leaf area index; Feature band extraction; Machine
learning

1. Introduction. LAI can be expressed by the total leaf surface area of a plant popula-
tion per unit land area [1]. It can not only participate in the estimation of terrestrial net
ecosystem productivity [2], but also be used as an important parameter in the construction
of various surface vegetation coverage monitoring models [3], environmental monitoring
models [4] and hydrological models [5] as an important parameter. As an important pa-
rameter to characterize rice growth, LAI can provide dynamic information during the rice
growth cycle, and its monitoring has important practical significance.

Sentinel-2 is a high-resolution multispectral imaging satellite launched by ESA [6]. The
multi-spectrometer onboard can provide information every 5 days in 13 spectral bands
ranging from visible to the short-wave infrared with a spatial resolution of up to 10 m
across a width of 290 km. As a unique satellite with three bands of data in the red-edge
band range, Sentinel-2 has outstanding advantages in monitoring land surface vegetation.
Since its inception, the remote sensing data provided by Sentinel-2 has achieved fruit-
ful results in forest monitoring [7], land cover change detection [8] and remote sensing

mapping [9].
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If there are too many training parameters in the neural network model, it will adversely
affect the efficiency of the algorithm and the inversion accuracy. And the existing data
redundancy and band autocorrelation in multispectral information will always lead to a
waste of computing resources and difficulty in application in large-scale data sets [10],
which is not suitable for practical applications. Therefore, it is necessary to screen out
wavelengths specific for LAI to optimize the model. Qiao et al. [11]fused the morpholog-
ical parameters extracted from the image information and spectral information with the
vegetation index to construct a dynamic estimation model of maize LAI, and the experi-
mental results proved that the model performed well in each growth period . Fukuda et
al. [12]determined the extraction criteria of Simple ratio and NIR to PAR ratio through ex-
periments, and successfully drew the dynamic curve of rice canopy growth season. Zhang
et al. [13] screened feature bands highly correlated with winter wheat LAI from hyper-
spectral remote sensing image data and established a LAI estimation model based on
extreme gradient lifting, proving that the accuracy of the LAI estimation model could be
effectively improved by using feature bands with appropriate models.

At present, there are two main methods of LAI inversion: the empirical relation method
and the physical model-based inversion method. The empirical relation method consid-
ers that LAI has a certain functional relation with the vegetation index calculated by
the remote sensing surface reflectance, and LAI can be estimated by determining this
relation. Dong et al. [14] selected 7 vegetation indices from the reflectance data of re-
mote sensing images to estimate LAI of spring wheat and rapeseed, and found that the
sensitivity of the VEGETATION indices established based on the reflectance of the vis-
ible band to LAI of different crops was better than other vegetation indices. Guo [15]
used three kinds of multispectral image data to construct three vegetation indices for
retrieving mangrove LAI, and proved the stability of retrieving mangrove LAI in differ-
ent multispectral sensors by combining vegetation indices of visible and red-edge bands.
However, the empirical relation method only uses several bands in the spectral range of
remote sensing observation, which makes it difficult to achieve accurate fitting for LAIL
The physical modeling method is a means to establish models of surface reflectance and
LATI and other biophysical parameters observed by remote sensing based on the radiation
transfer theory in vegetation canopy. Wan et al. [16] combined the PROSPECT model
with spectral derivatives and similarity metrics to significantly improve the retrieval accu-
racy of leaf biochemical characteristics. Ren et al. [17] used LIBERTY model to generate
simulated spectra, and further verified the ability of red-edge parameters and spectral
index to detect soil moisture of winter wheat. The physical model has many parameters.
Once the model is complicated, it will lead to various unpredictable problems in the in-
version task. Therefore, it is necessary to set the parameters involved reasonably. The
current hot research direction is to combine physical models with machine learning. Tian
et al. [18] constructed a deep learning framework for yield estimation of winter wheat
by using meteorological data, vegetation temperature index and LAI in the main growth
periods of winter wheat, and the model accuracy was higher than that of the classical
genetic algorithm. Li et al. [19]developed a Deep Neural Networks (DNN) model to esti-
mate seasonal dynamic changes of corn LAI, proving that DNN can effectively deal with
nonlinear problems and alleviate saturation spectrum. Machine learning has ushered in a
bright future with the advantages of making it possible to manage high-dimensional data
and map complex features [20].

The purpose of this study is to develop a practical, efficient and convenient inversion
method of rice LAI, so as to realize macroscopic monitoring of rice growth and provide
a broader perspective for field management. The main contributions of this paper are as
follows:
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(1) Use the PROSAIL model to generate simulated spectral data of rice canopy to
increase the abundance of data set, improve model stability and avoid overfitting.

(2) After analyzing the disadvantages of the traditional feature band screening method,
the 2DCOS method is used to screen the feature bands, which reduces the computational
intensity while maintaining high accuracy.

(3) A rice LAI inversion model based on GRU-SVR is proposed. It combines SVR’s
ability to process small samples and nonlinear mapping with GRU’s ability to run effi-
ciently and deal with time series data. The model accuracy is fine-tuned using 70% of
the measured historical data, making the model more suitable for the actual rice LAI
inversion task in the field.

(4) The LAI distribution map is generated, which makes it possible to master the
growth situation of crop groups from a macroscopic level, and provides technical support
and guidance for subsequent field management.

2. Data acquisition and processing.

2.1. Spectral reflectance of rice canopy. Figure 1 shows the curve of rice canopy
spectral reflectance changing with LALIt can be seen from Figure 1 that the canopy
reflectance curve changes dynamically due to the disturbance of LAI: in the visible light
range, the reflectance amplitude is inversely proportional to LAI; in the range of near-
infrared to short-wave infrared, the reflectance amplitude is directly proportional to LAI,
but the reflectance decreases or increases gradually with LAI changes. This variation is
the theoretical basis for the inversion of rice LAI based on spectral data [21]. In addition,
it can be found that the spectral reflectance of the rice canopy does not keep a linear
change with the change of LAI, so it is difficult for the VEGETATION index constructed
with less band reflectance to fully and accurately represent LAI, especially when LAI
gradually increases, this method will lead to the underestimate of LAI

2.2. Sentinel-2 remote sensing data. Download the Sentinel-2 remote sensing image
data on July 25, 2017 from the ESA official website. Sentinel-2 remote sensing images
officially released by ESA are only finely geometrically corrected. Therefore, in order to
obtain accurate remote sensing data, it is necessary to perform atmospheric correction
and resampling on the obtained remote sensing images. In addition, the geographical
location of the study area is 45°51" — 45°52' N, 126°47 — 126°48' E/, with a total of 404.594
acres, and the spatial resolution of the image after resampling is 10 m. Therefore, the
size of the study area on the remote sensing image is 128 x 128. In order to highlight
the research scope, the preprocessed remote sensing images were cropped into a region
of 128 x 128 pixel size. The results of preprocessing satellite remote sensing images are
shown in Figure 2.

2.3. PROSAIL simulation data. The historical measured data set was collected from
July to October 2017. Since the abundance of the measured dataset is not enough to
fully mine all the information contained in the rice canopy spectrum, the PROSAIL
model is used to generate a rice simulated canopy spectrum data set with LAI as the
external perturbation for feature band selection, so as to explore as much information
contained in the canopy spectral reflectance as possible. Table 1 shows the setting of rice
biophysical quantity parameters involved in the PROSAIL model. Since there was no case
of high chlorophyll concentration but small LAI, after excluding this part of the data, the
simulated rice canopy spectral curve was generated based on a random combination of
different parameters.

3. Rice LAI inversion based on GRU-SVR network.
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FIGURE 2. Results of sentinel-2 remote sensing image preprocessing

3.1. DCOS. Due to the wavelength limitation covered by the Sentinel-2 multi-spectrometer
for vegetation observation, and the visible and near-infrared regions contain almost all
feature bands related to crop photosynthetic pigments, spectral data in the range of 400-
1000 nm was used for analysis. 2DCOS was used to extract the feature bands of the
PROSAIL simulated canopy spectral data to obtain the combination of feature bands
that could best characterize the rice LAI.

The change of a system caused by external perturbation can be manifested in the change
of the spectrum, and the spectrum of this change is called dynamic spectrum. 2DCOS is
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TABLE 1. PROSAIL blade optical characteristics parameters

Parameter Range Step Unit
length

Structural parameters of meso- || 1.0-2.0 0.05 -

phyll

Chlorophyll content 20-80 10 g /cm?

Water content 0.02 - cm

Dry weight 0.002-0.03 | 0.004 g/cm?

Carotene content 8 8 pg/cm?

Incident Angle 59 - °

LAI 0.1-8 0.01 -

to analyze the correlation between the two spectral signal intensity changes to obtain the
spectral correlation intensities, and then expand them in the form of contour lines on a
two-dimensional scale to study their dynamic spectrum [22].

Suppose there is a set of discretely-sampled spectra A(v;, 7i), where the spectral vari-
able v;(j = 1,2,...,n) is measured under an external perturbation represented by the
disturbance variable m(k = 1,2,...,m) . The spectral variable v can be wave number,
frequency, wavelength, etc., and the external perturbation 7 can be temperature, time,
concentration, etc [23]. The continuous interval between 71 and 7, defines the so-called
observation interval of A. The average spectrum A(v;) is defined as the reference spec-
trum of the system, and its expression is shown in Eq. (1). Then within[r, 74| interval,
the dynamic spectral matrix A(v;, 1) of the system can be expressed by Eq. (2).

Alw) = = 3 A7) )
Alvj,m) = Ay, m) = Aw) (2)

In 2DCOS, the correlation analysis of the intensity changes of two independent spectral
variables (vl and v2) resulting from the external perturbation is carried out, and the
spectral correlation intensity X (v1,14) is obtained, as shown in Eq. (3):

X(v1,10) = ¢(v1, 10) — i (1, 1) (3)

In Eq. 3, ¢(v, 1) represents the intensity of synchronous correlation between two
variables, and (v, 15) represents the intensity of asynchronous correlation between two
variables. For the generated simulated spectral data set can be expressed as dynamic
spectrum A of m x n , and its matrix element is defined as A(i,j) = A(v;,7;) , then
¢(v1,v2) can be expressed as:

1 e~
v ) = ——ATA 4
P(v1,v2) —1 (4)
As shown in Figure 3, the intensity of synchronization correlation is expanded in the
form of contour lines in the two-dimensional coordinate system to obtain the synchro-
nization correlation spectrum. The peaks obtained by the autocorrelation of dynamic

spectral intensity changes on the sub-diagonal in the figure are called autocorrelation
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peak. Its magnitude represents the extent to which the dynamic spectral correlation in-
tensity changes under external perturbation conditions. Peaks symmetrical about the
sub-diagonals are called synchronized cross peaks, which represent the consistency of in-
tensity changes of two spectral signals (v, v5) [24]. In any region of the dynamic spectrum,
when the spectral intensity changes significantly due to external perturbation, there will
be strong autocorrelation peaks. Therefore, the autocorrelation peak can be used as an
important basis for selecting the feature band. The peak intensity represents the sensi-
tivity of spectral signal intensity to external perturbation, and the coordinate of the peak
represents the position of the feature band.

Correlation square -

Spectral variable, v,

- L UL
Spectral variable, v;

FIGURE 3. Synchronous correlation spectrum

In this paper, the rice LAI was considered as an external perturbation that affects the
spectral reflectance of rice canopy. As LAI changes, the corresponding change spectrum
can be regarded as dynamic spectrum. The externally perturbed LAI values generated by
the PROSAIL model were uniformly distributed, meeting the use conditions of 2DCOS.
Perform 2DCOS on the simulated spectral data obtained from PROSAIL, observe the
changes of synchronous correlation spectral intensity under the disturbance of LAI, and
extract feature bands, as shown in Figure 4.
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It can be seen from Figure 4 that there are 9 autocorrelation peaks located at 465, 530,
565, 580, 705, 765, 790, 895, and 945 nm respectively. The spectral correlation intensities
located around these bands are highly sensitive to external perturbation, so they show
good correlation with LATI in aspects of photosynthesis mechanism, molecular structure
and optical properties, and can be used as feature bands to invert rice LAI.

Comparing the feature bands screened by the 2DCOS method with SMLR, the result is
shown in Figure 5. It can be seen that the positions of some feature bands selected by the
two methods coincide, such as band 530, 765 and 945 nm. However, the bands selected
by the SMLR method have regional aggregation, with dense distribution in some band
ranges and sparse distribution in some band ranges. As a result, the feature bands are
unevenly distributed in the entire spectral research range, which is not conducive to fully
excavating the information contained in the rice canopy spectrum, nor to fully utilizing the
remote sensing data provided by the Sentinel-2 multi-spectrometer. In addition, within
the range of near-infrared bands that Sentinel-2 satellite can observe, SMLR method does
not select feature bands, which are sensitive to LAI, chlorophyll content and crop biomass.
Therefore, feature bands not included in this range are not rigorous for inversion of crop
LAIL 2DCOS selected a band of 895 nm, fully excavated the feature bands sensitive
to rice LAI, and provided sufficient characteristic information for subsequent research.
Therefore, the feature bands selected by 2DCOS have stronger LAI representativeness
and pertinence.
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FIGURE 5. Position comparison of feature bands

SMLR method analyzes the significance of each feature band introduced into the model,
and finally selects the most significant feature band set, and the model established based
on this set has high accuracy. Therefore, using the SMLR method as a control can
better illustrate the advantages of the 2DCOS method. Compared with SMLR method
for significance analysis of each feature band, the underlying logic of the 2DCOS method
for screening feature bands is to analyze the correlation of intensity changes of spectral
variables with external perturbation, so all feature bands with specificity for LAI of rice
can be screened without omitted. In addition, the 2DCOS method can intuitively display
the position of feature bands and the sensitivity of spectral reflectance to changes in
external perturbation, and it takes much less time than SMLR method. Therefore, the
feature bands screened by 2DCOS method can accurately characterize the rice LAI and
maintain high accuracy while reducing the amount of calculation.
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3.2. GRU network. Although the experiments in [25] show that SVR has higher re-
gression analysis ability than LSTM [26], the SVR algorithm cannot make full use of the
timing sequence of rice LAI data, and the algorithm has many parameters, so its opera-
tion efficiency is not high when processing a large number of sample data. RNN network
can discover the temporal sequence characteristics of rice LAI and make use of it, but
the number of samples required is large, which is difficult to obtain in general, and the
robustness is not strong. Therefore, combining the advantages of the two algorithms, a
rice LAI inversion model based on GRU-SVR was proposed and constructed.

by N
L
1-
1 | Z; T ht’
(T (1) tanh

o

+ Joint 4+ Add . Dot product

FiGurE 6. GRU hidden unit structure diagram

GRU performs certain deformation optimization on the internal structure of the hidden
unit of LSTM [27], which is becoming more and more popular due to its advantages of
efficiency and simplicity. As shown in Figure 6, each hidden unit of GRU contains two
gating units, reset gate and update gate, to realize the selective memory of information.
Compared with other deformation structures of RNN, it uses fewer parameters, greatly
reduces the amount of calculation, and can achieve the same level of accuracy, which is
suitable for tasks requiring multiple experiments.

(1)Reset gate(r)

The reset gate is used to determine the extent to which the previous hidden unit state
hi—1 can be updated to the current temporary hidden unit state h;. When the signal is
obtained, h;_; obtains the reset data through the dot product operation with r; , and
then integrates the data with the current input x;, and the obtained result compress the
output h; compressed between (—1,1) through the tanh function. The process is shown
in Egs. 5 and 6.

ry = O'(Wrxt + Urht—l + b?“) (5)

hy = tanh(Wyay + Up(ry -t — 1) + by,) (6)

When r; is 0 or close to 0, h;_; does not participate in the calculation, and all informa-
tion sources of h; are x; , that is, h;_; is reset. When 7, is 1 or close to 1, the information
sources of h} are z; and h;_;.

(2) Update gate(z)

The update gate is used to determine how much h;_1) can update to the current hidden
unit state h; , and how much information on h; needs to accept from the candidate state
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h; . When the signal is obtained, first forget the unnecessary information in h;_; through
the dot product operation of h;_; and (1 — z;) (Eq. 7), and then the information needed
in h; is remembered through the dot product operation of h; and z; (Eq.8).

Zt = O'(Wzl't + Uzht—l + bz) (7)
ht = Zt ht,1 —+ (1 — Zt) . hé (8)

Since z; is derived from o function, its value range is (0, 1), and the closer its value is
to 1, the more data is left. According to Eq. 8, the more previous data is left, the less
current data is added. hj and h;_; are in a state of competition. Egs. 5 to 8 constitute
the GRU forward propagation formula.

3.3. Model construction. The matlab2019b software was used to build the rice LAI
inversion model based on GRU-SVR, and the model architecture is shown in Figure
7. The data set is composed of the simulated spectral reflectance data and LAI values
corresponding to the feature bands selected by the 2DCOS method.

Normalization
Input data GRU layer GRU layer

Denormalization

SVR layer Fully connected layer

Ficure 7. GRU-SVR inversion model structure

The final output layer of the GRU network is the softmax function and SVR is taken
as the final output layer of GRU network to realize the combination of the GRU network
and the SVR algorithm (Figure 7). The data processing process of the model is: firstly,
normalize the data set, and initialize the parameters of the GRU layer and the SVR layer.
Secondly, use the preprocessed data to train the GRU layer. A total of two GRU layers
are set up, each layer randomly disconnects 30% of units, and the output data of the
second GRU layer is defined as 'sequence’. Then the output of the second GRU layer
is sent to the SVR layer as input to continue training. Finally, the output of the SVR
layer is denormalized and the result is displayed. The generalization and regression effects
of the model are directly affected by the selection of its parameters [28]. After a lot of
experiments, the optimal values of the parameters of the model are finally determined.
The input sequence dimension is the number of feature bands. Different numbers of
hidden nodes are set in the two GRU layers. A total of 300 epochs of training were set,
and the initial learning rate was specified as 0.005. After the 130th epoch of training, the
learning rate was reduced by multiplying by a factor of 0.18. The parameters of the SVR
layer are shown in Table 2.

4. Experimental results and analysis.

4.1. Kernel function selection. The data set was constructed using PROSAIL simula-
tion data. The attribute matrix of the data set was constructed by the spectral reflectance
corresponding to each feature band, and the data set was labeled as the corresponding
LAI value. Based on different kernel functions, SVR-based rice LAI inversion models
were constructed. Randomly select 100 sample points and 100 corresponding inversion
values to generate scatter plot and error bar plot. According to these two images, the
performance of the model can be visually observed.
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TABLE 2. Parameters of the SVR layer

’ Symbol H Role \ Default value ‘
S Set SVM type 0,1,2, 3,4
t Set the kernel function type 0,1,2,3
d Set the degree of the kernel function 3
g Set the gama of the kernel function 1/t
r Set the coef( of the kernel function 0
c set penalty factor 1
v Set up cross-validation > 2
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FIGURE 8. Inversion models based on different kernel functions

It can be seen from Figure 8 that the fitting degree of the model based on the linear
kernel function reaches 0.72234, which can support the model to complete the rough
accuracy inversion of LAI, but cannot meet the requirements of precision agriculture. This
is because the linear kernel function is not strong enough to deal with nonlinear problems.
The accuracy of the inversion model based on the polynomial kernel function is generally
higher than that based on the linear kernel function: the fitting degree increases by about
20 percentage, and the error decreases by about 0.6. This is because the polynomial kernel
is more suitable for solving nonlinear problems and the power series of the highest order
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term can be set according to the need to improve the degree of fitting. Compared with
the polynomial model, the accuracy of the model based on radial basis kernel function is
improved but the scale is not too large. However, because the polynomial kernel function
involves many parameters, the time consumed in the parameter optimization process
increases greatly. And the polynomial kernel function is not suitable for the case of higher
power. The performance of the model based on sigmoid kernel function is generally worse
than that based on linear kernel function, because sigmoid kernel function is difficult to
meet the requirements of SVR for matrix attributes of kernel function, and the function
is derived from neural network, which is more suitable for solving classification problems.

TABLE 3. Accuracy of each model

Method name Kernel type R? RMSE
Linear kernel 0.71358 1.2579
SMLR Polynomial ker- | 0.90707 0.71652
nel
Radial basis ker- || 0.93866 0.58213
nel
Sigmoid kernel 0.62606 1.4373
Linear kernel 0.72234 1.2386
2DCOS Polynomial ker- || 0.93615 0.59394
nel
Radial basis ker- || 0.96796 0.42071
nel
Sigmoid kernel 0.64568 1.3991

It can be seen from Table 4-1, under the conditions of different selection methods of
feature bands, the model established by 2DCOS method has higher accuracy. Among
the inversion models constructed based on different kernel functions, the inversion model
based on radial basis kernel function has the highest accuracy. These results first prove
that the feature bands selected by the 2DCOS method are highly sensitive to LAI while
eliminating redundancy. Secondly, LAI inversion model of rice should be established by
using the radial basis kernel function.

4.2. Rice LAI Inversion based on GRU-SVR network. Radial basis kernel function
was used to construct SVR layer, and data sets were constructed according to the feature
bands screened by 2DCOS. The performance of the proposed model is shown in Figure 9.

Based on Table 3 and Figure 9, it can be seen that the proposed model combines the
advantages of GRU network, which is efficient and can process time series data, with the
advantages of SVR, which is stable and can carry out nonlinear mapping. Satisfactory
results had been achieved in terms of fitting degree and error control.

4.3. Add historical measured data to fine-tune model accuracy. Because the
debugging environment of the previously established model is simulation environment, the
performance of the model will be greatly reduced if it is directly applied to the practical
tasks. Therefore, historically measured data is added to the simulated data set and the
model is retrained. The historical measured data were collected from July to October in
2017, and the geographic location of the collection area was 45°51" — 45°52' N, 126°47 —
126°48'F.

As shown in Figure 10, with the increase of the number of historically measured samples,
the model accuracy keeps increasing. When 50% of the historical measured data is added,
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the accuracy of the model is significantly improved compared with 30%, reaching an
acceptable level. The historical measured data is further increased to 70%, and the
accuracy of the model is greatly improved to a satisfactory and stable level. When it is
increased to 90%, although the model accuracy is improved, the scale is not large and the
model running time will be increased. Therefore, the feature band data screened out by
2DCOS method plus 70% historical measured sample data should be used.

Figure 11 shows the inversion accuracy of the three models. It can be seen that, com-
pared with the single inversion model based on GRU network, the proposed model with
SVR performs better: the fitting degree is improved and the error is greatly reduced.
Compared with the single SVR based inversion model, the proposed model has a more
obvious ability in improving the fitting degree and error control, which proves the impor-
tance of reasonable and sufficient temporal data characteristics. In general, the proposed
GRU-SVR model inherits the advantages of two kinds of machine learning methods, and
has outstanding advantages in the improvement of fitting degree and error control, which
proves that the proposed model has certain practical significance in rice LAI inversion.

mR2
m RMSE

0.9

Gl? I I I I

05 I
SVR GRU

GRU-SVR

F1GURE 11. Fine-tuning the accuracy of the inversion model

4.4. Remote sensing monitoring of rice LAI. The preprocessed Sentinel-2 remote
sensing image (Figure 2b) was applied to the trained model to obtain the LAI value of
each pixel, and then output the LAI grading distribution map (Figure 12).

F1GURE 12. Fine-tuning the accuracy of the inversion model
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The remote sensing image in Figure 12 was collected on July 25, 2017, when rice
would pass jointing stage and enter the booting stage. During this time period, the LAI
of rice increased continuously with plant growth. According to historical data and rice
planting experience, the LAI of rice in this period should be between 3 and 5, and the
LAI distribution in the figure is consistent with the actual situation. Therefore, it can be
concluded that the rice growth in the study area was normal at this time. In addition,
the observation of the image showed that the LAI values at the edge of the farmland
were generally smaller than those inside the farmland, which may be due to the poor
crop growth conditions due to the influence of the surrounding urban living areas. It may
also be that there is no rice planting in these areas, so the model cannot use the spectral
information screened for rice to fit LAIL In conclusion, it is feasible and effective to use the
proposed model to monitor the growth status of rice on the remote sensing platform, and
can provide guidance or reference for subsequent field management or yield estimation.

5. Conclusions. LAI is a key indicator that can directly reflect the growth of rice, and
monitoring the dynamic changes of rice LAI is of great significance for promoting precision
agriculture.

In this paper, a rice LAI inversion model based on GRU-SVR was constructed, and
nine feature bands sensitive to rice LAI at 465, 530, 565, 580, 705, 765, 790, 895, and
945 nm were screened out by 2DCOS method. In order to improve the universality of the
model, 70% of historical measured data was added to the simulation data set to construct
the data set. The experimental results showed that compared with other models, the
performance of the proposed model was the best (R2=0.92648, RMSE=0.63732). Finally,
the LAT distribution map was obtained by applying Sentinel-2 remote sensing images to
the trained model, and the results were consistent with the actual situation in the field,
which proved that the proposed model has practical significance for the actual rice LAI
inversion task in the field.

Future studies also need to consider how to screen out useful information related to
rice crops from mixed information (such as soil, weeds, etc.) to improve the inversion
accuracy. In addition, the development of spectrometers that are more cost-effective,
simple, portable, and easy to operate is also an important direction.
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