
Journal of Network Intelligence ©2016 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 8, Number 1, February 2023

Skyline Frequent-utility Patterns Mining: A Survey

Jimmy Ming-Tai Wu∗

College of Computer Science and Engineering
Shandong University of Science and Technology

Qindao, China
wmt@wmt35.idv.tw

Huiying Zhou

College of Computer Science and Engineering
Shandong University of Science and Technology

Qindao, China
2254625719@qq.com

Matin Pirouz

Department of Computer Science
California State University Fresno

California, USA
mpirouz@csufresno.edu

Shahab Tayeb

Department of Electrical and Computer Engineering
California State University Fresno

California, USA
tayeb@csufresno.edu

∗Corresponding author: Jimmy Ming-Tai Wu

Received November 12, 2022, revised December 20, 2022, accepted January 17, 2023.

Abstract. High Utility Itemset Mining (HUIM) and Frequent Itemset Mining (FIM)
are two important branches in the data mining area, where Frequent Itemset Mining
considers itemsets that occur in large numbers in the transaction database, while High
Utility Itemset Mining considers the number and unit utility value of itemsets. However,
in practical applications, both mining approaches have their own limitations, for example,
itemsets with a high number of occurrences may contribute less to the ultimate goal of
the merchant, and although these itemsets are strongly related to each other, they do not
have great reference value for the final decision. The itemsets with high utility values,
on the other hand, may have a very low number of occurrences and weak connections
between the itemsets. Therefore recommending these itemsets to users may not be very
meaningful. In order to better meet the requirements of real life, some scholars took these
two mining algorithms into account, hoping to find those high-quality itemsets, that is,
those itemsets with more occurrences and high utility values. For this purpose, the skyline
frequent-utility pattern mining (SFUPM) algorithm is introduced. This paper describes
in detail the classification of skyline frequent-high uyility itemset mining, mining methods
and future research directions.
Keywords: Data mining; Frequent Itemset Mining; High Utility Itemset Mining; Sky-
line Frequent Utility Itemset Mining

1

2 Jimmy M.-T. Wu, H. Zhou, M. Pirouz and S. Tayeb

1. Introduction. Data mining is the process of extracting (or ”mining”) useful intel-
ligence through the analysis of large amounts of information and data sets, which can
predict trends, mitigate risks, and thereby help decision makers solve problems and find
new recommendations or decisions. Data mining is like mining in real life. Workers look
for valuable ores such as gold or coal in a large number of ores, and diggers analyze
the piles of materials and look for valuable resources and elements. Data mining has
become more and more widely used in the commercial field, and it has become a new
economic asset, bringing new entrepreneurial directions, business models and investment
opportunities to the whole society.

Data mining is not only like a compass on the sea, which can point out the direction,
but also like the eyes and brain, which can gain insights through analyzing data. In
today’s era of big data, organizations or enterprises need to rely more on data analysis
rather than experience and intuition to make decisions. They fully tap and use the value
of data to bring strong competitiveness to organizations or enterprises. In addition, in
accordance with the requirements of the national development strategy, the shortage of
post talents and the drive of the market size all reflect the importance of the data analyst
profession from different aspects. In recent years, with the continuous advancement of
modern information technology, various technological applications based on big data have
become hot spots in the market. By applying big data to product marketing, customer
experience improvement, risk control, etc., good results have been achieved. Therefore,
data mining will be applied to more and more industries in the future.

Frequent itemset mining (FIM) [1, 2] belongs to a subfield of data mining, and its
main task is to find out the transactions that often appear together in the databases.
FIM was first widely used in market basket analysis, and then widely used in product
recommendation, text mining and web clickstream analysis. However, FIM has many
disadvantages, for example, in the business field it only considers the frequency of goods
sold, and does not consider the price of goods or unit profit and other indicators. For
example, the profit of selling a diamond in a store is much higher than the profit of
selling bread for a day. Bread belongs to the frequent itemset, but it may not promote
the economic benefits of business, instead, the infrequent itemset of diamonds can bring
profits to the store. In order to address these FIM deficiencies, proposes high utility
itemset mining (HUIM) [3, 4, 5, 6].

A fundamental job of frequent itemset mining is high utility itemset mining. It simul-
taneously considers the profit per unit of the itemset and the number of itemset in the
database [7, 8], and can be used to measure the ”usefulness” of an itemset, thus generating
real business benefits. However, since FIM and HUIM only consider one measurement
factor, in the practical application, two or more factors should be considered to obtain
more valuable information and facilitate decision-making. For example, when buying a
house, you need to consider such factors as the location of the community, the price of
the house, and the convenient transportation nearby. In order to maximize the potential
value of rich data [9], Yeh et al. [10, 11] for the first time combined itemset frequent and
itemset utility together and proposed a frequent high utility itemset mining algorithm
because of Two-phase algorithm. Then, an algorithm for quickly mining frequent high
utility itemsets was proposed by Podpecan et al. [12]. These two algorithms are because
of a minimum threshold of utility and a minimum threshold of support. And in the pro-
cess of algorithm mining, all itemsets that are greater than the minimum utility threshold
and the minimum support threshold can be mined. However, setting the right threshold
in order to obtain the desired set of items is not a simple task. In order to overcome this
limitation, Goyal et al. [13] came up with an effective SKYMINE algorithm to receive
skyline frequent-utility patterns (SFUPs) [13, 14, 15]. The SKYMINE algorithm saves

Skyline Frequent-utility Patterns Mining: A Survey 3

relevant information by using the UP-tree structure [16], and use a similar method to
UP-Growth structure [16] to obtain potential skyline frequent-utility patterns (PSFUPs),
and then mines real SFUPs from PSFUPs. The advantage of this approach is that you
do not have to set a minimum threshold of utility and a minimum threshold of support,
and it can correctly and completely mine all skyline itemsets, namely SFUPs, considering
the two factors of the itemset utility and itemset frequent. In addition, skyline frequent-
utility itemset have many research directions in the future, for example, combining it with
vehicle cloud computing [17], graph clustering [18], privacy-preserving data mining [19],
and fuzzy frequent itemset mining [20] to better obtain useful information information.

We detail the key techniques of the SFUPM algorithm and provide a comprehensive
review of it, which can serve as the latest advances in the data mining area. The classifi-
cation of the SFUPM algorithm is shown in Figure 1. The main points of this paper are
shown below.

1. A classification of frequent high utility mining techniques is presented, including
relevant algorithms for mining SFUPs in stand-alone and big data environments.

2. We subdivide SFUPM algorithms based on stand-alone environment into UP-tree
based, utility list based and extended utility list based algorithms. We also subdivide
the methods based on big data environment into Hadoop-based environment and
Spark-based environment.

3. This paper briefly describes the pruning strategy of the SFUPM algorithm.
4. This paper provides some classification and discussion of existing SFUPM algo-

rithms. Finally, the future research direction of the SFUPM algorithm is briefly
imagined.

The remainder of this paper is structured as follows: In section 2, frequent itemset min-
ing and high utility itemset mining are briefly described to illustrate how itemset mining
develops from frequent pattern to high utility pattern, and then to frequent high utility
pattern mining. In Section 3, we classify and describe the SFUPM algorithms based on a
single-computer environment, as well as their advantages and disadvantages. In Section
4, we classify and describe the SFUPM algorithm based on the big data environment.
Section 5 summarizes the pruning strategy of the SFUPM algorithm. Section 6 highlights
the future research directions of SFUPM algorithms. Finally, Section 7 draws conclusions.

SFUPM

Based on stand-

alone environment

Based on big data

environment

SKYMINE

Based on

UP-tree

SKYMINE2

Based on

utility list

FSKYMINE

Based on

extended

utility list

SFUP-MR

Based on

Hadoop

SFUP-SP

Based on

Spark

Figure 1. Frequent-high utility itemset mining classification methods.

4 Jimmy M.-T. Wu, H. Zhou, M. Pirouz and S. Tayeb

Table 1. A transaction database.

TID Transaction

T1 (a,3),(d,2),(e,1)
T2 (a,2),(b,2),(c,3),(d,5),(e,1)
T3 (a,4),(c,2),(e,3)
T4 (a,3),(b,3),(e,4)
T5 (a,2),(b,4),(c,4),(d,1)
T6 (a,2),(c,1),(d,2),(e,3)
T7 (a,4),(b,2)

2. Preliminaries and Definitions. In this section, we would like to briefly outline
the concepts and definitions related to frequent itemset mining and high utility itemset
mining.

2.1. Frequent Itemset Mining (FIM). The key to the association rule mining [21, 22]
problem is the frequent itemset mining algorithm, whose main purpose is to discover asso-
ciations between itemsets in a transactional database. Suppose that I = {i1, i2, . . . , im} is
a collection of different letters, in which the elements are called items or commodities, and
I is a set of all commodities. If there is a set X and X ⊆ I, X is called k− itemset, where
k is the length of the itemset. D = {T1, T2, . . . , Tn} is a transaction database containing
n transaction data, where transaction T is a collection of items, and T ⊆ I. Each trans-
action is associated with a unique identity, which is recorded as a TID. In the example
in Table 1 there are 7 transactions Tq and 5 different items ij. Let X represent an itemset
in I. If X ⊆ T , then itemset X appears in transaction T . We call X a frequent itemset
if the support of X is greater than or equal to some given minimum support threshold
(minsup). The following definition is given for support.

Definition 2.1. In transaction database D, the support of itemset X is noted as sup(X),
and it is described as:

sup(X) = |{T ∈ D | X ⊆ T}|/|D| (1)

Example 2.1. When minsup=0.5 in Table 1, Table 2 displays the transaction database’s
frequent pattern.

Table 2. All frequent itemsets when minsup=0.5.

1− itemset sup 2− itemset sup

a 1 ab 0.57
b 0.57 ac 0.57
c 0.57 ad 0.57
d 0.57 ae 0.71
e 0.71

During the frequent itemset mining process, a large number of intermediate items are
generated, and An Apriori algorithm that employs the qualities of the Apriori method
(shown in proposition 1) as a pruning strategy to condense the search space was developed
by Agrawal et al [21, 22].

Skyline Frequent-utility Patterns Mining: A Survey 5

Proposition 2.1. If the itemset X is a frequent itemset, then all its non-empty subsets
are frequent itemsets. This is due to the inverse monotonicity of the support, which is
upper bounded in nature. Similarly, if the itemset is an infrequent itemset, then all of
its supersets are infrequent itemsets(each itemset’s support cannot be higher than any
subset’s).

However, the Apriori algorithm requires several scans of the database and may generate
a huge candidate set. So as to improve the efficiency of mining, FP-Growth [23], an
algorithm for discovering frequent patterns based on Frequent Pattern Tree (FP-Tree),
is proposed, which constructs an FP-Tree, maps the data in the dataset to the tree, and
finds all frequent itemsets based on this FP-Tree. Mining execution efficiency has greatly
improved.

However, frequent itemset mining only reveals the number of occurrences of itemsets,
but disregards several other crucial elements, for instance, the interest level, unit utility,
relevance and weight of itemsets. So as to address this issue and mine more effective
information, high utility itemset mining has been proposed, it combines the number of
items in the transaction database with the profit per unit.

2.2. High Utility Itemset Mining(HUIM). High utility itemset mining [24, 25, 26,
16, 27] is a research direction of pattern mining in the sub domain of data mining, which
includes extracting very important patterns from transaction database. The utility of a
model can have different meanings in various problems, for instance, its benefits, customer
satisfaction, value of interest or risk, and so [28, 29, 30, 31, 32, 33]. It extends the problem
of FIM by taking into account both of the quantity of items and incomes. The revenue
table ptable = {pr1, pr2, . . . , prm} corresponding to the transaction in the transaction
database D represents the profit (external utility) generated by each item ij, and each
transaction item is linked to an internal utility (Quantity), denoted as q (ij, Tq). The
external utility of the item in Table 1 is displayed in Table 3.

Table 3. External utility of items.

Item a b c d e

Utility 3 5 4 1 2

Definition 2.2. In transaction Tq, the utility of item ij is referred to as u (ij, Tq), and it
is described as:

u (ij, Tq) = q (ij, Tq)× pr (ij) (2)

Example 2.2. In the transaction T2, the utility of {b} is u(b, T2) = q(b, T2) × pr(b) =
2× 5 = 10.

Definition 2.3. In transaction Tq, the utility of the itemset X is referred to as u (X,Tq),
and it is described as:

u (X,Tq) =
∑

ij⊆X∧X⊆Tq

u (ij, Tq) (3)

Example 2.3. In the transaction T2, the utility of {bcd} is u(bcd, T2) = u(b, T2)+u(c, T2)+
u(d, T2) = 10 + 12 + 5 = 27.

6 Jimmy M.-T. Wu, H. Zhou, M. Pirouz and S. Tayeb

Definition 2.4. In transaction database D, the utility of itemset X is referred to as u(X),
and it is described as:

u(X) =
∑

X⊆Tq∧Tq∈D

u (X,Tq) (4)

Example 2.4. For instance, Table 1 shows that the utility of {a} in Database D. It is
u(a) = u(a, T1) + u(a, T2) + u(a, T3) + u(a, T4) + u(a, T5) + u(a, T6) + u(a, T7) = 9 + 6 +
12 + 9 + 6 + 6 + 12 = 60. u(bcd) = u(bcd, T2) + u(bcd, T5) = 27 + 37 = 64.

Definition 2.5. If u(X) ≥ minutil, the itemset X is referred to as a high-utility itemset,
and minutil denotes the minimum utility threshold.

Example 2.5. In the example in Table 1, the high-utility itemsets when minutil=50 are
displayed in Table 4.

Table 4. All high-utility itemsets when minutil=50.

1− itemset utility 2− itemset utility 3− itemset utility 4− itemset utility

a 60 ab 88 abc 70 abcd 76
b 55 ac 70 abe 50

ae 66 ace 62
bc 58 bcd 64

Definition 2.6. The transaction utility in the transaction database D is referred to as
tu(Tq), and it is described as:

tu (Tq) =
∑
ij⊆Tq

u (ij, Tq) (5)

Example 2.6. In Table 1, tu(T1) = u(a, T1) +u(d, T1) +u(e, T1) = 9 + 2 + 2 = 13. Calcu-
lating T2 to T7 in the same way results in tu(T2) = 35, tu(T3) = 26, tu(T4) = 32, tu(T5) =
43, tu(T6) = 18, tu(T7) = 22.

Definition 2.7. In transaction database D, the transaction weighted utility of itemset X
is referred to as twu (X), and it is described as:

twu(X) =
∑

X⊆Tq∧Tq∈D

tu (Tq) (6)

Example 2.7. For instance, each item’s twu in Table 1 is twu(a) = T1 + T2 + T3 + T4 +
T5 + T6 + T7 = 189, twu(b) = 132, twu(c) = 122, twu(d) = 109, twu(e) = 124.

Definition 2.8. If twu(X) ≥ minutil, minutil is the minimal standard of utility, the
itemset X is known as the High Transaction Weighted Utility Itemset (HTWUI). For
instance, the itemset (ab) is HTWUI for minutil = 88.

Proposition 2.2. Assume that Y is a (k-1)-itemset and that X is a k-itemset, where
Y ⊂ X. If X is HTWUI, then Y is as well. All of an itemset’s supersets will thus be
LTWUI if it is a low transaction weighted utility itemset (LTWUI). As a result, during
high utility itemset mining, this feature may be utilized to restrict the search area by
eliminating LTWUI and its supersets from the search space.

Skyline Frequent-utility Patterns Mining: A Survey 7

However, both the frequent itemset mining algorithm and the high utility itemset min-
ing algorithm only consider one factor, but in practical applications, two or more factors
need to be considered at the same time to help decision-making. As a consequence, a
mining algorithm for high utility-frequent itemset is presented.

2.3. Frequent Utility Itemset Mining(FUIM). The frequent utility itemset mining
algorithm is a comprehensive consideration of the frequent itemset mining algorithm and
the high utility itemset mining algorithm. It mines SFUPs by taking both frequent
and utility into account, and finally mines skyline itemset. Skyline itemset belongs to
the classical algorithm of multi-factor optimization issues. Many classical multi-factor
issues transform multi-factor optimization issues into single factor optimization issues by
weight vectors and other factors, but the solution of this algorithm depends on weight
vectors. Skyline considers multiple targets at the same time, and finally returns a series
of parallel, uncontrollable solutions. ”Control” means that an itemset is no worse than
another itemset in each dimension, and the itemset is better than another itemset in at
least one dimension.

Definition 2.9. For itemset X and Y, if f(X) > f(Y) and u(X) ≥ u(Y) or f(X) ≥ f(Y)
and u(X) > u(Y), then think that itemset X dominates itemset Y, and recorded as X � Y .

Example 2.8. In the example of this paper, the set of terms {a} � {de}, because f(a) >
f(de) and u(a) > u(de).

Definition 2.10. When frequent and utility are considered together, if an itemset X is
not dominated by any other itemsets in database D, it is said to be a skyline frequent
utility pattern (SFUP).

3. SFUPM Algorithm Based on Single-Computer Environment. In this section,
we summarize the SFUPM algorithm in a stand-alone environment, which is based on
UP-tree, utility list and extended utility list respectively.

3.1. Mining Algorithm Based on UP-tree. The UP-tree based mining algorithm is
known as the SKYLINE algorithm [13], Filtering and refining are the two steps of the
algorithm. A group of potential itemsets are mined in the filtering step, and then their
final validation is performed in the refinement phase. The following subsections provide
a brief description of the UP-tree.

3.1.1. UP-tree. A compact tree structure made up of header tables is known as a UP-tree.
A list of items for each node in the UP-tree is shown in the title table. The title table
includes an item list of all nodes in the UP-tree, it contains the itemset, the estimated
utility value of the itemset, and links to nodes in the UP-tree of the itemset. The link
node is the starting node containing the same itemset node link, which is used to traverse
the nodes of the same itemset in the UP-tree. Each node n in the UP-tree (except the
special node root node that does not contain any itemset) has items (n.name), a parent
node (n.parent), node utility (n.utility), support count (n.count), the same item node link
(n.hlink) information. The n.utility represents the estimated utility of the itemset on the
path from this node to the root node. Likewise, for the group of items on the route from
this node to the root node, the value of n.count shows how many support count there are.
The UP-tree in the example in this paper is shown in Figure 2.

8 Jimmy M.-T. Wu, H. Zhou, M. Pirouz and S. Tayeb

item twu link

a 189

b 132

e 124

c 122

d 109

a

{}

b e

e c

c d

d

(1,18)

(3,41)

(2,42)

(1,30)

(1,35)

(2,50)

(1,43)

(4,88)

(1,42)

(7,60)

c d

d

(1,13)

Figure 2. UP-tree represented by the example.

3.1.2. SKYMINE Algorithm Process. The first stage of SKYMINE algorithm follows pro-
cedures for mining PFU itemset in general. First, the PFU itemsets are sorted by support
count and stored in a list L, and set the utility threshold at all indices m in the list to
0, that is umin(m) = 0 (0 < m < |D|). Use a good search strategy to search for PFU
patterns from database D. When a specific counting supported PFU mode (such as n)
is found during the search, it will be inserted at index n to the list L. We are linked the
utility values of the lower limit (lb) and upper limit (ub) with the PFU itemset. After
add to the PFU itemset of index n, the update method of list L are as follows:

(1) Check the umin(m) value at index n and the umin(m) value at index m (0 ≤
m ≤ n < |D|). If umin(m) is less than the lb utility value of the set of PFU items being
added, update it.

(2) If the PFU mode with index n or less is to be dominated by the added PFU itemset,
delete it. If another PFU itemset with higher lb utility value exists and higher support
value in the list, the PFU item group is said to be dominant. The algorithm continues to
search for more PFU patterns until the search strategy cannot find any patterns.

However, the SKYMINE algorithm will need to generate a significant number of can-
didate itemsets, so the entire SFUP mining requires a long execution time. Therefore, an
algorithm based on the utility list structure was proposed by Jeng Shyamg Pana et al.
[34].

3.2. Mining Algorithm Based on Utility List. The SKYMINE2 algorithm makes
use of the utility list structure [34, 15, 35] for data mining. In contrast to the SKYMINE
algorithm, the utility list structure in the algorithm can be used to efficiently calculate
the actual utility of itemsets without generating candidates. In addition, a maximum
utility (umax) array for storing the utility-related information of each item set with the
largest frequency is also proposed, which can significantly reduce the amount of itemsets
considered when mining SFUP directly and can be based on both frequency and utility.
Efficiently finds non-dominated itemsets.

3.2.1. Utility List Structure. We sorted the items in the database in ascending order by
twu [4]. In database D, the utility list structure of itemset X is represented as a group

Skyline Frequent-utility Patterns Mining: A Survey 9

of tuples, which contains three fields: tid, iutil and rutil. These three fields respec-
tively represent the transaction ID that contains the itemset X, X’s actual utility in
tid, for instance u (X,Tq), the total of utility of all itemsets after X in tid, for instance∑

ij∈Tq/X
u (ij, Tq). In the example of this article, the order of all 1 − itemsets sorted in

ascending order by twu is d, c, e, b, a. Their utility list structures are shown in Figure 3.

d

tid iutil rutil

1 2 11

2 5 30

5 1 42

6 2 16

c

tid iutil rutil

2 12 18

3 8 18

5 16 26

6 4 12

e

tid iutil rutil

1 2 9

2 2 16

3 6 12

4 8 24

6 6 6

b

tid iutil rutil

2 10 6

4 15 9

5 20 6

7 10 12

a

tid iutil rutil

1 9 0

2 6 0

3 12 0

4 9 0

5 6 0

6 6 0

7 12 0

Figure 3. The constructed utility list.

In the algorithm, in addition to maintaining the maximum utility corresponding to the
frequent value, a maximum utility (umax) array is also set to maintain the maximum
utility of the frequent value.

Definition 3.1. The array holds the maximum utility for frequency value i and it is
described as umax(i).

Definition 3.2. If the itemset X’s frequency is i and the utility of the non-itemset is more
than u(X), it is termed a potential SFUP (PSFUP).

However, because the algorithm generates a large number of utility lists, connection
operations and potential SFUI, the SKYMINE2 algorithm still has a high computational
cost. Therefore, an algorithm built the extended utility list data structure was proposed
by Hung Manh Nguyen et al.[36].

3.3. Mining Algorithm Based on Extended Utility List. The FSKYMINE algo-
rithm based on the extended utility list can effectively reduce the number of utility lists,
join operations and potential SFUIs in the process of mining skyline patterns.

Definition 3.3. The itemset i extension itemset S is expressed as Si and S i = S ∪ i, for
instance, if S = {b, d, g} and i = {e}, then S i = {b, d, e, g}.
Definition 3.4. After the transaction database is sorted, the extended utility list of the
itemset S i in it is represented by a group of tuples, and the tuples are composed of four
fields: tid, itemsetutil, itemutil and rutil. Where tid represents the ID of the transaction
containing itemset S i, itemsetutil represents the utility of S in tid, itemsutil represents
the utility of i, and rutil represents the total of the utilities of itemsets remaining after i
in transaction tid.

Definition 3.5. In the extended utility list of itemset S i, S i.sumtemutils represents the
total of itemsettil in the utility list of itemset S i, S i.sumitemsetutils represents the total
of itemsetutil in the scope utility list of itemset S i, S i.sumrutils represents the itemset
S i the total of the rutil extended utility list.

10 Jimmy M.-T. Wu, H. Zhou, M. Pirouz and S. Tayeb

Proposition 3.1. When the itemset S i’s frequency is i, if the sum of sumitemutils
value and sumitemsetutils value in the extended utility list of itemset S x is not less than
umax(i), then S i is considered to be a PSFUI.

Proposition 3.2. When the itemset S i’s frequency is i, if the total of sumrutils value
and sumitemsetutils value and sumitemutils value in the extended utility list of itemset
S i is smaller than umax(i), so all extensions of S i are not considered to be SFUI.

Definition 3.6. When itemset m and itemset n co-occur in transaction T in the sorted
transaction database, and m is ordered before n, denote the total of the utility of item m’s
remaining items in T as rtwuc(m, n, T):

rtwuc(m,n, T) =
∑

i∈T∧i from m in total order

u(i, T) (7)

Definition 3.7. When the item pair m, n appear in the database at the same time, the to-
tal of the remaining transaction-weighted utilities of the item pair m, n in all transactions
where the item pair m, n appears is defined as:

rtwuc(m,n) ==
∑

(T∈D)∧((m,n)⊆T)

rtwuc(m,n, T) (8)

First, calculate the twu for all 1− itemsets. Second, Sort 1− itemsets in twu ascend-
ing order. Then, calculate the remaining transaction-weighted utility (rtwuc(m,n)) of
itemsets in the database for x, y, and formation the extended utility list of 1− itemsets.

4. SFUPM Algorithm Based on Big Data Environment. In this section, we sum-
marize the SFUPM algorithm in the big data environment, which is based on Hadoop
platform and Spark platform respectively. In this section, we summarize the SFUPM
algorithm in the big data environment, which is based on Hadoop platform and Spark
platform respectively.

4.1. Mining Algorithm Based on Hadoop Platform. SFUP-MR algorithm is a new
parallel algorithm based on hadoop platform, namely, mapreduce based three-stage it-
erative algorithm. MapReduce [37] is used to divide the mining task of an entire large
dataset into multiple independent subtasks to find frequent-high utility patterns in par-
allel. Hadoop is a distributed architecture, which makes full use of the performance of
clusters for computation and hadoop is a distributed architecture that leverages the per-
formance of clusters for computation and storage. The key components are mapReduce
and hadoop distributed file system (hdfs). Thanks to hdfs, data localization operations
on storage nodes can be accomplished by storing data on the nodes when computing on
hadoop. However, in the previous high-performance computing cluster, computing nodes
need to access the shared file system composed of storage area networks (SANs) to obtain
data. This left some compute nodes in the cluster to wait for data when there was not
enough data, wasting resources.

MapReduce is a sufficiently abstract and general programming model. Its main prin-
ciple is divide and conquer. More importantly, it can recursively merge and sort data.
In addition, it simplifies parallel programming tasks by hiding the underlying details of
parallelization from programmers. The processing of any mapReduce algorithm consists
of map and reduce two stages. Mapper and reducer are the two objects that handle the
map phase and reduce phase, respectively. The input data is separated into key-value

Skyline Frequent-utility Patterns Mining: A Survey 11

pairs and sent to several mappers. The key and value pairs generated by the mapper are
shuffled and sorted in the middle and transferred to the reducer. The reducer merges keys
and values with the same as key to get a merged key-value pair. Then output middle or
the final results to hdfs.

4.2. Mining Algorithm Based on Spark Platform. The SFUP-SP algorithm is a
parallel-style algorithm built on the Apache Spark platform [38]. The purpose of this
algorithm is to achieve the mining of skyline patterns through the use of two major classes
of operators, transformations and actions [39]. Meanwhile, the application of resilient
distributed dataset (RDD) [40, 39] in cloud computing provides a good environment for
data analysis of big data. Spark framework is divided into a driver side and an executor
side [41, 39, 42], where the driver side inputs data, generates DAG [39, 43], manages
resources and is responsible for scheduling; the executor side executes transfomation and
action arithmetic to perform multiple tasks concurrently. Spark is based on the idea
of mapreduce is extended, it not only retains the advantages of mapreduce distributed
parallel computing and also fill the obvious deficiencies of mapreduce, and mapreduce
will be saved in the intermediate results of the nature of the disk is different to Spark
will be the Job intermediate output and results stored in memory, so it does not need to
Therefore, it does not need to read and write hdfs, so Spark can be better suited to data
mining and machine learning and other algorithms that require iterative mapreduce.

Spark is a memory-based computing framework, which allows intermediate data to be
stored in memory to improve the running speed, and provides rich APIs for operating
data to improve the development speed. Spark constructs each task processed as a DAG
(Directed Acyclic Graph) for execution. The implementation principle is to iteratively cal-
culate data in memory based on RDD (Resilient Distributed Dataset, Elastic Distributed
Dataset). , to achieve high-performance fast computing processing of batch and streaming
data. Spark can be easily integrated with other open source products. For example: spark
can use hadoop’s yarn and Apache Mesos as its resource management and scheduler; it
can process all data supported by hadoop, including hdfs, hbase and cassandra, etc.

5. Pruning Strategy. In this section, we briefly introduce several pruning strategies
[44, 45, 15] commonly used in the skyline frequent-utility patterns mining algorithm.
They are applicable to stand-alone environment and big data environment respectively.

5.1. Iutil and Rutil Pruning. In the process of mining SFUPs, the SKYMINE algo-
rithm generates a large set of candidate items and the algorithm overestimates the upper
limit of the itemset. To address this issue, a strategy was defined in order to accelerate
the mining of SFUPs.

Definition 5.1. If the frequency of the pattern is not less than index i, where (1 ≤ i ≤
|D|, then the maximum utility of the pattern can be maintained in the utility-maximum
(utilmax) structure, defined as follows:

utilmax(i) = max{u(X) | f(X) ≥ i} (9)

Allocate a fixed address space to the utilmax array, whose size is the maximum fre-
quency of the itemsets in database D add 1. Based on this structure, in the whole mining
process of the algorithm, the maximum utility of the itemset under the constraint of the
frequency condition can be maintained, and the search space in the mining process of
SFUP can be reduced.

12 Jimmy M.-T. Wu, H. Zhou, M. Pirouz and S. Tayeb

Lemma 5.1. Let A be the set of itemset, and the total of its iutil in its UL structure is
smaller than utilmax(f(A)), A cannot be SFUPs.

Proof: When the itemset B has
∑

A⊆Tq∧Tq∈D util (A, Tq) < utilmax(f(A)) conditions,

it can be concluded that u(B) < u(A), f(B) ≥ f(A). So A is controlled by B, A cannot
be SFUP.

Lemma 5.2. Let A be the set of itemset, then add itemset B to itemset A, expand it and
define it as (A∪B), denoted by A.B. If the total of the iutil and rutil values corresponding
to A is less than utilmax(f(A)), then all extensions of A cannot be SFUP.

Proof: Extend the set of item A to A
′
. ∀A′ ⊆ t ⇒ (A′ − A) = (A′/A) because

A ⊂ A′ ⊆ t⇒ (A′/A) ⊆ (t/A)

therefore f (A′) ≤ f(A), and u (A′, t) = u(A, t) + u (A′ − A, t)

= u(A, t) + u (A′/A, t)

= u(A, t) +
∑

ij∈A′/A

u (ij, t)

≤ u(A, t) +
∑

ij∈(t/A)

u (ij, t)

= u(A, t) + ru(A, t)

(10)

Let tid(t) represents the ID of transaction t in database D, the tid tuple of itemset A is
represented by A.tids, and the tid tuple of itemset A

′
is represented by A

′
.tids, so:

because A ⊂ A′ ⇒ A′.tids ⊆ A.tids.

therefore u (A′) =
∑

id(t)∈A′.tids

u (A′, t) ≤
∑

id(t)∈A′.tids

u(A, t) + rutil(A, t)

≤
∑

id(t)∈A.tids

u(A, t) + rutil(A, t)

< utilmax(f(A))

(11)

Because f (A′) ≤ f(A), therefore ∃ u(B) = utilmax(f(A)) ≥ u (A′) and f(B) ≥
f(A) ≥ f (A′) ⇒ A′ cannot be SFUPs.

Therefore, the pruning strategy that follows may be derived from the aforementioned
two lemmas:

All extensions of itemset A cannot be SFUPs if the total of iutil and rutil in the UL
structure of itemset A is smaller than utilmax(f(A)).

5.2. Sub-tree Utility and Local Utility Pruning. In this section, we briefly introduce
how to use the utilmax array, the upper bound value of subtree utility and the upper bound
value of local utility to form a new pruning strategy suitable for big data, so as to reduce
the search range in the algorithm mining process the goal of.

Definition 5.2. Suppose the items is I = {i1, i2, . . . , ik}, after sorting I by twu in de-
scending order, the last item of the set X of items is in. The items I ′ = {in+1, in+2, . . . , ik}
is a sub-list of I, and an item y = im ∈ I ′, g(X ∪ {y}) is a group of transactions, where
X ∪{y} is an item in the transaction. The sub-tree utility of y with respect to X is called
as su(X, y), and it is described as follows:

Skyline Frequent-utility Patterns Mining: A Survey 13

su(X, y) =
∑

T∈g(X∪{y})

 ∑
i∈T∩{in+1,in+2,...,ik}

u(i, T) + u(X,T) + u(y, T)

 (12)

Definition 5.3. Suppose the items is I = {i1, i2, . . . , ik}, after sorting I by twu in de-
scending order, the last item of the set X of items is in. The items I ′ = {in+1, in+2, . . . , ik}
is a sub-list of I, and an item y = im ∈ I ′, g(X ∪ {y}) is a group of transactions, where
X ∪ {y} is an item in the transaction. The local utility of y with respect to X is called as
lu(X, y), and it is described as follows:

lu(X, y) =
∑

T∈g(X∪{y})

[∑
i∈T∩I′

u(i, T) + u(X,T)

]
(13)

6. Future Direction of Frequent Utility Itemset Mining Algorithm. In recent
years, many research progresses have been made in mining frequent utility itemsets. How-
ever, there are more emerging issues to consider. Therefore, we will briefly discuss the
future directions of frequent utility itemset mining algorithms in this section.

6.1. Mining Algorithm for Frequent Utility Itemset with Negative Utility. All
algorithms in the previous studies considered only positive utilities. However, in real
life, transactional datasets are of negative utility [46]. In business competition, many
companies use marketing schemes to sell a product to consumers at zero or negative
profit, and then increase their business revenue by guiding consumers to buy other goods
with high profit through certain conditions. For example, in real life, we often encounter
supermarkets engaging in promotional activities in order to increase sales, such as buying
instant noodles and giving away bowls, and the bowls are sent at a negative profit loss. It
is much more than the loss caused by the bowl, which still makes the seller profitable. If a
mining algorithm that does not consider negative utility itemsets is used, the high utility
itemsets will be estimated as low utility itemsets when mining is performed, resulting in
a significant number of high utility itemsets not being mined, which leads to mining of
frequent-high utility itemset is incomplete. Therefore, mining frequent utility itemsets
with negative utility values would be a good research direction.

6.2. Incremental Mining Algorithm for Frequent Utility Itemset. The databases
in previous studies are static databases, which are usually analyzed statically and then
the mining process is executed in a batch manner. However, in practical applications, the
transactions in the database are usually in a state of change. Since customer purchases are
always dynamic, the original database will receive some new transaction records. Then
the previous frequent-high utility itemset may become no longer valid, or there may be
some new hidden information in the updated database. In order to better deal with this
problem, we can propose an efficient incremental mining algorithm [47] to mine frequent-
high utility itemsets existing in the dynamic database. In some cases, the algorithm
can avert or decrease the need to scan the original database again, thereby saving the
computation time of incremental mining. In order to mine the frequent and efficient
itemsets in incremental databases more efficiently, we need to drive the research as deeply
as possible.

14 Jimmy M.-T. Wu, H. Zhou, M. Pirouz and S. Tayeb

6.3. Mining Algorithms for Frequent and High Utility of Quantitative Item-
sets. In the previous study, the itemset only considered frequent, but not quantity as
a key factor. However, in real life, quantity is always involved as an influencing factor.
High-Utility Quantitative Itemset Mining (HUQIM) [48] is a research branch that has
only started in the past two years, and it belongs to a research branch of utility. It also
takes into account the utility factor while also adding a consideration of the quantity
within the scope of the program. Therefore, in order to better mine the information we
need, frequent and high utility mining algorithms with quantitative itemsets is a research
direction of practical importance.

7. Conclusions. In recent years, a lot of research has been done on the mining of frequent
utility patterns. The purpose of these studies is to find patterns that appear frequently
and have high utility from large amounts of data. With the in-depth research on frequent
utility pattern mining, many good data structures and algorithms have emerged. So
in order to better understand the algorithms of these studies, we conducted a survey
on skyline pattern mining by reading a large number of literatures, and formed this
article. This paper presents a series of summaries and methodological discussions on the
problem of mining frequent high-utility patterns. First, we conduct some investigations
on the algorithm from a stand-alone environment and a big data environment. The
classification of the SFUP algorithm in the two environments is introduced. In the stand-
alone environment, we consider algorithms based on UP-tree, utility list and extended
utility list respectively. In the big data environment, we considered algorithms based on
Hadoop platform and Spark platform. In addition, there are some brief discussions on the
appropriate pruning strategies in the two environments. Finally, the paper also discusses
several possible future research directions on frequent high-utility itemsets mining. In the
future, if there is more in-depth research on mining frequent high-utility itemsets, the
content of this article can be expanded.

REFERENCES

[1] M. J. Zaki, S. Parthasarathy, M. Ogihara, W. Li et al., “New algorithms for fast discovery of
association rules,” in In 3rd International Conference on Knowledge Discovery and Data Mining,
vol. 97, 1997, pp. 283–286.

[2] J. M.-T. Wu, Q. Teng, S. Huda, Y.-C. Chen, and C.-M. Chen, “A privacy frequent itemsets mining
framework for collaboration in iot using federated learning,” ACM Transactions on Sensor Networks
(TOSN), 2022, https://doi.org/10.1145/3532090.

[3] R. Chan, Q. Yang, and Y.-D. Shen, “Mining high utility itemsets,” in Third IEEE International
Conference on Data Mining. IEEE Computer Society, 2003, pp. 19–19.

[4] Y. Liu, W.-K. Liao, and A. Choudhary, “A two-phase algorithm for fast discovery of high utility
itemsets,” in Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 2005,
pp. 689–695.

[5] H. Yao and H. J. Hamilton, “Mining itemset utilities from transaction databases,” Data & Knowledge
Engineering, vol. 59, no. 3, pp. 603–626, 2006.

[6] J. C.-W. Lin, J. Zhang, P. Fournier-Viger, T.-P. Hong, C.-M. Chen, and J.-H. Su, “Efficient mining
of short periodic high-utility itemsets,” in 2016 IEEE International Conference on Systems, Man,
and Cybernetics (SMC). IEEE, 2016, pp. 003 083–003 088.

[7] H. Yao, H. J. Hamilton, and C. J. Butz, “A foundational approach to mining itemset utilities from
databases,” in Proceedings of the 2004 SIAM International Conference on Data Mining. SIAM,
2004, pp. 482–486.

[8] Q. Lin, W. Gan, Y. Wu, J. Chen, and C.-M. Chen, “Joint utility and frequency for pattern clas-
sification,” in 2021 IEEE International Conference on Big Data (Big Data). IEEE, 2021, pp.
5524–5533.

[9] ——, “Smart system: Joint utility and frequency for pattern classification,” arXiv preprint
arXiv:2206.04269, 2022.

Skyline Frequent-utility Patterns Mining: A Survey 15

[10] J.-S. Yeh, Y.-C. Li, and C.-C. Chang, “Two-phase algorithms for a novel utility-frequent mining
model,” in Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 2007, pp.
433–444.

[11] S.-J. Yen and Y.-S. Lee, “Mining high utility quantitative association rules,” in International Con-
ference on Data Warehousing and Knowledge Discovery. Springer, 2007, pp. 283–292.

[12] V. Podpecan, N. Lavrac, and I. Kononenko, “A fast algorithm for mining utility-frequent itemsets,”
Constraint-Based Mining and Learning, p. 9, 2007.

[13] V. Goyal, A. Sureka, and D. Patel, “Efficient skyline itemsets mining,” in Proceedings of the Eighth
International C* Conference on Computer Science & Software Engineering, 2015, pp. 119–124.

[14] J. C.-W. Lin, L. Yang, P. Fournier-Viger, S. Dawar, V. Goyal, A. Sureka, and B. Vo, “A more
efficient algorithm to mine skyline frequent-utility patterns,” in International Conference on Genetic
and Evolutionary Computing. Springer, 2016, pp. 127–135.

[15] J. C.-W. Lin, L. Yang, P. Fournier-Viger, and T.-P. Hong, “Mining of skyline patterns by considering
both frequent and utility constraints,” Engineering Applications of Artificial Intelligence, vol. 77, pp.
229–238, 2019.

[16] V. S. Tseng, C.-W. Wu, B.-E. Shie, and P. S. Yu, “Up-growth: an efficient algorithm for high utility
itemset mining,” in Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2010, pp. 253–262.

[17] V. Kumar, R. Kumar, V. Kumar, A. Kumari, and S. Kumari, “Ravcc: Robust authentication
protocol for rfid based vehicular cloud computing,” Journal of Network Intelligence, vol. 7, pp.
526–543, 2022.

[18] W. Weng, T. Li, J.-C. Liao, F. Guo, F. Chen, and B.-W. Wei, “Similarity-based attention embedding
approach for attributed graph clustering,” Journal of Network Intelligence, vol. 7, pp. 848–861, 2022.

[19] T.-Y. Wu, J. C.-W. Lin, Y. Zhang, and C.-H. Chen, “A grid-based swarm intelligence algorithm for
privacy-preserving data mining,” Applied Sciences, vol. 9, no. 4, p. 774, 2019.

[20] T.-Y. Wu, J. C.-W. Lin, U. Yun, C.-H. Chen, G. Srivastava, and X. Lv, “An efficient algorithm for
fuzzy frequent itemset mining,” Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 5787–5797,
2020.

[21] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules between sets of items in large
databases,” in Proceedings of the 1993 ACM SIGMOD International Conference on Management of
Data, 1993, pp. 207–216.

[22] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association rules,” in Proceedings of 20th
International Conference on Very Large Data Bases (VLDB 1994), vol. 1215. Santiago, Chile, 1994,
pp. 487–499.

[23] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate generation,” ACM Sigmod
Record, vol. 29, no. 2, pp. 1–12, 2000.

[24] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and Y.-K. Lee, “Efficient tree structures for high utility
pattern mining in incremental databases,” IEEE Transactions on Knowledge and Data Engineering,
vol. 21, no. 12, pp. 1708–1721, 2009.

[25] C.-W. Lin, T.-P. Hong, and W.-H. Lu, “An effective tree structure for mining high utility itemsets,”
Expert Systems with Applications, vol. 38, no. 6, pp. 7419–7424, 2011.

[26] M. Liu and J. Qu, “Mining high utility itemsets without candidate generation,” in Proceedings of the
21st ACM International Conference on Information and Knowledge Management, 2012, pp. 55–64.

[27] J. M.-T. Wu, M. Wei, G. Srivastava, C.-M. Chen, and J. C.-W. Lin, “Mining large-scale high utility
patterns in vehicular ad hoc network environments,” Transactions on Emerging Telecommunications
Technologies, vol. 33, no. 10, p. e4168, 2022.

[28] J. Liu, K. Wang, and B. C. Fung, “Direct discovery of high utility itemsets without candidate
generation,” in 2012 IEEE 12th International Conference on Data Mining. IEEE, 2012, pp. 984–
989.

[29] ——, “Mining high utility patterns in one phase without generating candidates,” IEEE Transactions
on Knowledge and Data Engineering, vol. 28, no. 5, pp. 1245–1257, 2015.

[30] J. M.-T. Wu, J. C.-W. Lin, and A. Tamrakar, “High-utility itemset mining with effective pruning
strategies,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 13, no. 6, pp. 1–22,
2019.

[31] J. M.-T. Wu, Q. Teng, J. C.-W. Lin, and C.-F. Cheng, “Incrementally updating the discovered high
average-utility patterns with the pre-large concept,” IEEE Access, vol. 8, pp. 66 788–66 798, 2020.

16 Jimmy M.-T. Wu, H. Zhou, M. Pirouz and S. Tayeb

[32] S. Zida, P. Fournier-Viger, J. C.-W. Lin, C.-W. Wu, and V. S. Tseng, “Efim: a fast and memory
efficient algorithm for high-utility itemset mining,” Knowledge and Information Systems, vol. 51,
no. 2, pp. 595–625, 2017.

[33] C.-M. Chen, L. Chen, W. Gan, L. Qiu, and W. Ding, “Discovering high utility-occupancy patterns
from uncertain data,” Information Sciences, vol. 546, pp. 1208–1229, 2021.

[34] J.-S. Pan, J. C.-W. Lin, L. Yang, P. Fournier-Viger, and T.-P. Hong, “Efficiently mining of skyline
frequent-utility patterns,” Intelligent Data Analysis, vol. 21, no. 6, pp. 1407–1423, 2017.

[35] C.-W. Lin, T.-P. Hong, and W.-H. Lu, “Efficiently mining high average utility itemsets with a tree
structure,” in Asian Conference on Intelligent Information and Database Systems. Springer, 2010,
pp. 131–139.

[36] H. M. Nguyen, A. V. Phan, and L. Van Pham, “Fskymine: a faster algorithm for mining skyline fre-
quent utility itemsets,” in 2019 6th NAFOSTED Conference on Information and Computer Science
(NICS). IEEE, 2019, pp. 251–255.

[37] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,” Communica-
tions of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[38] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster computing
with working sets,” in 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 10),
2010.

[39] S. Salloum, R. Dautov, X. Chen, P. X. Peng, and J. Z. Huang, “Big data analytics on apache spark,”
International Journal of Data Science and Analytics, vol. 1, no. 3, pp. 145–164, 2016.

[40] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin, S. Shenker, and
I. Stoica, “Resilient distributed datasets: A {Fault-Tolerant} abstraction for {In-Memory} cluster
computing,” in 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI
12), 2012, pp. 15–28.

[41] M. Armbrust, T. Das, A. Davidson, A. Ghodsi, A. Or, J. Rosen, I. Stoica, P. Wendell, R. Xin, and
M. Zaharia, “Scaling spark in the real world: performance and usability,” Proceedings of the VLDB
Endowment, vol. 8, no. 12, pp. 1840–1843, 2015.

[42] Y. Benlachmi and M. L. Hasnaoui, “Big data and spark: Comparison with hadoop,” in 2020 Fourth
World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). IEEE, 2020,
pp. 811–817.

[43] M. Dessokey, S. M. Saif, S. Salem, E. Saad, and H. Eldeeb, “Memory management approaches in
apache spark: A review,” in International Conference on Advanced Intelligent Systems and Infor-
matics. Springer, 2020, pp. 394–403.

[44] P. Fournier-Viger, C.-W. Wu, and V. S. Tseng, “Mining top-k association rules,” in Canadian
Conference on Artificial Intelligence. Springer, 2012, pp. 61–73.

[45] V. S. Tseng, C.-W. Wu, P. Fournier-Viger, and S. Y. Philip, “Efficient algorithms for mining top-k
high utility itemsets,” IEEE Transactions on Knowledge and Data Exngineering, vol. 28, no. 1, pp.
54–67, 2015.

[46] W. Gan, S. Wan, J. Chen, C.-M. Chen, and L. Qiu, “Tophui: Top-k high-utility itemset mining with
negative utility,” in 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020, pp.
5350–5359.

[47] C.-W. Lin, W. Gan, T.-P. Hong, and C.-M. Chen, “Maintaining high-utility itemsets in dynamic
databases,” in 2014 International Conference on Machine Learning and Cybernetics, vol. 2. IEEE,
2014, pp. 469–474.

[48] L. Chen, W. Gan, Q. Lin, J. Miao, and C.-M. Chen, “Mining on-shelf high-utility quantitative
itemsets,” in 2021 IEEE International Conference on Big Data (Big Data). IEEE, 2021, pp. 5491–
5500.

