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Abstract. Shared decision-making (SDM) is an effective decision-making method in
clinical practice. However, the pressure of negotiation and decision makes it difficult to
apply widely. To alleviate the pressure of artificial SDM and promote the realization
of clinical SDM, this article presents a fuzzy constraint-based negotiation and decision
method for the patient-doctors SDM. The proposed method includes a negotiation model
and a decision-making model. The negotiation model quantifies the negotiation process
between patient agent (PA) and doctor agents (DAs) in SDM. It consists of the negotia-
tion behavior and the negotiation protocol of agents. The decision-making model quanti-
fies the decision process of SDM. It translates the negotiation results into treatment plans
and assists PA in making decisions. The main contributions are as follows: 1) the agent
technology is applied to make one-to-many SDM efficient and intelligent; 2) the dis-
tributed and fuzzy constraint theories are used to design an interconnected, autonomous,
and distributed multi-agents negotiation system for SDM; 3) the decision-making model
is presented to assist doctors and patients in making decisions. The evaluation results of
the negotiation and decision models demonstrate that our method is feasible and effective.
Keywords: Shared decision-making, One-to-many, Agent negotiation, Fuzzy constraint,
Decision-making.
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1. Introduction. Decision-making is the most important part of medical activities, di-
rectly affecting the quality of examination, diagnosis, treatment, and management of
patients. In general, there are two decision-making methods in clinical practice: one is
to make decisions according to effectiveness, the other is to make decisions according to
preferences [1]. Specifically, the common decision approaches for patients and doctors
including paternalistic decision-making, informed decision-making, and shared decision-
making (SDM) [2]. However, paternalistic decision-making and informed decision-making
have gradually become the fixed flow or process in clinical practice. The existence of
patient preference and autonomy makes it questioned. By comparison, SDM integrates
patient preferences and treatment effectiveness into the decision-making process. Thus,
with the vigorous development of citizens’ autonomy consciousness, SDM with higher
participation and more autonomy has been entrusted with higher expectations.

The SDM is a health decision-making process made by doctors and patients. It needs
to adopt the professional knowledge of doctors and consider the values, tendencies, and
conditions of patients, so as to fully discuss the possible benefits and injuries [3]. As the
method of medical decision most concerned and advocated, the theory and practice of
SDM have been studied by many experts and scholars. However, compared to mature
theoretical researches, there are many problems in clinical practical researches on SDM
needed to be solved [4, 5]. For example, inadequate response of health care systems,
shortage of medical knowledge of patients, lack of communication skills and treatment
time of doctors, deficient participating awareness of doctors and patients, etc.

To solve these problems, experts and scholars conducted a lot of research work. For
example, to solve these problems of health care systems and awareness, relevant laws
and standards of SDM are attempted to establish in some countries [6], such as Amer-
ica and Britain. For the shortage of medical knowledge of patients, the patient decision
aids [7, 8, 9] are researched and developed. It can help patients participate in healthcare
choices, provide information about options, and help patients clarify and convey their per-
sonal values associated with the different functions of the options. In some researches, the
trained communication skills [10, 11] of doctors have been effectively studying. Further-
more, some assessment tools [12, 13, 14] are developed to evaluate the decision process,
results, and related structure to improve its clinical application. In summary, the re-
searches of SDM in Europe and America are relatively complete and systematic, covering
many aspects. But elsewhere, like China [15], the studies of SDM are still in the stage of
theoretical reference and application exploration.

Although various tools and laws have been developed and established to tackle imple-
mentation problems of SDM, negotiation pressure or effective negotiation pressure still
exists. These pressures include but are not limited to limited time, effective learning,
incomplete information sharing, multiple negotiation issues, multiple negotiation parties.
These pressures also exist in other fields, but instead, these problems in other fields have
been solved by some computer technologies to a certain extent, such as agent negotiation
used in e-commerce. Specifically, the Genetic algorithm [16, 17, 18], Bayesian algorithm
[19, 20, 21, 22], Kernel Density Estimation method [23], Reinforcement learning [24, 25, 26]
algorithm, and other algorithms [27] are applied to learn the knowledge of the opponent or
environment in the agent negotiation process under incomplete information. The sequen-
tial negotiation [28, 29] and package deal negotiation [30] are proposed to deal with the
pressure of increased negotiation issues. In addition, many multi-agent systems (MAS)
[31] have been developed to solve the problems of negotiation and management among
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multiple agents. For SDM, the realization is mainly through negotiation, and the partic-
ipants are knowledgeable, which meets the concept of the agent. In a system composed
of multiple autonomous agents, negotiation enables the agents to reach an agreement on
a belief, goal, or plan [32]. To be exact, agent negotiation is existed to solve complex and
practical negotiation problems and make them intelligent. Thus, it is reasonable to use
agent negotiation to realize and solve complex shared decision-making problems (SDMPs)
among doctors and patients.

In addition, some studies suggested that the Internet of things has been widely applied
in various areas [33, 34], especially in health or medical systems [35, 36, 37]. Thus, based
on the Internet, it is feasible for this paper to use agent negotiation technology to design
an SDM system for one patient and multiple doctors, as shown in Figure 1. It consists
of multiple doctor agents, a patient agent, and multiple Graphic User Interfaces (GUIs).
The referenced situation is one patient negotiating with many doctors to choose a better
treatment. Although it is more common for one doctor to negotiate with multiple patients,
the negotiation and decision model required is more complicated because of personalized
diagnosis and treatment. Thus, the situation of one doctor and multiple patients is not
considered in this paper.
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Figure 1. The distributed agent system architecture of SDM.

In response to the above considerations, this paper proposes an agent-based negotiation
and decision model to realize one-to-many SDM and relieve the negotiation and decision
pressure of it. The proposed negotiation model is a fuzzy constraint-directed agent-based
negotiation model (FCAN). It represents preferences adopt fuzzy membership functions,
achieves agreement through interactive negotiation, and satisfies different desires with
negotiation strategies. The proposed decision-making model is a model that transforms
the negotiation result into a treatment plan and assists patients and doctors in making
decisions for treatment. The novelty of the proposed method is to adopt agent technology
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for efficient and intelligent one-to-many SDM. This method designed an interconnected,
autonomous, and distributed multi-agent negotiation system and proposed a structured
and auxiliary decision-making framework for SDM. In practice, it alleviates the pressures
of artificial SDM and promotes the realization of clinical SDM. These pressures of artificial
SDM include limited time, effective learning, incomplete information sharing, multiple
negotiation issues, and multiple negotiation parties.

The remainder of this paper is structured as follows. In Section 2, the theoretical basis
for modeling SDM into agent negotiation-decision and SDMPs into distributed fuzzy
constraint satisfaction problems (DFCSPs) is described. In Section 3, we introduce the
proposed one-to-many shared negotiation and decision system, including the negotiation
process and protocol, the decision-making model, and the behavior model of different
agents. In Section 4, the negotiation model and the decision model are evaluated from
different points of view. In Section 5, the major work of this paper is concluded, and a
prospect and plan for further studies are made.

2. Modeling Shared Decision-Making with DFCSP. This paper focuses on the
common and simple scenario in SDM, that is, the negotiation and decision among one pa-
tient and multiple doctors. In actual medical practice, the patient will submit treatment
requests and seek the help of multiple doctors to obtain the best treatment for the disease.
These requests are the value requirements for some issues related to treatment, for exam-
ple, issues related to the treatment of pediatric asthma: cost, effectiveness, side-effects,
risk, convenience, etc [38].

In the SDM, patient-centered negotiation is a typical multi-agents and multi-issues
negotiation scenario. Thus, in an SDMP, a set of issues is assigned to be negotiated by a
set of PA and DAs. For flexible and decentralized negotiation, SDM is modeled as agent-
based negotiation, which is the process of solving conflicts among one PA and many DAs
in a MAS. That is, although both PA and DAs are agents with private interests, their
ultimate goal is to reach a satisfactory agreement by solving conflicts. These conflicts
may be that PA prefers to get the most effective treatment at the lowest cost, while DAs
prefer to ensure that the treatment of PA is the most effective without considering the
cost.

Definition 2.1. The classic multiple shared decision-making problems (SDMPs) can be
modeled as a MAS, (P ,D, I).
P is a set of n patient agents (PAs) representing patients. Each PA needs to propose

some treatment requirements in order to negotiate with the DAs. It is noteworthy that the
number of PAs in our set scene is one, that is, n equals one;
D is a set of m doctor agents (DAs) representing doctors. Each of those needs to

respond to the requests of PAs and then negotiate with PAs. The value of m can be set as
1; and
I is a set of interrelations between the two classic agents. Each Ii,j specified the issues

need be negotiated by ith PA, Pi, and jth DA, Dj.

According to Definition 2.1, the SDMP is translated into a MAS, which is composed of
one PA, many DAs, and the interrelations among them, as shown in Figure 2. Each PA is
responsible for imposing time and priority constraints on the objective. These constraints
further specify the negotiation time, deadline, and priority of each issue. Each DA is
responsible for imposing capacity constraints, namely, value limits, which are specified
by the treatment cost and clinical results. Then, SDMP can be expressed as DFCSP,
which can make PA and DAs reach consensuses. The fuzzy constraints are used to model
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Figure 2. Shared decision-making with one PA and many DAs.

the objective of each agent, and the relationship between agents is regarded as the exter-
nal constraints associated with each agent to determine whether the solutions satisfy all
constraints in the DFCSP. A DFCSP can be expressed by a distributed fuzzy constraint
network (DFCN) in which fuzzy relations for each agent and among agents are specified.

For a PA and m DAs, a DFCN (U, X, C) for a SDMP is defined as a set of 1 + m
fuzzy constraint networks (FCNs) {N1, N2, ..., N1+m}, where Nk is the FCN for agent
k ∈ (P ,D).

Definition 2.2. A DFCN (U, X, C) in a SDM (P ,D, I) can be defined as a fuzzy
constraint network (FCN) Nk = (Uk, Xk, Ck), which is from agent k, where:
Uk is the universe of discourse for FCN, Nk;
Xk = (Un

i=1X
k
i ) is a tuple of n non-recurring objects; and

Ck is a set of fuzzy constraints in the FCN, which includes the internal constraints
among objects in Xk and external constraints between agent and its opponent;
U is the universe of discourse for DFCN;
X = (UK

k=1Xl) is a tuple of all non-recurring objects; and
C = (UK

k=1Cl) is a set of all fuzzy constraints in the DFCN.

By Definition 2.2, the non-recurring object Xk represents attributes of agent k, for
example, the beliefs, the environment cognition (e.g., the cognition of treatment deadline
and medical resources). The fuzzy constraint set Ck of agent k consists of a set of internal
fuzzy constraints among objects in Xk and a set of external fuzzy constraints between
agent k and opponent agents. The internal fuzzy constraints involve priority constraints
(e.g., the priority of issues), objective constraints (e.g., the desire for cost, effectiveness,
and other objectives), etc. The external fuzzy constraints involve the relations and con-
straints of at least one object in Xk and another object not in Xk. The task of a DFCN
in the SDM is to obtain a solution for Xk and FCN, which can be seen as intention ΠNk ,
that is, Πk. It expresses that the fuzzy set Xk of non-recurring objects satisfies all fuzzy
constraints in Ck simultaneously.
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3. Negotiation-decision mechanism for the SDMP. The fuzzy-based negotiation-
decision mechanism is presented to solve the SDMPs. The mechanism consists of the
negotiation model, the decision-making model, and the agent behavior model. They are
described in Section 3.1, Section 3.2, and Section 3.3 separately. The negotiation model
includes the specific behavior steps and the obeyed negotiation protocol of agents in the
negotiation process. The decision-making model is utilized to assist PA and DAs in
determining the final decision result, namely, the treatment plan. The behavioral models
of an agent are illustrated to explain how the agent works to reach a consensus with its
opponent agents.
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Figure 3. Negotiation model for SDM.

3.1. Negotiation model. The main contents of the negotiation model include the nego-
tiation process and protocol, which describe in Sections 3.1.1 and 3.1.2, respectively. The
negotiation process among PA and DAs is the exchange process of offer and counter-offer
until an agreement is reached or no further offer/counter-offer is generated. The negoti-
ation protocol defines the rules that agents obeyed and the type of message that agents
sent. The negotiation model for SDM is shown in Figure 3.
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3.1.1. Negotiation process. In the negotiation process, the negotiation steps of agents
include opponent learning, concession evaluation, offer generation, and judgment of ne-
gotiation termination. Once received an offer from its opponent agent, the agent will
learn the preference of the current opponent and evaluate the concession value in the
next round. Based on the concession value, a new behavior state is determined, and a
feasible set is generated. After that, a new offer or counter-offer is generated. Meanwhile,
whether the negotiation is terminated will be judged to determine the type of message.
These steps will be cycled until the agreement is reached or the negotiation is failed.

Assumed that a set of negotiation issues I = {I1, I2, . . . , Ii, . . . , In} and a solution SεΠk

is given, the aggregated satisfaction value (ASV) of agent k about S is:

Ψ (S) =
n∑
i=1

wi ∗ Fi(S) (1)

Where Fi (S) is the fuzzy membership function about issue Ii of S, which can be
modeled by the formula (2) and represent the preferences for each issue flexibly and
effectively. The main parameters can be obtained directly from the doctors and patients.
Additionally, n is the total number of issues and wi is the priority weight for issue Ii.

Fi(S) = µi (x) =



0, if x ≤ a

1 −
(
x−b
b−a

)2
, if a < x < b

1, if b ≤ x ≤ c

1 −
(
x−c
c−d

)2
, if c < x < d

0, if x ≥ d

(2)

Where, a is the smallest value of x which satisfies x ≤ a and µi (a) = 0, d is the largest
value of x which satisfies x ≥ d and µi (d) = 0. b and c is the interval boundary value
of the most preferred value of variables and µi (b) = µi (c) = 1. The fuzzy membership
function illustrated in Figure 4. Since the larger of the issue value, the higher of the
satisfaction is when the issue value x changes in the range of a and b. Contrary to the
situation in [a, b], the satisfaction is decrease in the range of c and d. And the satisfaction
of negotiated issue remains constant in [b, c].

Figure 4. Illustration of membership functions.

Step 1: opponent learning
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Since the preference of the opposing agent is unknown, the agent can build a linear
function to fit it if the counter-offer received from the opponent can be differentiated.
Thus, we suppose that the preference function of the current opposing agent k̄ for the
issue Ii can be represented as F k̄

i

(
S̄
)

= µk̄i (x) = a∗x+b, where x is the value of counter-
offer for ith issue. Given the previous counter-offersX = {X1, X2, . . . , Xj, . . . , Xr−1}, Xj =
{xj1, xj2, . . . , xji, . . . , xjn} of the opponent, as least two counter-offers, the parameters of
the preference function of opponent about issue Ii at round r can be got by Least Squares
Method as:

a =

∑r
j=1 (xji − x̄i)(µk̄i (xji)− µk̄i (xi))∑r

j=1 (xji − x̄i)2 (3)

b = µk̄i (xi)− ax̄i (4)

Where r is the current negotiation round, xji is the value of issue Ii obtained from

the counter-offer at round j, and µk̄i (xji) is the corresponding preference value, that is,

satisfaction degree. In addition, x̄i is the mean of xji, and µk̄i (xi) is the mean of µk̄i (xji).
Step 2: concession evaluation
The main purpose of negotiation is to move towards and explore the potential agreement

in the common domain that agents are interested in. Thus, the agreement needs to satisfy
the preference of negotiation parties as much as possible. For an agent, the mental state
M reflects its own desires, and the external state reflects the constraints of the negotiation
scenario, including the response state R and environment state E. The response state
reflects the intention of its opponent, and the environment state represents the constraints
of the negotiation environment. Therefore, the agent can determine the value of the
concession by evaluating the three states.

The mental state M includes a satisfaction level ρ and a tightness δ, which can be
obtained by the offer A and the behavior state ε (that is, aggregated satisfaction threshold)
in the last round, where:

ρ = Ψ(S∗) (5)

δ = 1− (ρ− ε) (6)

Ψ (S∗) is the ASV of agent for S∗ ∈ Π, S∗ is the prospective solution of the agent in
the last negotiation round.

The opponent responsive state R = {σ} is the difference degree between last offer A
and most recently received counter-offer B, which can be calculated by:

σ = 1− (G (A0, B0)−G (A,B))/G (A0, B0) (7)

Where A0 and B0 is the first sent offer and received counter-offer. G (A, B) is the
distance measurement between offer A and counter-offer B on issue IiεX. It can be
defined as follows:

G (A,B) =

√∑n
i=1 L(Ai, Bi)

2

n
(8)

There Ai and Bi are the possibility distributions of offer A and counter-offer B on issue
IiεI, respectively.
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Because, the major environmental constraints E of the PA and DAs in SDM are time
constraints, so the constraints of time can be defined by the formula in [39] as:

τ = λ+ (1− λ) (
r

rmax
)
β

(9)

There, r is the current negotiation round, rmax is the deadline of negotiation, λ and β
are constants, where 0 ≤ λ ≤ 1 and 0 ≤ β ≤ 1.

By formula (1)-(9), we can obtain the mental state M = {ρ, δ} of the agent, the
responsive state R = {σ} of the opponent agent and the environment state E = {τ} of
the negotiation scene. Thus, the concession value ∆ε of the agent can be defined as:

∆ε = (µρ (ρ) Λ µδ (δ) Λ µσ (σ) Λ µτ (τ) )ω (10)

Where µρ(ρ), µδ (δ), µσ(σ), and µτ (τ) represent the desire for concession about the sat-
isfaction level, degree of tightness, degree of difference, and time constraint, respectively.
The parameter ω can be adopted to adjust the convergence speed of negotiation.

Finally, based on the concession value ∆ε and the last behavior state ε, the new behavior
state ε∗ of the agent is:

ε∗ = ε−∆ε (11)

Step 3: offer generation
Given the FCN N , intension Π, and a new behavior state ε∗, the feasible solutions P

can be acquired by:

P = Γ(Π, ε∗) = {S|(SεΠ)Λ(ε ≥ Ψ (S) ≥ ε∗)} (12)

Where Ψ (S) is the ASV of the agent about S. Suppose that counter-offer B and
feasible solution P is known, the prospective solution S∗ can be selected by follows:

S∗ = arg(maxS∈PH(S, B)) (13)

In the formula (13), the utility function H(S, B) is used to evaluate the preference of
feasible solution SεP , and the similarity of counter-offer B and feasible solution S. The
calculation formula of it is:

H (S,B) =
1

n

√√√√ n∑
i=1

(min(W1(Si)
ω1 ∧W2(Si, Bi)

ω2))
2

(14)

W2(Si, Bi) = 1 − D(µi (Si) , µ
K̄
i (Bi)) (15)

There, W1 and W2 are the preference function and similarity function on issue Ii sep-
arately, and D is a distance measure function. In addition, ω1 and ω2 are the weights
corresponding to the above two functions, which is also related to the negotiation strategy,
defined as follows: i) Collaborative strategy: ω1 < ω2; ii) Win-Win strategy: ω1 = ω2;
iii) Competitive strategy: ω1 > ω2, where 1 ≥ ω1, ω2 ≥ 0.

The different negotiation strategies represent different negotiation attitudes of the
agents. The most direct performance is the behavior of the agent when dealing with the
offer of the opponent. If the agent adopts the collaborative strategy, the direct response
to the opponent may be to make a concession. But if the agent adopts the competitive
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strategy, the direct response to the opponent may be to argue and not to compromise.
The direct response of the agent who adopts a win-win strategy in dealing with the offer
from its opponent is to try to find a solution that satisfies both its own interests and the
opponent’s desires.

Given feasible solution P and prospective solution S∗, the offersA∗ = {A∗1, A∗2, . . . A∗i , . . . , A∗N}
over a set of issues IεX can be generated by:

A∗ = ∧(P, S∗) (16)

The element A∗i in set A∗ corresponds to the offer on issue IiεX, and A∗i is the marginal
particularized possibility distribution of S∗i in space X, which is defined as follows:

A∗i = ProjXq
(S∗ ∩ Π̄X1 ∩ Π̄X2 ∩ . . . ∩ Π̄Xi−1

∩ Π̄Xi+1
∩ . . . ∩ Π̄XNX

) (17)

Where Π̄Xi
= S∗i is the cylindrical extension on space X, Xi is the object of issue Ii,

and NX is the number of negotiated objects.
Step 4: judgment on negotiation termination
Finally, judge whether the negotiation is terminated and determine the type of message.

There are two states of negotiation termination, that is, success and failure. The judgment
condition for a successful negotiation is the following:

Ψ (B) ≥ ε∗ and Ψ (S∗) ≥ ε∗ (18)

and the judgment condition for negotiation failure is:

ε∗ ≤ 0 or P = ∅ (19)

If the ASV of the agent about the received counter-offer B is greater than or equal
to the current aggregated satisfaction threshold ε∗, and the ASV of the next offer S∗ is
greater than or equal to the current aggregated satisfaction threshold ε∗, the negotiation
is successful. Also, it indicates that the agreement is reached and the fuzzy constraint
satisfaction problems (FCSPs) are solved. Otherwise, the negotiation fails because ε∗ in
the new round is less than or equal to zero, or the set of feasible solutions is empty.

3.1.2. Negotiation protocol. A negotiation protocol is presented to describe common rules
and communication languages. It is mainly used to deal with the interactions between
agents during the negotiation process. Concerning the different demands of DAs and PAs
in the SDMP, various messages that DAs and PAs can send and receive in the process of
negotiation are as follows:

Ask ((Pi,Dj), Ai,j), PA send a message with an offer A to DA for asking;
Agree ((Pi,Dj), Bi,j), PA agrees the counter-offer B form a DA and send an Agree ()

message to the DA;
Accept ((Pi,Dj), Bi,j), PA send a message to DA to accept the counter-offer B;
Reject ((Pi,Dj), ∅), PA send a Reject () message to DA to reject reach an agreement

with the opponent;
Tell ((Dj,Pi), Bj,i), DA send a message with a counter-offer B to PA for telling;
Agree ((Dj,Pi), Aj,i), DA agrees the offer A from PA and send an Agree () message

to the PA;
Abort ((Pi,Dj), ∅) or Abort ((Dj,Pi), ∅), for some reason, the agent aborts the

negotiation with an empty offer.
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Figure 5. Negotiation protocol among one PA and many DAs.

Figure 5 illustrates the negotiation process among one PA and multiple DAs. At first,
PA will send the Ask () message to all DAs with the initial offer of issues to start the
negotiation. After that, DA will evaluate the offer received (step 2) using Eq. (18) and
Eq. (19) to choose the next action. If the offer satisfies the constraints of DA, the Agree
() message will be sent in step 11. If it does not satisfy the constraints, step 3 is executed,
and a counter-offer is generated by Eq. (1)-(17) in step 4. Then, the basic preferences and
beliefs of each issue decide whether the DA is able to respond to the PA. If the response
can be done, a Tell () message with a counter-offer will be sent to the PA (step 5).
Otherwise, there is no feasible solution existing and counter-offer generating, an Abort
() message will be sent in step 14, which also means that the agent will withdraw from
the negotiation process.

When PA receives a Tell () message from a DA, the carried counter-offer is evaluated
(step 6) to determine whether the offer satisfy the requirement. If the counter-offer satisfy
the requirements of issues, a Agree () will be sent (step 12) and the DA will become
a candidate (step 10). Conversely, if the requirements cannot be satisfied, an Ask ()
message with a new offer will be generated (step 8 and 9) when the requirements of the
issues adjusted based on Eq. (1) through Eq. (17). As shown in steps 2 through 9, the
iterative exchange of offer and counter-offer among PA and DAs finished. Besides, the DA
is also selected to be one of the candidates when PA received an Agree () message from
DA. Next, the negotiation will be repeated according to the above steps until all DAs are
the candidates or time is out. Finally, PA will select the best DA in the candidate DAs
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set in step 15 and send the Accept () message to it and the Reject () messages to other
DAs.

The negotiation terminated successfully if PA has reached a consensus with all DAs,
or the time is out and the candidates are not empty. However, if PA withdraws from the
negotiation with all DAs or all DAs withdraw from the negotiation with PA, the state of
negotiation is a failure. In addition, the negotiation terminated in a failure state if the
negotiation time out and there no candidates existed.

3.2. Decision-making model. The ultimate purpose of SDM is to make the treatment
as effective as possible for patients. Thus, the decision-making model is needed for PA to
select the “best” treatment plan and the “optimal” opponent after negotiating with all
opponents, DAs. In this section, we define the process of decision-making that can achieve
the above goals based on the medical guidelines. First, the negotiation results should be
transformed into treatment plans after the PA negotiating with all the DAs. And then,
the “optimal” treatment plan will be selected according to some rules. Significantly, the
“optimal” treatment plan is one in the medical guideline that most conform to patient’s
disease condition and negotiation results. As shown in Figure 6, the decision-making
model is described.
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Figure 6. Decision-making model for SDM.

The presented decision-making model mainly includes two parts: the treatment rec-
ommendation module and the treatment decision-making module. The treatment recom-
mendation module can transform the negotiation results of PA and DAs into the actual
treatment plans by calculating recommendation scores based on the treatment plan map-
ping table, namely the treatment plan evaluation table. The treatment decision-making
module can help PA make decisions using the analytic hierarchy process (AHP), which is
a combination of qualitative and quantitative decision-analysis methods.

Step 1: treatment plans recommendation
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According to the disease condition of the patient and the treatment guideline, alterna-
tive treatment plans can be selected, and then the treatment plans evaluation table will
be built. Assume that PA and DA agree on the value of each issue. Then, based on the
treatment plans evaluation table, we will calculate the recommendation scores for each
agreement with the treatment plans selected from the treatment guidelines. The score is
calculated as follows:

Φ (S) =
n∑
i=1

wi ∗Ri (Si) (20)

Where the wi is the weight factor of relevant issues, Si is the value of ith issue in solu-
tion S, and Ri is the recommendation function that can forge links between negotiation
result and treatment plans. In order to more clearly formulate, set Si = x, thus the
recommendation function R(Si) can be described as:

If Ti = y is an accurate number, the recommendation function is the similarity function
between two accurate number, that is,

R(Si) = Sim(Si, Ti) = 1 − |x− y|
|b− a|

, x, y ∈ [a, b] (21)

Else if Ti = [α, β] is an interval number, the recommendation function is the similarity
function between an accurate number and an interval number, that is,

R (Si) = Sim (Si, Ti) =

∫ β
α
exp− |x− u|du

β − α
=


exp(x−α)−exp(x−β)

β−α , if x < α
2−exp(α−x)−exp(x−β)

β−α , if α ≤ x ≤ β
exp(β−x)−exp(α−x)

β−α , if x > β

(22)

Where x, y, α, β ∈ [a, b], a and b is the minimum value and maximum value of ith
issue. Ti is the value of ith issue in the treatment plan T , which is obtained based on the
treatment plans evaluation table given by some professional doctors.

Step 2: decision-making of the treatment plan
According to formula (20), the recommendation scores of all consensuses reached by

the PA and DAs will be calculated, that is, the recommendation scores of all optional
treatment plans of each DA will be obtained. After that, the treatment plan with the
highest score will be recommended by each DA. Eventually, the PA needs to choose the
“best” treatment plan from these recommendations, that is, makes decisions that finally
satisfy the preference of the PA. For this question, the AHP method is used to help PA
make decisions. It can decompose complex multi-criteria or multi-factor decision problems
into a hierarchical structure [40, 41]. The AHP of the selection of the “best” treatment
plan involves four steps; these steps are as follows:

a. The decision-making problem is decomposed into a hierarchical structure composed
of multiple decision elements, including objectives, factors and treatment plans.

b. According to the characteristics of decision elements, the method of pairwise com-
parison is used to judge the relative importance of elements and construct the judgment
matrices. In addition, the pairwise comparison method is calculated based on the 1-9
scale (see Table 1) proposed by Santy et. al. [41].

c. Executing the hierarchical single ranking and calculating the relative weight of the
lower-level factors to the upper-level factors. In this process, it is necessary to check the
consistency of each weight vector.
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Table 1. Pairwise comparison scale for preference.

Scale Definition and Description
1 Equally important
3 Moderately important
5 Strongly important
7 Very strongly important
9 Extremely important

2,4,6,8 Intermediate important

The consistency check is an operation to eliminate possible logical errors in the con-
struction of the judgment matrices and check the coordination between the importance
of each element. The index of consistency is the consistency ratio (C.R.), the smaller the
value of C.R., the closer the judgment matrix is to complete consistency, and the final
weight meets the decision requirements. The definition of C.R. is shown:

C.R. =
C.I.

R.I.
, C.I. =

λmax − n
n− 1

(23)

Where, R.I. is the random consistency index and obtained from Table 2. N is the
number of elements, that is, the dimension of the judgment matrix, and λMax is the largest
eigenvalue of the judgment matrices obtained by the judgment matrices and relative
weights.

Table 2. The value of average random consistency index RI.

n 1 2 3 4 5 6 7 8 9 10
R.I. 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

If C.R. is 0.1 or less, the estimation is accepted. Otherwise, a new judgment matrix is
constructed until the condition of C.R. is satisfied.

d. Executing the hierarchical whole ranking and calculating the overall recommendation
score W (T ) of each treatment plan based on the relative weight of the hierarchical single
ranking. Finally, the “best” treatment plan with the maximum score or weight WT is
selected and the criterion of the selection is:

W (T ) =
fi ∗ wTi∑m
i=1 fi ∗ wTi

(24)

Where,fi is the recommended times of the i th treatment plan, wTi is the total weight of
each level element corresponding to the treatment plan, and m is the number of treatment
plans. The larger the value W (T ), the more the treatment plan conforms to the agent’s
preference.

3.3. Agent behavioral model. Originally, a PA starts the negotiation by proposing its
ideal solution to the issues to all DAs. Afterward, the PA and DAs will follow a certain
behavior model, described below, to interact and reach agreements. The interaction
among PA and DAs is the exchange of an offer and counter-offer about the values of
issues.
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3.3.1. PA behavior. Algorithm 1 describes the behavior of the ith PA, Pi, when it inter-
acting with the corresponding DAs, D, to deal with the treatment issues. Initially, Pi
proposes its prospective solution S∗i using Eq. (13) and generates the initial offers using
Eq. (16) to all DAs. Then, the initial offers will be transformed into Ask () messages
and sent to all DAs. Next, PA needs to select certain and specified actions in order to
respond to the corresponding DAs after receiving messages from these DAs. These actions
to respond to DAs will be repeated until the negotiation is terminated.

If the messages received from DAs are all Abort (), which means that all DAs withdraw
from the negotiation with the PA, then the negotiation among the ith PA, Pi and DAs, D
are terminated in a failure state (in lines 8 and 9). Otherwise, PA will adjust its feasible
solutions according to Eq. (12) and based on the new behavioral state ε∗ (in lines 11
and 12). For each DA, Dj, it will be judged whether reaches a consensus with the PA,
either the Agree () message is generated by PA or sent by DA, if the consensus reached,
the counter-offer Bj,i will be added to the candidate set (in lines 14 to 19). Otherwise,
generating the offers using Eq. (16) based on every counter-offer Bj,i in Bi that received
from the corresponding DAs (in lines 21 and 22). Next, determine whether each generated
offer A∗i,j in the A∗i is empty, and send Abort () message to corresponding DA (in line
25), otherwise Ask () message with new offer A∗i,j is sent (in line 24). Of course, the
negotiation will be failed when PA quit the negotiations with all DAs.

PA, Pi continues negotiate with the DAs until it reaches a consensus with all DAs or
timeout occurs. If one of the above two conditions is satisfied, the best counter-offer Bj′,i
is selected from the candidate counter-offers set B∗i based on the decision-making model.
Thus, an agreement is reached, and the Accept () message is generated and sent to the
corresponding DA, and Reject () messages are sent to the others DAs (in lines 30 to
36). Finally, the negotiation is terminated in a success state, because PA has reached a
satisfactory agreement with a DA.

Algorithm 1 Behavior of PA

1: Procedure Patient Agent (Pi)
2: state ← “normal”
3: activate Timer Ti
4: Generate initial offers Ai for each opposing Doctor Agent Dj ∈ P̂i
5: ∀Ai,j ∈ Ai, send Mi,j = “Ask ((Pi,Dj), Ai,j)”
6: repeat
7: Receive M̂i = {M̂j,i|M̂j,i=“Tell ((Dj,Pi), Bj,i)” or “Agree ((Dj,Pi), Bj,i)” or

“Abort ((Dj,Pi), ∅)”, Dj ∈ P̂i}
8: if ∀M̂j,i ∈ M̂i, (M̂j,i is “Abort”) then
9: state ← “failure”

10: else
11: Get counter-offer set Bi from Tell message
12: Generate new feasible solution set Pi
13: for each Dj ∈ P̂i do
14: if Pi and Dj reach a consensus then
15: if Pi reach a consensus with Dj about counter-offer Bj,i then
16: Send = “Agree ((Pi,Dj), Bj,i)”
17: end if
18: Remove Bj,i from Bi and add it to candidate set B∗i
19: end if
20: end for
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21: if (∃Dj ∈ P̂i,Pi and Dj not reach a consensus) and (Timer Ti is counting)
then

22: Generate offers A∗i for each Bj,i in Bi

23: for each A∗i,j ∈ A∗i do
24: if (A∗i,j 6= ∅) then Send = “Ask ((Pi,Dj), A∗i,j)”
25: if (A∗i,j = ∅) then Send = “Abort (((Pi,Dj)), ∅)”
26: end for
27: if ∀Dj ∈ P̂i, (M̂j,i is “Abort”) or (Mi,j is “Abort”) then
28: state ← “failure”
29: end if
30: else Timer Ti is timeout or Pi reaches a consensus with all Dj then
31: Select the best counter-offer Bj′,i ∈ B∗i based on the “Decision-Making

Model”
32: Generate agreement S∗i according to Bj′,i
33: Send Mi,j′ = “Accept ((Pi,Dj′), S∗i )”
34: ∀Bj,i ∈ B∗i , j 6= j′, send Mi,j = “Reject ((Pi,Dj), ∅)”
35: state ← “success”
36: end if
37: end if
38: until state is “success” or “failure”

3.3.2. DA behavior. Algorithm 2 describes the behavior of a DA Dj when contracting
to issues with the related PA Pi. The negotiation of DA will begin when it received
message from the PA. If all messages received from the PA are Abort () or Reject (),
the negotiation is failed for this DA (in lines 4 and 5). If the message received from the
PA is Accept (), the negotiation with this PA is in the state of success (in lines 6 and 7).

Otherwise, the feasible solutions will be generated according to the new behavior state
ε∗ of itself (in lines 9 and 10). The new behavior state ε∗ is determined by the use of
Eq. (1) through Eq. (11). Then, if DA reaches a consensus with the PA, the Agree ()
message with an agreement S∗j is sent (in lines 11 to 13). Otherwise, the new counter-
offers B∗j for each received offer Ai,j ∈ Aj is generated (in line 15). By judging whether
each counter-offer B∗j,i in the B∗j is empty or not, the accordingly messages are generated
and sent. If the new counter-offer B∗j,i is none, an Abort () message is sent, otherwise, a
Tell () message with the counter-offer is generated and sent (in lines 16 to 19).

Algorithm 2 Behavior of DA

1: Procedure Doctor Agent (Dj)
2: repeat
3: Receive M̂j={M̂i,j|M̂i,j=“Ask ((Pi,Dj), Ai,j)” or “Agree ((Pi,Dj), Ai,j)” or “Abort

((Pi,Dj), ∅)” or “Accept ((Pi,Dj), Ai,j)” or “Reject ((Pi,Dj), ∅)”, Dj ∈ P̂i}
4: if M̂i,j ∈ M̂j, (M̂i,j is “Abort”) or (M̂i,j is “Reject”) then
5: state ← “failure”
6: else if M̂i,j ∈ M̂j, (M̂i,j is “Accept”) then
7: state ← “success”
8: else
9: Get the offer set Aj from Ask message

10: Generate new feasible solution set Pj
11: if Pi ∈ D̂j, Dj and Pi have reached a consensus then
12: Generate agreement S∗j according to Aj

13: Ai,j ∈ A∗j , send Mj,i = “Agree ((Dj,Pi), S∗j )”
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14: else
15: Generate counter-offer B∗j for Ai,j ∈ Aj

16: for B∗j,i ∈ B∗j do
17: if (B∗j,i 6= ∅) then send Mj,i = “Tell ((Dj,Pi), B∗j,i)”
18: if (B∗j,i = ∅) then send Mj,i = “Abort ((Dj,Pi), ∅)”
19: end for
20: end if
21: end if
22: until state is “success” or “failure”

4. Experimental results. To explain the operation process of our presented negotiation
and decision-making mechanism and exhibit its practicality, we have generated an example
of childhood asthma SDM for evaluation. In this instance, assume that there are one PA
and many DAs representing one patient and many doctors, respectively. Such a scenario
is typical of incomplete information and a semi-competitive environment. That is, all
parties in the negotiation attempt to share more information, but they cannot do it, and
their opponents cannot fully understand it. They try to acquire the best deal, but conflicts
of interest and time often arise.

4.1. Experimental settings. The negotiation issues related to the treatment of child-
hood asthma including cost, effectiveness, side-effects, risk, and convenience [35]. We
define the ranges of issues value as following:

Cost (in thousand RMB): min = 0, max = 8; Effectiveness (in rank): min = 1, max
= 10; Side-effects (in percentage): min = 0, max = 100; Risk (in percentage): min = 0,
max = 100; Convenience (in rank): min = 1, max = 10.

The value range of each issue is defined based on the suggestions of doctors and the
analysis of treatments. The value range of issue only limits the scope of discussed problem
and does not affect the evaluation index. All preferences of patient and doctors related to
the experiment were obtained through questionnaires. These preferences are personalized,
which is also the necessary of the discussed problem in this paper. Although these prefer-
ences are personalized, the proposed method in this paper is adaptive. That is, the set-up
of personalized preferences will not affect the evaluation of the model. In addition, the
maximum negotiation round of negotiation is set at 15. If the negotiation round exceeds
the setting, the negotiation is terminated. The values of parameters λ and β in Eq. 9 are
set as 0.1 and 0.25 respectively, which consist with the relevant comparison model.

4.2. Negotiation performance comparisons. The SDMP is a comprehensive problem
that requires PAs and DAs to weigh the values of negotiation issues, and it does not need
to give the optimal solution to a certain issue. Thus, we can evaluate the performance
of our negotiation model by the running time, negotiation round, the combined ASV,
and the final ASV of PA. By varying the number of DAs from 2 to 10, the performance
of our negotiation model with three different strategies (that is, collaborative, win-win,
and competitive) are compared with the classic and related model, namely the time-
consider negotiation model proposed by Zulkernine et al [39], expressed as Time model
(λ = 0.1, β = 0.25). The parameters of the Time model are set based on the common
phenomenon that participants may make larger concessions when the negotiation round
is more than half. In addition, the parameters ω1 and ω2 are set to (i) collaborative
strategy, when ω1 = 0 and ω2 = 1; (ii) win-win strategy, when ω1 = ω2 = 1; (iii)
competitive strategy, when ω1 = 1 and ω2 = 0. In addition, all results are the average
values obtained after repeating the experiment 200 times.
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When the number of DAs increases, the change of negotiation run time (in seconds)
and negotiation rounds are shown in Figure 7 and Figure 8, respectively. From Figure 7,
the negotiation run time increases with increasing DA number. Compared to Time, the
FCAN needs more run time because it needs to explore more solution space. For FCAN,
a competitive strategy needs more run time than the other strategies. However, the run
time is counted in seconds; the negotiation of FCAN is still fast compared to human-based
negotiation. Figure 8 shows the speed of convergence of negotiation among PA and DAs.
The negotiation rounds increase when the number of DAs is increasing for all methods.
Compared with Time, our negotiation model FCAN takes fewer negotiation rounds, no
matter which negotiation strategy is used. The number of negotiation rounds required
for the competitive strategy is greater than that required for the win-win strategy, and
the number of negotiation rounds needed for the collaborative strategy is the lowest.

0

2

4

6

8

10

12

2 4 6 8 10

A
v
er

ag
e 

ru
n
 t

im
e

Number of DAs

Time FCAN collaborative FCAN win-win FCAN competitive

Figure 7. Performance comparisons in terms of run time in second.
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Figure 8. Performance comparisons in terms of negotiation round.

Figure 9 shows the average combined ASV of successful negotiations when the number
of DA increases from 2 to 10 and the number of PA is fixed at 1. The maximum combined
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ASV is 2 (that is, the maximum ASV of PA is 1, and the maximum ASV of DA is 1).
The higher the combined ASV, the more likely the final negotiation is that the parties
are satisfied. From this table, the changing trend of the combined ASV is not fixed,
which means that with increasing DA numbers, combined ASV may rise or fall. Because
it is not clear to what extent the PA will reach an agreement with the new rival DAs.
However, regardless of the type of strategy used by FCAN, it can be observed that the
FCAN model obtains a higher combined ASV than the Time model. In addition, the
combined ASV of FCAN with competitive strategy or win-win strategy is higher than
the FCAN with collaborative strategy. When the numbers of DAs are small, the FCAN
with a competitive strategy achieves the best performance in terms of the combined ASV.
Instead, as the number of DAs increases, the FCAN with a win-win strategy outperforms
other strategies. Combined with Figure 8 and Figure 9, it can be concluded that the
FCAN with a win-win strategy tends to balance the benefits for both sides when the
number of DA increases as it achieves a higher combined ASV with the lower number of
negotiation rounds.
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Figure 9. Performance comparisons in terms of combined ASV.

In addition, assuming that there is no decision-making model, we can evaluate the
performance of the negotiation model simply with the final satisfaction of PA. Figure 10
shows the final ASV of PA if the satisfaction of PA is the selection condition. It can be
observed that the overall trend of the final ASV of PA increases as the number of DA
increases. The FCAN model can make PA obtain higher ASV compared with the Time
model. The PA will get the higher ASV if it uses the FCAN model with a competitive
strategy for negotiation, and the lower ASV is obtained if PA uses the FCAN model with
a collaborative strategy for negotiation. The conclusion is logical and practical, which
also shows the feasibility of our negotiation model.

4.3. Decision-making for treatment. In order to describe the process and functions
of our presented decision-making model in detail, this section proposes an instance to
explain. We consider a real SDM scenario consisting of one patient and five doctors, that
is, one PA and five DAs. The requirement of this clinical decision-making scene is that
PA obtains a satisfactory treatment plan after negotiating with all DAs. Assume that the
patient is a 9-year-old child whose asthma severity reached grade 4. In the negotiation
process, the preferences of PA and DAs are often different, including the value of issues
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Figure 10. Performance comparisons in terms of PA final ASV.

and the priority of issues. What needs to be explained is that the issue preferences of PA
on treatment are given based on the personal circumstances, the issue preferences of DA
on treatment are given based on professional knowledge. The preferences for negotiation
issues of one PA and five DAs are listed in Table 3 and Table 4

Table 3. The preference of issues value of all parties.

Parties
Issue

Cost Effective Side-effect Risk Convenience

PA [0,1,3,5] [8,9,10,10] [1,3,4,6] [0,0.2,0.5,1.5] [8,9,10,10]
DA1 [3,4.5,5,5.5] [6,7,8,9] [0,1,1.5,2] [0,2,2.5,3] [7,7,8,10]
DA2 [4,5,6.5,7] [6,6,7,9] [0,1,2,3] [1,2,2.5,3] [6,7,8,9]
DA3 [3,4.2,5,5.7] [4,5,6,9] [5,6,9,10] [0,1.5,2,2.5] [5,6,7,9]
DA4 [3.5,6,7.5,8] [6,7,8,10] [4,5.5,6,7] [0.5,1.5,2,2.5] [5,6,7,9]
DA5 [3.5,5,6,6.5] [7,7,8,9] [5,6,8,9] [1,1.5,2,3] [6,6,7,10]

Table 4. The preference of issues weight of all parties.

Parties
Issue

Cost Effective Side-effect Risk Convenience

PA 0.3 0.25 0.15 0.2 0.1
DA1 0.25 0.3 0.2 0.15 0.1
DA2 0.23 0.3 0.27 0.15 0.05
DA3 0.1 0.4 0.2 0.2 0.1
DA4 0.3 0.3 0.15 0.15 0.1
DA5 0.15 0.3 0.25 0.2 0.1

The performance of our negotiation model is demonstrated in Section 4.2. Thus, PA
can negotiate with DAs effectively based on the given negotiation model. Assuming that
the negotiation strategies adopted by PA and DAs are win-win, PA can reach agreements
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Table 5. Negotiation results for PA and different DAs.

Opponents
Issue

Cost (k) Effective Side-effect Risk Convenience

DA1 3.57 8 1.81 0.92 9
DA2 4.41 9 1.59 1.21 9
DA3 4.26 9 5.41 1.21 9
DA4 4.25 9 5.1 1.12 9
DA5 3.94 8 5.29 2.71 9

with all DAs after full and efficient negotiation, the negotiation results are shown in Table
5.

Although PA has reached an agreement with all DAs through negotiation, it is not
the ultimate goal of SDM in the given clinical environments. The purpose of SDM is
to enable the patient to obtain effective treatment plans, and it also needs to conform
with the preference of patients and doctors. Therefore, it is necessary to use our decision-
making model to help the patient and doctors make a treatment decision. The details of
the optional treatment plans according to the condition of the patient in the treatment
guidelines [42] are shown in Table 6. Based on the first step in the decision-making model
and the content of Table 6, the treatment recommendation list is: [DA1: “En-High Dose
ICS/LABA”, DA2: “En-High Dose ICS/LABA + Sustained-Release THP”, DA3: “En-
High Dose ICS/LABA”, DA4: “En-High Dose ICS/LABA + Sustained-Release THP”,
DA5: “En-High Dose ICS/LABA + Sustained-Release THP”], and the recommendation
scores of it are: [0.6068, 0.6298, 0.6116, 0.4867, 0.6220].

Table 6. The evaluation values of treatment plans according to the
negotiation issues.

Treatments
Issue

Cost Effective Side-effect Risk Convenience

En-High Dose
ICS/LABA 1 2.7-4.5 (3.6) 8-9 (8.5) 1-1.5 (1.25) 1-2 (1.5) 9.5-10 (9.75)

En-High Dose
ICS 2+ LTRA 3 4.3-6.5 (5.4) 7-8 (7.5) 2-3 (2.5) 1.5-2.5 (2) 9-9.5 (9.25)

En-High Dose ICS +
Sustained-Release THP 4 2-4.2 (3.1) 6-7 (6.5) 6-10 (8) 2-2.5 (2.25) 8-8.5 (8.25)

En-High Dose
ICS/LABA + LTRA 5.7-7.3 (6.5) 9-10 (9.5) 5-6 (5.5) 1-1 (1) 7.5-8 (7.75)

En-High Dose ICS/LABA +
Sustained-Release THP 3.5-5 (4.25) 9-10 (9.5) 6-8 (7) 1-1 (1) 7.5-8 (7.75)

1 A combination of inhaled corticosteroids and long-acting beta2-agonists.
2 Inhaled corticosteroid.
3 Leukotriene receptor antagonists.
4 Theophylline.

In order to assist the patient and the doctors in decision-making, the “optimal” treat-
ment plan can be selected by adopting AHP. In this case, the decision hierarchy for the
selection of treatment plans, based on the five issues and four alternatives as shown in
Figure 11.

By definition as Table 1, comparing an attribute with itself gives an equal importance
value of 1. In addition, the value of the reciprocal comparison is the reciprocal of the
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Decision to select a treatment 
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En-High Dose ICS/LABA 
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Figure 11. Hierarchy configuration model for treatment decision.

relative importance value. Thus, the 5×5 pairwise comparison matrix for level 2 can be
built according to the priority preference of the negotiation issue of PA. For the two treat-
ment plans obtained from the first step of the decision-making model, the 2×2 pairwise
comparison matrix for level 3 can be built according to the treatment plans.

Table 7. The preference of issues weight of all parties.

Factors Level 2 Priorities Treatment plans Level 3 Priorities

Cost 0.5028
En-High Dose ICS/LABA 0.6667

En-High Dose ICS/LABA + Sustained-Release THP 0.3333

Effective 0.2602
En-High Dose ICS/LABA 0.8

En-High Dose ICS/LABA + Sustained-Release THP 0.2

Side-effect 0.0677
En-High Dose ICS/LABA 0.8889

En-High Dose ICS/LABA + Sustained-Release THP 0.1111

Risk 0.1346
En-High Dose ICS/LABA 0.2

En-High Dose ICS/LABA + Sustained-Release THP 0.8

Convenience 0.0348
En-High Dose ICS/LABA 0.1

En-High Dose ICS/LABA + Sustained-Release THP 0.9

All required consistency tests have passed, and the priority vectors for the decision hi-
erarchy are shown in Table 7. Finally, all weights are integrated to determine the overall
preferences of the treatment plans. The overall weight of En-High Dose ICS/LABA is the
sum of the product of level 2 weight and level 3 weight, that is (0.5028*0.6667 + 0.2602*0.8
+ 0.0677*0.8889 + 0.1346*0.2 + 0.0348*0.1) = 0.6339. Combine the recommended fre-
quency with the overall weight, the recommendation score of En-High Dose ICS/LABA is
0.5358, and the recommendation score of En-High Dose ICS/LABA + Sustained-Release
THP is 0.4642. That means En-High Dose ICS/LABA has a higher weight and is the
most preferred treatment plan among all optional treatment plans.

5. Conclusion. This study proposes a fuzzy constraint-based negotiation model FCAN
and a treatment decision-making model for the implementation of patient-to-doctors
SDM. By employing agent technology, the FCAN model the behavior of patient and
doctors, and simulate the interaction and negotiation among them. It can not only make
human-oriented clinical decisions intelligent and efficient but also learn the preference of
opponents and avoid potential conflicts to effectively reach a satisfactory agreement. The
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treatment decision-making model can transform the negotiation results into related treat-
ment plans. It can recommend personalized treatment plans, provide assistant decision-
making for patients and doctors, and reduce the burden of patients and doctors. Com-
pared with other methods, the agent-based negotiation and decision-making method pro-
vides a new idea, which can not only realize intelligent medical assistant decision-making
but also consider the preferences of doctors and patients for personalized treatment. The
experimental results show that the presented negotiation model is effective in terms of
convergence speed, combined ASV, and the final satisfaction of the PA in negotiation,
and the proposed decision-making model is feasible in treatment decisions.

Although the proposed negotiation and decision-making method is promising, it still
can be improved. For example, the robustness and convergence of our negotiation model
can be further studied and personalized treatment recommendations based on data can
be added. Additionally, the proposed negotiation and decision method used in other
dynamic medical environments, such as multiple doctors and multiple patients, can be
researched.
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