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Abstract.
Crowd sensing allows employees to use mobile devices to collect data at a specific loca-

tion and send to the requester. However, most existing crowd sensing systems are based
on centralized servers which may be attacked, hacked, or manipulated. At the same time,
the worker is usually exposed while sends information, which increases the risk of privacy
invasion. In order to solve above problems, based on double-blockchains, this paper pro-
poses an efficient model for location privacy protection. Firstly, the new model can resist
three kinds of location disclosure in mobile crowd sensing system. Secondly, the proposed
model achieves non-repudiation and non-tampering of information function. Thirdly, a
two-stage method (i.e., double-blockchains pre-registration and final selection) has advan-
tages of improving data sensing quality, protecting workers’ privacy, and improving the
efficiency of the model. Finally, we give analysis of the proposed system model to verify
its efficiency, feasibility, fairness and reliability.
Keywords: Crowd sensing, location privacy, public blockchain, consortium blockchains,
crowd sensing model

1. Introduction.
Recently, wireless sensors have become an emerging application on the Internet of

Things (IoT) [1, 2, 3, 4, 5, 6], which enables mobile devices to collect and share data
[7, 8, 9]. Collecting relevant data in the region can infer the occurrences within a cer-
tain time. This method is called Crowd Sensing [10]. Meanwhile, Spatial crowd sensing
(SC) has also been widely used in real-world applications, such as traffic monitor [11, 12],
environmental monitor [13], and identification of points of interest [14, 15]. Thereafter,
with the development of 5G [16, 17, 18, 19], Wi-Fi and other kinds of mobile communica-
tion technologies [20], intelligent mobile terminals play more and more powerful roles in
sensing system. In this situation, Mobile Crowd Sensing (MCS) [21, 22, 23] has become
a new sensing paradigm for IoT. Generally, MCS services are adopted in air pollution
monitoring [24], environmental monitoring [25], road condition monitoring [26], real-time
traffic monitoring and navigation [27], healthy diet [28] and autopilot [29], etc. Survey
[30] classifies the basic algorithms in MCS environment from the view of task processing
and report processing. It also discusses some suitable application scenarios of each algo-
rithm. For the problem of large amount of redundant data in MCS service, Liu et al. [21]
describes the current research progress from reducing resource cost and improving service
quality points. They also summarize the challenges and technical difficulties existing in
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MCS service. Restuccia et al. [31] summarizes the existing research results from three as-
pects: truth discovery framework, truth discovery algorithm and privacy protection truth
discovery algorithm. All these aspects aims at improving MCS data information quality.

However, there are several issues still required to be solved in center-based MCS system.
On the one hand, malicious attackers can tamper with information by attacking the
centralized system [32, 33]. Therefore, a sensing platform needs a protection mechanism
to minimize the risk of privacy leakage [34]. To address this issue, there are three methods
(i.e., differential privacy, spatial anonymity and encryption [35, 36, 37]) were proposed in
typical privacy protection models in MCS system. For instance, Wang et al. [38] proposed
a protection framework based on differential privacy. Workers in spatial crowd sensing
first submit their real location information to a trusted mobile service provider, which
constructs private spatial decomposition (PSD) and uses Laplace mechanism to achieve
differential privacy protection. The work [39] considers spatial location privacy in P2P
communication environment, and the P2P spatial K-anonymity algorithm [40] is adopted
to achieve the location privacy protection of spatial crowd sensing workers. Yao et al. [41]
firstly presented a new encryption protocol based on additive homomorphic encryption
technology and garbled circuit to build a secure encryption database for storing workers’
location information. However, all the above-mentioned researches still need centralized
parties, which cause the mistrust problem.

To tackle the problem of mistrust of centralized platform in real life, we propose a
double-blockchains-based MCS system, which not only ensures privacy [42, 43, 44], but
also ensures distribution with the addition of multiple consortium blockchains [45, 46, 47,
48]. It ensures that the information in MCS will not be tampered with and can resist
malicious acts such as plagiarism and fraud.

The main contributions of this paper are summarized as follows:

• We describe three stages of location privacy exposure in traditional MCS systems
and give related attacks of malicious acts for these stages. Then, our proposed
framework can resist the mentioned attacks in these three stages.
• Different from other crowd sensing systems, based on cryptography technology, our

double-blockchains MCS system can establish a trusted consensus mechanism to
avoid security problems (e.g., tampering information). The consortium blockchains
can effectively improve the operational efficiency of the whole system. Besides, our
framework considers several optimization strategies that can ensure the fairness of
workers’ choice and further improve efficiency.
• Finally, theoretical analysis of our proposed system proves that it can supply privacy

protection. Furthermore, we discussed that the proposed system is more efficient and
fair than other baseline blockchain-based systems.

The remainder of this article is organized as follows. We review and summarize the
existing works in Section 2. A comprehensive definition is given in Section 3. We present
the proposed method and effective algorithm in Section 4. Then, we analyze the perfor-
mance of our proposed system in detail in Section 5. Finally, Section 6 concludes this
paper.

2. Preliminaries.

2.1. System model.
We begin with the workflow of spatial crowd sensing shown in Figure. 1 as follows:

1. The requester sends the task to the server.
2. Spatial crowd sensing (SC) server obtains location information from workers who

accept task requests.
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3. SC sensing server assigns tasks to workers according to task location.
4. Once the worker agrees to finish the task, he/she will go to the location where the

requester publishes the task. Then, he/she finishes the task and then reports the
execution result to SC server.

5. SC server returns results to the requester and evaluates the quality of these results
according to a certain mechanism.

6. The requester sends rewards to the workers based on the task results’ evaluation.

Figure 1. Spatial crowd sensing workflow.

Then, as shown in Figure. 2, the MCS system model is mainly composed of three parts:
aware user, aware platform and service provider.

Figure 2. Mobile crowd sensing (MCS) system model.

Sensing user. Sensing users are the objects who use intelligent mobile terminals.
Their mobile intelligent terminals (e.g., smartphones, tablet computers, wearable devices,
and vehicle-mounted sensing devices) are played as basic sensing units. After completing
identity authentication, sensing users can use various sensing terminals to collect data,
connect with the sensing platform, and report the sensing data.

Sensing platform. As an intermediary between sensing users and service providers,
the sensing platform consists of multiple sensing servers. The sensing platform aims at
encouraging as many as possible sensing users to participate in the task according to
reasonable incentive mechanism. It also deals with the sensing data uploaded by sensing
users (e.g., classification, aggregation, and modeling). In general, there are task allocation
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algorithms, data processing algorithms, data quality assessment algorithms and reward
calculation algorithms adopted in sensing platform.

Service provider. As the requester of sensed data, the security transaction of sensed
data is completed by interacting with the sensed platform. The service can be hosted
on cloud platforms. It also manages and analyzes the collected sensing data according
to sensing data set, and then builds a variety of crowd sensing application. Finally,
MCS services are provided for air pollution monitoring, environmental monitoring, road
condition monitoring, real-time traffic prediction, healthy diet and safe driving.

2.2. Basic definition.
Let W = {W1,W2, ...,Wn} be the set of workers, and T = {t1, t2, ..., tn} be a collection

of tasks. More symbols are shown in Table 1 [49].

Table 1. Parameter definition table

Number Parameter Define
1 r Task Requester
2 W Workers set
3 v Verifier
4 tj Subtarget j
5 n Number of workers
6 m Number of subtargets
7 bi Worker i budget
8 Li Position of worker i
9 Ai Cloaked area of worker i
10 kj Number of workers covered by target j
11 g Task coverage goal
12 di,j Euclidean distance from i to j
13 Fm The matrix results of the first stage
14 Sm The matrix results of the second stage
15 U Region coverage matrix
16 S All areas of the operating range
17 S′ The sub-area overlaps with the surrounding area

Definition 2.2.1. (Cloaked area) To protect the real location, we replace the exact
location of worker Wi with the hidden area Ai. Among them, Ai is a spatial anonymous
region which formed by mapping the real location of Wi according to the probability
density function fi.

Definition 2.2.2. (Target subregion) To maximize the coverage of task as much as possi-
ble, the whole task area S is divided into several sub-areas Sj by the latitude and longitude
information. Similarly, the target t is also divided into some sub-targets tj. Then, if the
full coverage of sub-targets in each sub-area is achieved, and the full coverage of targets
in the whole task area S is finally achieved.

Definition 2.2.3. (Worker selection) Worker selection can be regarded as mapping worker
Wi to subregion Sj, which can be represented by a boolean matrix Fmi,j ,where i ∈ N
and j ∈ M . If Fmi,j=1, it means that worker Wi works in subregion Sj. Conversely, if
Fmi,j=0, it means that the worker Wi is not working in subregion Sj.

Definition 2.2.4. (Task coverage) Sub-area coverage is defined as the ratio of a worker’s

work area to sub-area area, which can be described as
Σi∈N (Fmi,j×Si,j)

Sj
, where Fmi,j×Si,j is
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the sub-area working range of Wi. Thus, all overall mission coverage (ATC ) is represented
as follows:

ATC = Σj∈M
Σi∈N(Fmi,j × Si,j)

Sj

. (1)

Definition 2.2.5. (Task cost) We use Euclidean distance to describes the spending in
task cost and express it by d. Thus, the overall task cost (OTC ) is expressed as follows:

OTC = Σj∈MΣi∈N(Fmi,j × di,j). (2)

After a requester r publishes a task, if a worker wants to accept the task, the worker’s
personal and work information will be sent to the requester through blockchain. The above
process is sent to the requester by initiating a transaction. The work requires paying a
certain deposit for signing the contract. At the same time, the system should consider
the prevention of over-saturation of workers in sub-regions, the coverage of global tasks,
the quality of workers in the pre-registration process and the fairness of worker selection.

Definition 2.2.6. (Pre-registration) The first parameter G is a threshold for the number
of workers in a same subregion1. The second parameter H is the multiple of task coverage
target, which aims to improve the success rate of employee selection. The third parameter
T is the waiting time of the worker. If T is greater than the parameter Tmin, the worker
will be selected2. When T is greater than the parameter Tmax, the legal workers in Ai

must be selected. In addition, g is the coverage target set by the system, and its value
range is [0, 1].

∀i ∈ N,Pi =


0, Ti < Tmin

T i

Tmax
, Tmin ≤ Ti ≤ Tmax

1, Ti > Tmax

,

∀j ∈M,Fmi,j ≤ Gj,Σi∈N(Fmi,j × Si,j) ≥ H × g × S.

(3)

Definition 2.2.7. (Local worker selection mechanism, LWSM [49]) Under the condition
of ensuring the fairness during worker selection, the goal of LWSM is to achieve subarea
coverage optimization with minimal task cost. The greedy algorithm can be used to select
the most suitable workers in the subarea.

max Σj∈MΣi∈N(
Fmi,j × Si,j

Sj

× Ti
24

)

s.t. ∀i ∈ N,Σj∈M(Fmi,j × di,j) ≤ bi

di,j ≥ 0, i ∈ [1, .., n]; j ∈ [1, ..,m],

(4)

However, sub-region optimal does not mean global optimal, and the overall coverage may
be low in the case of sub-region optimal. Therefore, after the sub-area optimization stage
is completed, the system also needs to optimize the global worker selection process.

Definition 2.2.8. (Global worker selection mechanism, GWSM [49]) Under the condition
of ensuring the fairness during worker selection, the goal of GWSM is to achieve global
coverage optimization with minimum task cost. The global impact of worker nodes can be
calculated according to the proportion of the area where workers work in each surrounding
sub-area, and the greedy algorithm can be used to find the most suitable workers globally.
While selecting the results of Wi are divided in the task, Fmi,j=1. We define S ′i,j as the

1In other words, it means the maximum number of workers in a subregion.
2The greater T is, the higher probability (Pi) of the worker being selected.
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overlap between other workers in the sub-areas and the surrounding sub-areas. If ∃
Fmk,j=1, i ∈ N , and S ′k,j < S ′i,j, then Fmk,j ← 1 and Fmi,j ← 0.

min Σj∈MΣi∈N(
24

Ti
× Fmi,j × di,j), S ′i, j

s.t. Σj∈M
(Fmi,j × Si,j)

Sj

≥ gS

∀i ∈ N,Σj∈M(Fmi,j × di,j) ≤ bi

di,j ≥ 0, i ∈ [1, .., n]; j ∈ [1, ..,m],

(5)

Definition 2.2.9. (Fine-tuning stage) A worker belongs to global optimized set can
independently adjust accepted tasks according to smart contracts. Since only workers
know their exact positions, workers can use their precise positions to fine-tune the results
Smi,j of LWSM and GWSM and decide whether to accept tasks. If a worker refuses, the
system will re-select other workers only in the same subarea.

min Σj∈MΣi∈N(
24

Ti
× Smi,j × di,j)

s.t. |Smi − Fmi| ≤ α

Σj∈M
(Smi,j × Si,j)

Sj

≥ Σj∈M
(Fmi,j × Si,j)

Sj

∀i ∈ N,Σj∈M(Smi,j × di,j) ≤ bi

di,j ≥ 0, i ∈ [1, .., n]; j ∈ [1, ..,m],

(6)

Wi is the i-th worker. Fmi and Smi represent vectors corresponding to different stages. Ti
represents the i-th workers’ idle time. di is a Euclidean distance vector, and bi represents
workers’ budget. |Fmi−Smi| represents Hamming distance between Fmi and Smi. And
the threshold α is used to ensure that the results of second stage keeps the same as the
first stage. In addition, the coverage rate of workers should be greater than or equal to
that of the first stage.

2.3. Threat Model.
We consider three stages during the execution of the sensing task: sensing, uploading

and trading. Each stage faces various attacks of data security and privacy leakage as
follows:

• Data sensing.
a) Location spoofing attack [50]. An attacker can track an interested sensing

task by monitoring the channel and using fake location to disguise as a reliable
source. Then, it submits fake data to attack the sensing platform.

b) Background knowledge attack [21]. The attackers use acquired background
information such as the user’s activity track and the surrounding environment to
predict the location area where the user may appear in a certain period of time, and
then they may steal more privacy information.
• Data upload.

a) Time correlation attack [51]. By analyzing the uploaded information from
one or more locations of a same sensing user in a period of time, the attackers can
obtain some activity track of the user. In the worst case, the attacker can infer
sensitive information (e.g., the real location and identity) of the sensing user.

b) Task-specific attack [52]. An attacker listens and steals the user’s location,
identity, and other sensitive information.
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c) Location spoofing attack [50]. The attackers can monitor and track the
interested sensing task through the channel. They may use the false location of the
third-party program to disguise as a reliable source, and submit false data to attack
the sensing platform.
• Data trading.

a) Collusion attack [50]. In this situation, an attacker will collude with the per-
ception platform or service providers. If attacker gets session information of network
users, he/she can access to the user background knowledge, then excavate the user’s
sensitive information further. This case will finally form a malicious interaction
process.

b) Time correlation attack [51]. In this situation, attackers obtain the sensitive
information by analyzing one or more interactions of the same sensing user in a
specific period of time. In the most serious case, only a single information interaction
can reveal the privacy of the aware user.

3. Our Proposed System Based on Blockchains.

3.1. The Framework.
To solve the workers’ privacy issues we mentioned above, a new MCS framework based

on double-blockchains system is proposed. The framework is shown in Figure. 3 [53]:

Figure 3. The framework of double-blockchains based crowd sensing system.

Requester. Requester r publishes the task on the blockchain. r obtains required
awareness data through smart contracts.

Miner. Miners are responsible for verifying the authenticity of transactions. After
verification, the transactions will be recorded in the block and miners will get rewarded.
As special nodes in the blockchain, miner can also be task requester, agent, or worker.

Agent. The agents are selected from all miners and can organize a consortium blockchain
(i.e., divided sub-regions). All participants in the global region can join the public
blockchain, but can only participate in the consortium blockchain after successfully reg-
istering in the pre-registration phase. The agent downloads sub-target tasks from the
public blockchain and publishes them to the agent’s affiliate chain network. The agent
can charge a deposit to the worker who receives the task.

Worker. Workers are participants who finish tasks. To ensure the fairness of worker
selection, we stipulate that the longer the idle time of workers, the higher the probability
of workers will be selected.
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3.2. The working phase.
To better describe the crowd sensing communication process in detail, we define the

following eight phases in the double-stranded MSC system (as shown in Figure. 4).

Figure 4. MCS execution process based on double-blockchain.

1. Initial setup phase: requester and workers have to register in the public blockchain
system first, and each registered user will be assigned a pair of public and private key
pair. Public and private keys are randomly assigned as a registered user’s identity.
Only registered users can use blockchain to see relevant task information.

2. Task publishing phase: Requester publishes the task with his/her public key
in public blockchain to form a transaction. The public key is used to verify the
authenticity and validity of the blockchain. At the same time, the smart contract
uses the public key to generate the address of the transaction.

3. Task loading phase: An agent will be selected from workers. The agent downloads
mission information from the public blockchain and then transmits it to its consor-
tium blockchains network. The agent is responsible for ensuring the consistency of
mission information between the public and consortium blockchains.

4. Pre-registration phase: Workers complete the perception task by initiating trans-
actions on public blockchain. If workers fail to pre-register, they will be rejected to
accept the task by the system. Otherwise, workers will join in the final selection
process. Only workers who are pre-registered will be accessed into the consortium
blockchain. Each consortium blockchain will maintain a successful pre-registered
work set.

5. Worker selection phase: The worker selection phase is divided into two parts,
the optimization of worker selection and the fine-tuning. Once the pre-registration
process has done, regions are divided into several subregions. With the condition
of fairness of worker selection, the subarea coverage is optimized with the minimum
task cost. Then, the global most suitable workers are selected. The selected workers
can independently adjust the tasks by themselves. After finish task, workers will not
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only obtain reward but also their idle time will be reset. The system selects optimal
workers from their corresponding subregions. The number of workers in the final set
is equal to the number of workers in the global optimal set. We use WSMC to select
suitable workers from the pre-registered staff pool.

6. Result transmission phase: After workers complete their tasks, the sensing results
with digital signatures and public keys will be uploaded to the public blockchain.

7. Quality evaluation phase: The requester will evaluate data quality of task re-
sult information. The task result information will be classified into qualified and
unqualified groups.

8. Payment phase: Workers who upload qualified task data will be rewarded. The
requester will automatically pay his/her reward through the smart contract.

4. The Core Algorithms.
Algorithm for registering with the public blockchain: As shown in Algorithm

1, task requester and workers are required to register in the public blockchain system, but
do not need to provide real identity. Public and private keys for all registered users will
be as their identity.

Algorithm 1 Register on a public blockchain

Require: Utype

Ensure: pk, sk,Uid,RegisterSucess
1: RegisterSucess = False;
2: {pk, sk} ← keyGenerator();
3: Uid ← pk;
4: Utype ∈ {Worker, Requester};
5: if Uid ∈ Upool then
6: return RegisterSucess
7: end if
8: Upool ← Upool ∪ {Uid};
9: RegisterSucess=True;

10: return RegisterSucess

Line 1 indicates that the flag for successful registration is set to Flase;, lines 2-3 indicate
that the key pair is generated, and line 4 indicates the type of registered user (worker or
requester) for the user id;; lines 5-10 indicate that if the user id exists in the user pool,
the user registration fails, otherwise the user id joins the user pool and the registration is
successful.

Algorithm for building Smart Contracts: To ensure the fairness of the transaction,
as shown in Algorithm 2, requester creates a smart contract, and any employee who meets
the requirements can sign the contract.

Lines 1-2 are initialization parameter settings, lines 3-7 indicate that contract creation
fails if the reward is less than task reward; lines 8-15 represent the process of workers
verifying success; lines 16 indicate workers’ privacy data; lines 17-24 indicate whether
the privacy data is appropriate, and select workers to succeed, otherwise fail; lines 25-31
indicate that the task takes time to determine whether the task has been created or not.

Algorithm in pre-registration stage: Considering the worker’s work area and global
task coverage objectives, we added a pre-registration phase before the worker selection
phase. The job information of each worker include the scope of work and spare time.
Due to the uneven distribution of workers, some subareas will have dense distribution of
workers, while some subareas are short of workers. This causes the coverage target cannot
be reached. All of these factors will lead to a decrease in the probability of mission success
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Algorithm 2 Building Smart Contracts

Require: Wid – The worker’s ID, Rid – The requester’s ID, Upool – User pool, Tex – Task
expiration time, Tid – The task ID

Ensure: Status – Task status
1: Initialize the value of the task ← Tid, Owner ← Rid, Status ← Available, RejectFlag ←

False, LegalFlag ← False;
2: Reward ← setReward(Rid);
3: if Reward < Rt then
4: CreateContract ← Failure;
5: Rid ← Transfer{Reward, Deposit, Owner};
6: return CreateContract
7: end if
8: if Validation(Wid) == True and Reject == False then
9: LegalFlag ← True;

10: Deposit ← setDeposit(Wid);
11: Sign a contract and publish it on the blockchain;
12: Reject ← True;
13: Status ← UnAvailable;
14: return RejectFlag
15: end if
16: SensoryData ← UploadingData();
17: while Evaluation(SensoryData) do
18: if Evaluation(SensoryData) is Appropriate then
19: select Wid=True;
20: else
21: select Wid=False;
22: end if
23: Wid ← Transfer{Reward, Deposit, Wid};
24: end while
25: if CostTime>Tex then
26: Status ← Failure;
27: Rid ← Transfer{Reward, Deposit,Owner};
28: else
29: Status ← completed;
30: end if
31: return Status

and data quality. In addition, the workers in some sub-areas are selected very frequently,
but the workers in some sub-areas are hardly selected, and the selection of workers does
not have a certain fairness principle. Therefore, we propose pre-registration Algorithm 3
based on control parameters G, H and T to ensure data quality and fairness of worker
selection.

Algorithm in selection optimization stage: Follows the work of [49], we divided
the selection optimization phase into two steps: WSMCf and WSMCs, while considered
more parameters for fairness. Firstly, WSMCf combines LWSM and GWSM. It is based
on the combination of uncertain location. Secondly, based on exact location information,
WSMCs is the fine-tuning stage of WSMCf results, which is fine-tuned on smart contracts
in the consortium blockchains.

Step 1 optimization: In the first stage of worker selection, an effective greedy algorithm
based on partial set coverage problem was proposed to solve the problem of location
uncertainty [54]. We use hidden areas instead of exact location of users to accept tasks.
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Algorithm 3 Pre-registration

Require: ri – The preferred work area for workers,Ri – Sub-region,F – Initialize worker
matrix,Si – The area covered by the worker Wi’s task,Ti – Worker Wi’s leisure time,S – Task
coverage area,g – Task coverage target,Numi – The number of workers in the subregion,G
– The threshold for the number of workers in a subregion,H – The multiple of the task
covering the target.

Ensure: F ′ – Final worker matrix.
1: if Σi∈N (Fi × Si) < H × g × S then
2: if Numi < G and ri ∈ Ri and Ti ≥ Tmin then
3: if Ti > Tmax then
4: Numi+=1;
5: Fi ← 1;
6: Contracts between workers and task requester on a public blockchain;
7: if Tmin≤Ti≤Tmax then
8: Calculate the probability of being a worker as P;
9: if selected then

10: Numi+=1;
11: Fi ← 1;
12: Contracts between workers and task requesters on a public blockchain;
13: end if
14: end if
15: end if
16: F ′i ← Fi;
17: end if
18: end if
19: return F ′i ;

Then, the Euclidean distance is used to evaluate perceived cost between workers and
sub-goals.

(1) Geometric centroid point method [49]: As shown in Figure. 5, there are nu-
merous location points z uniformly distributed in the hidden region Ai (z ∈ Ai). The
geometric centroids of all points in the hidden region are calculated as the expected posi-
tions of workers. Finally, the expected distance matrix d is obtained, where lj represents
the position of the target j in the sub-region. dis() function represents the Euclidean
distance function.

di,j = dis(

∫
z∈Ai

zfi(z)dz, lj). (7)

(2) Optimization for the first step [49]: We first used a simple pruning method to
reduce the hidden area Ai to A′i. As shown in Figure. 6, the coverage area of target j is a
circular area with target j (center) and ri (radius). A′i is overlap between the coverage of
Ai and j. fi is a probability density function, which maps the exact location of workers
z into a hidden area. The probability of successful access pi,j is calculated as follows:

pi,j =

∫
z∈Ai

zfi(z)dz. (8)

According to consider probability of successful access pi,j, we can calculate the expected
distance d′i,j by the following formula:
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Figure 5. Geometric centroid point method.

d′i,j =

∫
z∈Ai

dis(z, lj)fi(z)dz

pi,j
. (9)

Figure 6. Expected probability method.

In the first step, we combine a greedy algorithm to select workers. The system chooses
the most efficient workers to work for a subregion and updates the coverage of the subre-
gion target in real time. Once the coverage goal is reached or the worker travel budget is
exhausted, the algorithm will terminate. The cost-benefit calculation is as follows:

δ
(1)
i,j =

d′i,j
min(1− Uj,

1
kj

) + α
. (10)

U represents the matrix vector of the current coverage part of the subregion target. The
entire denominator represents the expected coverage contributed byWi (Uj=

Σi∈NFmi,j×Si,j

Sj
).

Thus, the expected coverage of the contribution of a worker Wi to the target tj is
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min(1 − Uj,
1
kj

). The role of α is to prevent over coverage. The proposed algorithm

4 can select appropriate workers. At the same time, an upper threshold R is adopted to
stop the algorithm.

Algorithm 4 Fair worker selection algorithm

Require: W – A collection of workers, Tr – The target collection of the subregion, Ti – Worker
Wi’s leisure time, b – Budget vector, d′ – Expected distance matrix, k – Subtarget coverage
requirement vector, g – Task coverage target, p – Choice probability matrix, R – The
iterative threshold.

Ensure: Fm – The first worker selection matrix, U – Partial vector of target coverage
1: Fm=0, U=0, ATU=0, r=0;
2: while ATU ≤ g × S and r < R and Ti ≥ Tmin do
3: if exists suitable workers Wi then
4: if Ti ≥ Tmax then
5: The probability of successful Wi selection for workers is pi, j;
6: end if
7: if Ti < Tmax then
8: The probability of successful Wi selection for workers p× pi, j;
9: end if

10: if selected then
11: Fmi,j ← 1;
12: ATU ← min(1− Uj ,

1
kj

)× Sj+ATU ;

13: Uj ← min(1− Uj ,
1
kj

)× Sj+Uj ;

14: bj ← bj-d
′
i,j ;

15: if Uj == 1 then

16: Tr ← Tr
tj

;

17: end if
18: if bi == 0 then
19: W ← W

Wi
;

20: end if
21: else
22: R← R+1;
23: end if
24: else
25: break;
26: end if
27: end while

(3) Optimization for the second step [49]: In the second step, workers can decide
whether to refuse the task. The selected worker may not be able to access the subtarget
because of uncertainty of the anonymous location. Therefore, without affecting the overall
coverage, the allocation results need to be fine-tuned in the second optimization step.

Algorithm 5 describes the fine-tuning algorithm for the second stage of worker selection.
Again, it is given a certain probability to interactively select the appropriate worker Wi

to avoid over coverage. Unlike Algorithm 4, we want to satisfy the first constraint of (6).

δ
(2)
i,j =

d′i,j
bi

+ 1− Fmi,j

min(1− Uj,
1
kj

) + α
. (11)



126 X. Huang, J. Chen, H. Huang and A. Aliyev

Similar to Algorithm 4, we use the iteration thresholdR′ to stop the algorithm. Different
from the optimization in the first step, the probability p′i,j in the second step is calculated
as follows:

p′i,j = 1−
δ

(2)
i,j

maxδ
(2)
i,j

. (12)

Algorithm 5 Fair fine-tuning algorithm

Require: W – A collection of workers, Tr – The target collection of the subregion, Ti – Worker
Wi’s leisure time, b – Budget vector, k – Subtarget coverage requirement vector, R′ – The
iterative threshold, U – Partial vector of target coverage, STU – Select the coverage of
workers for the first time, LTU – Select the coverage of workers for the second time.

Ensure: Sm – The second worker selection matrix.
1: Smi=0, LTU=0, STU=0, r=0;
2: for all subtargets in Tr do

3: Uj ← Uj -
Fmi,j

kj
;

4: STU ← STU +
Fmi,j

kj
;

5: end for
6: while LTU ≤ STU and r < R′ and bi > 0 Ti ≥ Tmin do
7: if there is a possible subtarget in Tr then
8: if Ti ≥ Tmax then
9: The probability of successful Wi selection for workers is 1;

10: end if
11: if Ti < Tmax then
12: The probability of successful Wi selection for workers is p;
13: end if
14: if selected then
15: if di,j < bi then
16: Smi,j ← 1;
17: LTU ← min(1− Uj ,

1
kj

)× Sj+LTU ;

18: Uj ← min(1− Uj ,
1
kj

)× Sj+Uj ;

19: bj ← bj - di,j ;

20: Tr ← Tr
tj

;

21: end if
22: else
23: R← R+1;
24: end if
25: else
26: break;
27: end if
28: end while

5. Analysis.
Different from the traditional public sense system, there exists leakage of user sensi-

tive information during the registration phase. Our system uses pseudonyms of bitcoin
addresses to represent task requester and workers. This protects the privacy of crowd
sensing tasks without submitting their real identities. According to the submitted work
information, especially the location information, we propose a location privacy protection
method based on the spatial hidden area, which replaces the real location area of the
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workers with the corresponding hidden area to receive the task information and prevent
the workers from being exposed to the public’s real location. Therefore, our system can
provide dual protection for identity privacy and location privacy. For example, multiple
consortium blockchains disperse transaction records and disrupt the original transaction
sequence, which can resist traditional time-linked attacks. Table 2 below lists the privacy
protection performance of our MCS system compared with other systems.

Table 2. Security comparison table

Whether the
system def-
ends again-
st attacks

Location
spoofing
attack

Background
knowledge
attack

Time corr-
elation a-
ttack

Task spec-
ific attack

Conspiracy
to attack

Traditional
MCS system

× × × × ×

[55] X X × × X
CrowdBLPS [49] X X × × X
Our system X X X X X

For the location privacy problem of the traditional MCS system in three stages, our
system can well resist this privacy problem. Specifically:

• As for the location spoofing attack in the data sensing stage, because of the decen-
tralized characteristics of blockchain, the privacy problem caused by the centralized
sensing platform or service providing disguises to send false information is well re-
sisted. And the anonymity of blockchain can naturally resist background knowledge
attacks, too.
• Considering time-related attacks, our system utilizes some consortium blockchains.

The corresponding location request interaction runs on the consortium blockchains,
which disrupts the order of task information in public blockchain. Thus, it is capable
of resisting time-related attacks. In our new system, users upload their work scope
in the public blockchain, but do not upload the exact location information. The
security of consortium blockchains is higher than that of the public blockchain, so it
can resist specific task attacks.
• Due to the decentralized characteristics of the blockchain, the collusion attack caused

by the centralized sensing platform or service provider providing perceived user in-
formation to the attacker will be well resisted in data transaction stage.

On the one hand, there is no information encryption when users upload their location
information, it cannot resist stealing users’ locations attacks. On the other hand, it
does not disrupt the transaction order. Thus, it cannot resist time correlation attacks.
Although the MCS system [53] adopts multiple private blockchains, the user information
uploaded in the public blockchain still does not encrypt. It also cannot resist task-specific
attack by stealing the user’s location. For the CrowdBLPS system [49], although the user’s
exact location is not uploaded during pre-registration, it has to upload the user’s exact
location information during the worker selection phase on public blockchain. CrowdBLPS
system also cannot disrupt the order of transactions, and makes it vulnerable to time-
linked attacks (which are generally secure). Our system solves all above privacy issues
mentioned in the appeal well with high security.

Efficiency The traditional systems are efficient because they run fast on local, private,
and consortium blockchain [53]. Study [55] and CrowdBLPS system [49] to run the
algorithm on the public blockchain and thus takes a long time to reach a consensus.



128 X. Huang, J. Chen, H. Huang and A. Aliyev

Our system runs the algorithm on the double-blockchains (i.e., public and consortium
blockchains), which combines both advantages of public and consortium blockchains.

Fairness To prevent some eligible workers from remaining idle for a long time., our
system adds an idle time parameter T . The longer idle time of worker owns, the higher
probability of being selected in stages. The fairness of selecting workers is guaranteed,
so the fairness is high; However, the traditional MCS system [55, 53] and CrowdBLPS
system [49] do not add the idle time parameter T to the users, which cannot guarantee
the fairness of worker selection.

6. Conclusions.
In this paper, we propose a location privacy protection system based on double-chains.

The system avoids some security problems such as information denial and tampering in
the traditional centralized public sense system. To improve the quality of data sensory
and protect workers’ privacy, we propose a two-step method with pre-registration and
selection. More precisely, to run the pre-registration method on a public blockchain and
the fine-tuning method of the selection phase on a consortium blockchain. Since the pre-
registration stage only needs to upload the user’s work and the consortium blockchains
has high efficiency, this can solve the location privacy problem of workers. To improve
the efficiency of the model, we adopt multiple consortium blockchains to distribute the
transaction records of workers. To improve the service quality of our system, we formalize
some parameters in the pre-registration stage to enhance the fairness of worker selection.
Finally, we theoretically analyze the system model, and the results show that our system
is efficient, feasible, fair, and reliable.
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