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Abstract. To ensure that UHV DC converter stations work in a safe and stable man-
ner, topology optimization control is very important. Currently, most algorithms use
heuristic rules to reduce the number of candidate searches, but only obtain suboptimal
solutions in some sense. In this paper, a topology optimization algorithm based on con-
volutional reinforcement learning is proposed for heterogeneous networks in UHV DC
converter stations. In a nutshell, the algorithm conducts a simulation through a deep
neural network-guided Monte Carlo tree search, and the findings of the tree search then
reinforce the neural network’s learning. Furthermore, the algorithm is a real-time algo-
rithm, and the solution can be continuously improved as computing resources increase.
The simulation experiments show that compared with the heuristic algorithm, the pro-
posed algorithm has better reliability and can adapt to dynamic environment and network
changes without restarting the algorithm.
Keywords: Heterogeneous network, Topology control, DRL, Monte Carlo tree search.

1. Introduction. Considering a variety of power equipment in the converter station,
the complex equipment information, and the close association between secure operation
of the DC transmission system and the equipment status, panoramic surveillance of var-
ious power equipment should be conducted to guarantee security and stabilization of the
UHV DC converter station [1]. However, the networks of the converter station are hetero-
geneous, because the mode of data transmission varies from different power devices and
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multiple networks are required for coordinated transmission. If the topology of heteroge-
neous networks is improperly connected, dynamic imbalance of data access to the network
will occur, resulting in poor data transmission performance and lower network reliabil-
ity. Therefore, it is necessary to optimize the topology of the heterogeneous networks,
improving the network topology and thus the transmission performance.

In recent years, topology optimization of heterogeneous networks has been widely con-
cerned. Based on the reliability-based structural topology optimization, In Literature [2],
a method based on random gradient is proposed to calculate the failure probability of every
few optimization iterations through effective sampling strategies. Literature [3] proposed
a new adaptive distributed topology control algorithm to ensure that the networks were
connected in the event of node failure. Literature [4] proposed a tree-based algorithm to
build a tree topology for the multi-hop wireless network. Advantage of the tree topology
was to realize efficient data transmission and aggregation through non-leaf nodes in the
tree [5]. The throughput of heterogeneous networks is the main criterion to evaluate the
pros and cons of the established network model. Currently, some of network topologies
established for efficient data transmission have been constructed [6, 7, 8]. The perfor-
mance of the above-mentioned topologies of heterogeneous networks shows the great im-
pact of topology quality on data transmission, especially in some real networks [9]. Some
network topologies also consider data security and transmission efficiency [10, 11, 12].
Literature [13] put forward an energy-saving topology control algorithm (named EDTC),
which built a robust backbone topology with the maximum spanning tree algorithm, and
reintroduced some edges into the topology, making the network life cycle of the algorithm
twice as long as the existing algorithm. However, the time delay problem caused by large
search volume is not considered. Therefore, the network topology should be constructed
according to the needs of the specific network, need to meet as much as possible a variety
of network types and network transmission performance.

Although the topology optimization methods mentioned above take into account the
data transmission quality and security, the optimization process is time-consuming, when
the topology changes. This can not meet the data transmission requirements of the power
industry. Finding the topology with optimal reliability in the heterogeneous networks of
UHV DC transmission system is essentially a combinatorial problem [14]. Literature [15]
proposed a minimum spanning tree topology optimization method, which used heuristic
rules to decrease the quantity of candidate searches and seek for sub-optimal answers in a
way. However, this method still failed to meet the requirements for rapid, real-time and
reliable reconstruction of the communication network that fails. Furthermore, because
the search space is too large for all possible topological configurations, it becomes more
complicated to optimize network configuration with exhaustive search.

Deep reinforcement learning (DRL) is performing better and better in network allo-
cation, resource optimization and wireless control in communication field [16]. Liter-
ature [17] propose a new convolutional neural network architecture named DNetUnet,
which combines U-Nets with different down-sampling levels and a new dense block as
feature extractor. Literature [18] designed an early warning mechanism to help the agent
identify a proper action time, which effectively improves the fault tolerance and robustness
of the method. Most of the existing algorithms do not take advantage of the characteris-
tics of network models to heuristically reduce the number of potential candidate searches.
To solve this problem, this paper applies reinforcement learning to topology control, and
proposes a topology control algorithm based on deep reinforcement learning (DRL-TC).
It uses a framework combining deep reinforcement learning and Monte Carlo Tree Search
(MCTS) to build networks according to predefined routing topology. First, convolutional
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neural network (CNN) is trained to measure the transmission flow of the partly estab-
lished topology and guide the MCTS to continue searching the more possible parts of the
search space. In turn, MCTS search findings enhance CNN learning, which contributes to
more satisfactory prediction results in the next iteration. The contributions of this paper
include:

(1) An innovative and general DRL-TC algorithm is proposed, which can determine the
approximate optimal topology of heterogeneous networks from a reliability perspective in
cases where domain-specific knowledge beyond topological rules is not required.

(2) The algorithm is an at-a-time statistical algorithm that can adapt to environmental
dynamics (including possible network anomalies) and reconfigures the network accord-
ingly.

(3) The proposed DRL-TC algorithm obtained by simulation results is faster than other
heuristic algorithms in the optimization calculation.

2. System Modeling and Related Issues.

Figure 1. Heterogeneous network diagram of converter station

2.1. Heterogeneous Network Model. Since the network of UHV DC converter station
is heterogeneous (as shown in Figure 1), the network topology should be optimized to settle
the dynamic imbalance matter that occurs when data flow accesses the internet and that
is caused by the unreasonable topological link. Thus, the communication requirements of
the network can be met.

For the heterogeneous network model, as shown in Figure 1, the heterogeneous network
is modeled as a tree structure (Figure 2), which is composed of a master station v0 and
N − 1 data transmission nodes v1, v2, ..., vN−1, where each node has a unique path to the
master station v0. The symbols used in the network model are shown in Table 1.
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Figure 2. Heterogeneous network tree structure

Table 1. Symbols used in network models

Symbol Meaning
v0 Main station
vi Node

C(vi) Child node vi
δ(U) A set of edges pointing to U
Rvi Data generated at node vi
gvi Data aggregated at node vi
a(·) Aggregate function
εPvi Processing time consumed per bit
εTxvi Transmission time consumed per bit
ρ Power amplification constant

dvi,vj Euclidean distance between vi and vj
Evi Total traffic of node vi
evi Transmission flow per round
xvi,vj Binary variable pointing to edge(vi, vj)

In each round when the data is collected, the node vi, i ∈ {1, 2, . . . , N − 1} needs to
forward gvi data to its parent node. Calculate the value of gvi by Equation (1) shown as
follows:

gvi = Rvi + a

 ∑
vj∈C(i)

Rvj

 (1)

Where, Rvi is the data generated by vi itself; the data set
∑

vj∈C(i) Rvj is originated

from the child nodes of vi, and a(·) is the aggregation function. In this paper, the trans-
mission traffic of transmission model shown in Equation (2) is utilized, in which the node
transmission traffic related to the topology is mainly composed of data processing and
the time consumed for transmission:
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evi =
(
εPvi + εTx

vi

)
gvi (2)

Where, εPvi and εTxvi are the time per bit consumed by data processing and transmission
at the node vi, respectively. Their values depend on the distance to the parent node, as
shown by Equation (3):

εTx
vi

= ρd2
vi,vj

(3)

Where, dvi,vj is the Euclidean distance between node vi and its parent node (or master)
vj, and ρ is the power amplification constant in the link budget that considers the shadow
fading effect.

2.2. Problem Descriptions. Denote the total transmission flow of node vi as Evi . Evi =
∞, assuming that the master station v0 is unlimited. In this paper, the lifetime of a
heterogeneous network is defined as the minimum transmission flow of all nodes according
to the total rounds. The maximization of this lifetime can be expressed as:

maximize{xij} min
vi∈V

[
Evi
evi

⌋
(4)

∑
(vi,vj)∈δ(S)

xvi,vj ≥ 1, ∀S ∈ V \ {v0} (5)

∑
(vi,vj)∈δ(vi)

xvi,vj = 1,∀vi ∈ V \ {v0} (6)

xvi,vj ∈ {0, 1},∀vi, vj ∈ V (7)

where, δ(S) is the set of edges {(u, v) : u ∈ S, v /∈ S}. If vi is a subset of vj, vi = 1,
otherwise 0. Constraint condition Equation (5) guarantees the connection among all
nodes, while constraint condition Equation (6) guarantees that only one node can be
transferred to the parent node at a time. The optimization problem in Equation (4) is an
NP-hard problem [15]. To reduce the number of candidate searches, a real-time DRL-TC
algorithm is proposed, which can focus on the more possible part of the search space, of
which computing resources are limited, and approach the optimal solution with improved
computing ability.

3. Topology Optimization Algorithm Based on Deep Reinforcement Learning.

3.1. Reinforcement Learning. Reinforcement learning means that the actions are learnt
and taken in a dynamic environment to maximize reward signals. In step t, the agent
performs actions in a context and receives observation results of the environmental state
through an immediate reward rt. The policy can be deemed as a set of deterministic
actions that depend on the state st, or a kind of stochastic policy that uses a set of prob-
abilities of actions. A series of states and actions are collectively defined as the trajectory
motion τ , and the discount sum of all reward values rt collected along a trajectory is
called reward, as shown in Equation (8):

R(τ) =
T∑
t=0

γtrt, γ ∈ [0, 1] (8)



Ubiquitous Heterogeneous Network Topology Optimization Control of DC Converter Station 301

where, γ is the discount factor. The value function and policy function are shown in
Equation (9) and Equation (10):

Qπ(s, a) , E

[
N∑
τ=t

rτ | st = s, at = a

]
(9)

V π(s) , Eh

[
N∑
τ=t

rτ | st = s

]
(10)

Reinforcement learning focuses primarily on finding a strategy that maximizes the ex-
pected return, and usually adopts the approximation value function. In the deep learning
method adopted by this paper, CNN is utilized to approximate the policy function and
value function.

3.2. Monte Carlo Tree Search. To fit CNN as a function approximator, a training
dataset composed of states, policies, and values should be provided. Training datasets are
efficiently collected in the more possible part of the search space via MCTS (as shown in
Figure 3). Each node of the search tree is represented by a tuple as (s, a,M(s, a), π(s), Qπ(s, a)),
where s is the state of the heterogeneous network, a is the action selected by s, M(s, a) the
total visits to (s, a)on the search tree, π(s) the prior probability of valid actions predicted
by the CNN, and Qπ(s, a) the state action value, which refers to the expected reward for
taking the action a since the state s, and is calculated by Equation (9).

Figure 3. The process of MCTS

At each search step t < N , Choose the action with the highest confidence, as shown in
Equation (11):

at = arg max
a

(
Qπ(s, a) + cπ(s, a)

√
M(s)

1 +M(s, a)

)
(11)

where M(s) ,
∑

b∈AM(s, b) represents the number of visits in the states, which takes
no into account the actions; c is a hyperparameter that manages the search level. When
the search ends (t < N), the rewards are granted, and the root state of all the visited
states and the actions performed are transmitted back along the search path, in which the
value of Qπ is updated accordingly by the average value of the nodes. MCTS is expounded
in algorithm 1 in details (as shown in Table 2).
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Table 2. MCTS subroutine of DRL-TC algorithm

Algorithm 1: Monte Carlo tree search subroutine
Input: CNN fΘ(s); Number of visits: M(s, a); Prior probability: π(s);
State-action value: Qπ(s, a);
Output: number of visits M ;

exit condition for the recursion
1: if s is the final state, then
2: return r
3: end if

Extend a new search page
4: if s is not visited, then
5: π(s), V (s)← fΘ(s);
6: Get all valid actions of state s;
7: Renormalize π(s) for all valid operations;
8: M(s)← 1;
9: return V (s);
10: end if

Calculate UCBs
11: Initialize U ← φ;
12: for all valid actions a do

13: U(s, a)← Qπ(s, a) + cπ(s, a)

√
M(s)

1+M(s,a)
;

14: end for
Select an action and perform recursive search in next state

15: a← argmaxa U(s, a);
16: s← T (s, a);
17: Recursively search for a new stateV (s) = MCTS(s);

Update tree state

18: Qπ(s, a)← M(s,a)Qπ(s,a)+V (s)
N(s,a)+1

;

19: M(s, a)←M(s, a) + 1;
20: M(s)←M(s) + 1;
21: return V (s)

3.3. Deep Convolutional Neural Networks. The random strategy π(s) determines
the distribution of effective actions in a state. According to the stochastic policy, the
system produces the state and the trajectory h(st) = st, at, ..., sN−1, aN−1, sN from state
st to terminal state sN . The value function V π(s) is devoted as the anticipated reward
for all possible choices starting from states. It is calculated by Equation (10).

Figure 4. Description of the structure of CNN
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This paper uses CNN fΘ(s) (denoted as Θ) to approximate the optimal value function
V ∗(s) = maxπ V

π(s) and the optimal policy π∗(s). As described in Figure 4, the input
of CNN is the training dataset {(s, π(s), V π(s))}. In order to maintain the feasibility of
multi-layer neural network training and significantly improve the representation ability
of CNN, this paper adopts the deep Vgg16 module for feature extraction. The CNN is
then divided into two branches of the convolutional layer, namely softmax used for policy
and value functions and the fully connected layer for ReLU activations, respectively. In
each state, policies and values predicted by CNN (π(s), V π(s)) = fΘ(s) contain the prior
data that directs MCTS to gather states with high rewards and collects in turn the CNN
training dataset.

Once the CNN (π(s), V π(s)) = fΘ(s) is trained, this paper starts from the root state
s0 = 0, and selects in order the actions at at ∼ π (st) from the policies predicted by
the CNN, as well as updates the st+1 = T (st, at) until the complete tree is traversed.
Construction of such topology is a stochastic process that converges to a solution, when
the CNN is trained at sufficient iterations.

3.4. Self-configured DRL-TC Algorithm. The function of self-configuration and self-
optimization, called as SON (Self Organizing Network), can better adapt to the flat and
flexible network structure, and thus has received widespread attention. In this paper,
the DRL-TC algorithm is able to adjust to the dynamic environmental changes. For
example, when nodes are abruptly added or removed, some actions will be valid or invalid
according to the topology rules. In a new round of MCTS, the policy π of a state returned
by the CNN will renormalize all valid actions. Therefore, the new prior policy π(s) that
reflects network changes remains related to historical information. MCTS collects the
new training dataset that is then used to update the CNN. Assuming that the network
changes more slowly than the training, the DRL-TC algorithm is able to track dynamic
network changes and reconfigure the topology accordingly. Algorithm 2 describes the
complete process of the proposed DRL-TC (shown in Table 3).

4. Experiment Simulation.

4.1. Experiment Simulation. To verify the validity the DRL-TC algorithm, a simula-
tion test is performed upon the heterogeneous network of a ±1100 kV converter station.
The heterogeneous network consists of a master node and 12 nodes. 500 to 1000 bits of
perceptual data are uniformly generated in each round of transmission. In this paper, all
nodes have enough time to transmit data in a round. The data transmission flow of all
nodes in each unit is set to εPvi = 5 Mbit/s, and set the power amplification factor ρ = 1.

In each iteration, Ne = 10 training sets from the MCTS are collected at Nm = 100
in each state. Batch size is B=16, and learning rate is α = 10−6. In this paper, the
ADAM optimizer is used to train the CNN. After each iteration, 100 network topologies
are constructed using the CNN and the mean value is taken to verify the validity of the
algorithm.

4.2. Simulation Results. First, this paper demonstrates the accuracy of the DRL-TC
algorithm. In Figure 5, the solid line represents the network delay time for 100 policies
returned by the CNN after each iteration of training. Table 4 gives the comparison results
of the DRL-TC algorithm and three heuristic algorithms: star topology, random topology,
and minimum spanning tree (MST) topology. Among them, the star topology displays the
longest network delay time, while the random topology’s network delay time is relatively
shorter in average but remarkably different. The MST topology reduces the network
delay time again by shortening the entire transmission distance. The DRL-TC algorithm
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Table 3. DRL-TC Algorithm proposed

Algorithm 2: DRL-TC Algorithm Proposed
Input: iterations: Ni; episodes: Ne; search trees: Nm; batch size: B; learning rate: α;
Output: fΘ(s);
1: Training set E ← φ;
2: for i form 1 to Ni do
3: s← 0
4: for e form 1 to Ne do
5: M ← φ
6: for m form 1 to Nm do
7: MCTS(s)
8: doend for
9: Normalize the number of visits M(s) from MCTS(s)
10: E

⋃
(s,M(s), V )

11: if s is the final state, then
12: Get reward r, and update V of all s in iteration e
13: else
14: Select a state a ∼M(s)
15: s← T (s, a)
16: else if
17: end for
18: disorganize data setE;
19: Train CNN fΘ(s), with batch size B and learning rate α
20: end for

proposed in this paper outperforms these heuristic methods in a large part, with a shorter
period of time for convergence.

Figure 5. Accuracy of the proposed DRL-TC algorithm

Figure 6 reveals that DRL-TC can adapt to suddenly changing heterogeneous network,
and average network delay time after each training iteration. In the first iteration, DRL-
TC traverses the search space randomly because CNN get no prior information of the
state value. The algorithm converges to a very high-confidence solution after about 50
iterations. Then, after a particular heterogeneous node is disabled and disconnected, the
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Table 4. Performance comparison between DRL-TC algorithm and three
heuristic methods

Topology 10 20 30 40 50 60 70
Random topology 281.2 291.1 257.4 280.5 282.2 275.3 282.9

Star topology 183.9 186.9 186.9 186.9 186.9 186.9 186.9
Minimum spanning tree topology 236.9 236.9 236.9 236.9 236.9 236.9 236.9

DRL-TC 359.9 235.8 186.5 148.6 148.6 148.6 148.6

Figure 6. Evolution of the training process

DRL-TC begins to reconfigure the network, while the new topology is still related to the
historical data (C in Figure 6). Another advantage of the algorithm is thus obtained,
adapting to changes in the network without restarting.

4.3. Network’s Performance Verification. To verify the topology optimization per-
formance of the proposed method, we executed the simulation in QualNet software. The
heterogeneous network adopted in the simulation is as in Figure 2. In the simulation,
Node 3 as shown in Figure 8 is sudden failed. The simulation result is shown in Figure 7.

Figure 7. Simulation results of dynamic adaptation to the environment

From Figure 7, we can find out that. When the system is just started (as stage A),
it shows a high delay time, and then gradually converges to a stable solution with time,
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and starts to run stably with a short delay time. At about 700 seconds, Node 3 is sudden
failed (as stage B). And then the system exhibits a sudden increase in latency(as stage
C). The proposed method dynamically optimizes the topology again. Then it gradually
returns to the steady state(as stage D).In summary, the proposed algorithm can adapt
to environmental dynamics and reconfigures the network accordingly. The process of
topology optimization is shown in Figure 8.

Figure 8. Node failure topology optimization

5. Conclusions. In this paper, a general and novel topology control algorithm based on
DRL is proposed for heterogeneous networks. The algorithm uses a framework combin-
ing deep reinforcement learning and Monte Carlo tree search. Deep convolutional neural
networks are trained to predict the transmission traffic of partially established topologies
and guide MCTS to carry out the remaining steps in more promising areas of the search
space, enhancing CNN learning. Experimental results show that this algorithm can adapt
to sudden changes of heterogeneous networks, and can converge to a solution faster than
other heuristic algorithms, and does not need to start from scratch when network condi-
tions change. In addition, the convergent solution has higher confidence. The reliability
of structure is becoming an important index of modern structure design. The topology
optimization design based on reliability should be a future research direction. Further-
more, with the improvement of computing resources, this paper predicts that DRL-MCTS
will appear in other promising topological control applications in self-organizing and fully
automated networks of the IoT in the 5G era.
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