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ABSTRACT. With the increasing performance and complexity of modern large mechan-
ical systems, the traditional fault diagnosis techniques can no longer meet the actual
operational needs of mechanical systems. Most of the data sets selected by traditional
fault prediction methods come from a single information source, which can only reflect
partial fault information and lead to large errors in prediction results. Therefore, this
paper proposes a data integration-oriented fault prediction method for mechanical sys-
tems. Firstly, the full vector spectrum technology is used to effectively fuse multi-channel
signals, so as to reflect the vibration characteristics of mechanical equipment more com-
prehensively and accurately. Secondly, the Elman neural network-based fault prediction
model is built to address the characteristics of mechanical equipment systems, such as
non-linearity, strong temporality and small amount of data, and the weight parameters
of the Elman are optimized by using genetic algorithm (GA). Finally, the rolling bearing
data set from the Bearing Data Center of CWRU was used as the experimental data,
and the proposed fault prediction method was simulated using MATLAB software. The
results of the experiment results show that the GA-Elman has a better prediction effect
compared with the prediction effect of the Elman model. The prediction method using
data integration technology is more effective than the prediction method using a single
information source, and has a greater practical value in the field of mechanical system
fault diagnosis.

Keywords: Elman neural network, Fault prediction, Full vector spectrum technique,
Data integration, Genetic algorithm

1. Introduction. With the increasing performance and complexity of modern large me-
chanical systems, the traditional fault diagnosis techniques have failed to meet the actual
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operational needs of mechanical systems, resulting in serious accidents caused by mechan-
ical equipment operational failures still occurring frequently in recent years. Most of the
data sets selected by traditional fault prediction methods come from a single information
source, which can only reflect part of the fault information, resulting in large errors in the
prediction results [1,2,3,4]. How to predict the probability of failure of mechanical sys-
tems to achieve ”predictive” maintenance of equipment has become the focus of research
in the field of fault diagnosis. The study of failure prediction technology for mechanical
equipment systems is of great value both in reducing economic losses and in extending
the service life of equipment.

For critical equipment in heavy industry, the structure of most mechanical systems is
very complex. In addition, the harsh operating environment of large mechanical systems
leads to frequent failures, which can lead to downtime in minor cases or major safety
accidents. Accurate prediction of the probability of mechanical equipment failure is fun-
damental to ensure the lasting operation of critical equipment and to improve equipment
productivity [5,6,7,8]. Mechanical failure prediction technology is a key technology to
achieve ”predictive” maintenance of equipment and ensure the long-term safe operation
of machinery and equipment, and is an emerging interdisciplinary discipline involving ma-
chinery, automation, computers, communications, and control. The core of mechanical
fault prediction technology is to establish a fault prediction model that is consistent with
the actual operating state and development trend of mechanical equipment. The failure
prediction model can predict the future operation status of the system, thus providing a
strong basis for equipment managers to correctly develop maintenance plans [9,10]. At
present, the mainstream mechanical failure prediction models mainly include: time series
prediction model, gray prediction model, machine learning, etc. However, for most large
machinery and equipment systems usually have the characteristics of nonlinearity, strong
time-series and small data volume [11], how to establish a fault prediction model with
high prediction accuracy and real-time online monitoring will be the key problem to be
solved in the study of fault prediction technology.

The aim of this study is to implement mechanical system fault prediction using a full
vector spectrum technique and an improved Elman neural network to fuse the results of
nonlinear, small-sample multi-source data in order to effectively improve the accuracy, re-
liability, and generalization of equipment fault prediction. Therefore, this paper proposes
a data integration-oriented fault prediction method for mechanical systems. Meanwhile,
the full vector spectrum technique and the improved Elman neural network model are
used to realize the whole process of data integration. Compared with general prediction
methods, the proposed method overcomes the limitation that a single information source
can only obtain partial information of the object under test. By reasonably using sensor
information, the utilization of information resources is maximized, thus improving the
accuracy of machinery fault prediction and the reliability of prediction results. The pre-
diction method using data integration technology is more effective than the prediction
method using a single information source. In addition, the proposed method is more
generalizable and can effectively predict the operating trends under different operating
conditions. In other words, only the training data of the model need to be changed for
different study subjects. The bearing fault prediction results show that the proposed
method has good generalization and effectiveness. Therefore, the proposed method has
great theoretical significance for the field of equipment failure prediction. At the same
time, the proposed method can provide a strong basis for scientific management of me-
chanical equipment and reduce equipment management costs in practical engineering,
which has certain engineering application value.
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1.1. Related Work. In the late 1970s, with the rapid rise of nonlinear scientific theories
such as artificial intelligence, fuzzy systems and gray systems, the study of fault prediction
techniques gradually became one of the hot issues of interest to mechanical system experts
and scholars. It was found that data-based fault prediction methods can be used in almost
all situations with high generalization. At the same time, compared with knowledge-
and model-based fault prediction methods, the accuracy of data-based fault prediction
methods has certain absolute advantages [12,13]. By analyzing the historical operation
data of the equipment and the change process of the current operation status, the data-
based failure prediction method uses statistical and mathematical methods to predict the
future status of the equipment. Equipment managers can refer to the prediction results
to develop the most reasonable maintenance strategy.

As a typical representative of data-based fault prediction methods, artificial neural
networks can accurately reflect the nonlinear correspondence between two or more things
without the need to build a mathematical model. Therefore, artificial neural network
models have been widely used in equipment fault prediction. Artificial neural networks
have excellent ability to handle random and nonlinear relationships, and are very suitable
for building data-based mechanical fault prediction models. According to the limitations
of the Long Short-Term Memory (LSTM) neural network model and the data character-
istics of aero engines, Li et al [14] proposed a fault prediction model based on parameter
optimized LSTM neural network, which effectively improved the prediction accuracy. To
address the limitations of a single wavelet threshold processing function, Huang et al
[15] used an adaptive threshold function to reconstruct the signal and used a BP neural
network for fault prediction. Wang et al [16] proposed a fault prediction method based
on Principal Component Analysis (PCA) and BP neural network to reduce the influence
of input sample correlation on BP neural network. Chen et al [17] established a fault
prediction model combining Convolutional Neural Network (CNN) and LSTM, which ef-
fectively improved the accuracy of fault diagnosis and prediction of equipment. Xu et al
[18] combined gray theory and artificial neural network, and proposed a fault prediction
model based on gray neural network, which effectively solved the problem of small sample
problem of low accuracy rate.

1.2. Motivation and contribution. However, most of these fault prediction methods
only analyze the information from a single data source. Since faults usually need to be
described by multiple data sources together, the above fault prediction methods cannot
obtain complete fault information, which leads to easy misjudgment and omission in the
process of fault prediction. In order to solve this problem, this paper uses data integration
technology to fuse data from multiple sources, which can effectively ensure the integrity
of information. The use of data integration technology in the field of fault prediction
can not only improve the prediction accuracy to a certain extent, but also increase the
confidence level of the prediction results. Since the hidden layer of Elman neural network
is equipped with a takeover layer with a delay effect (which acquires the function of
memory), it makes the whole network have the ability to adapt to time change. As a kind
of neural network, Elman neural network has a better analysis ability for nonlinear and
time-sensitive small sample data [19,20,21,22]. Therefore, a fault prediction model based
on Elman neural network is built in this paper. To address the problem of low output
stability due to randomly generated initial weights of Elman neural network, this paper
uses genetic algorithm to optimize the initial weights of Elman neural network, so as to
further improve the accuracy of fault prediction. Finally, the equipment failure prediction
method based on data integration technology is applied to a specific research object of
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rolling bearings. The prediction results of different working conditions are analyzed to
verify the effectiveness and generalization of the proposed method.

The main innovations and contributions of this study are shown below.
(1) In order to fuse multi-source data using data integration techniques, a feature ex-
traction method based on the full vector spectrum technique is proposed, thus effectively
ensuring the integrity of the information.
(2) To address the problem that the Elman neural network has low output stability due
to randomly generated initial weights, a genetic algorithm is used to optimize the above
parameters of the Elman neural network, so as to further improve the accuracy of fault
prediction.

2. Fault feature extraction based on full vector spectrum technique. The oper-
ating environment of mechanical equipment is mostly complex, which makes the vibration
signals collected by sensors very messy. It is difficult to get the characteristic information
that can accurately describe the operation status of the equipment from the messy signals.
Therefore, in equipment fault prediction, it is crucial to extract accurate and reliable fault
characteristic information from the vibration signals collected by sensors.

Conventional signal processing methods make judgments by virtue of individual channel
signals only, so the prediction results are unreliable. For condition monitoring of large
machinery and equipment, two identical sets of sensors, arranged vertically in the same
plane, are generally used to obtain the same vibration signal. However, there are some
differences between the characteristic information collected by the sensors at two different
locations. The full vector spectrum technique [23,24] is able to integrate the homogenous
signals acquired by two sensors vertically arranged in the same plane, which in turn enables
more complete information. The complete information helps to accurately describe the
equipment operating conditions, thus gaining a greater advantage in fault prediction.
In this study, we use full vector spectrum technique to extract features. The accuracy
and effectiveness of the proposed method is verified using multiple sources of fault data
collected under multiple operating conditions using rolling bearing datasets.

The path of motion of a rotating mechanism in the same cross section during the
operation of a machine is considered as an ellipse (same harmonic frequency). However,
the path of motion is different for different harmonic frequencies. The vibration signals
measured in multiple directions of the same cross-section are necessarily different and
also inseparably linked. Since the motion paths in different directions are not the same,
if multiple sensors of the same type are used and arranged in different directions of the
same cross-section for signal acquisition, the structure of the obtained spectrum is bound
to differ as well. If only one sensor is used in the process of equipment fault prediction,
it will inevitably lead to misjudgment and omission.

In order to identify mechanical equipment faults more precisely, two sensor information
arranged vertically in the same cross section must be considered simultaneously. The
acquisition of new information is a comprehensive process of extracting the original in-
formation, not a simple superimposed combination of all original information. The rotor
system of mechanical equipment generates eddy currents at different harmonic frequen-
cies, and the full vector spectrum technique is used to discern faults by the intensity of
eddy currents at different harmonic frequencies [25].

In the full vector spectrum technique, the path of a rotating mechanism operating at
a single harmonic frequency is represented as an ellipse. First, we need to define the
relevant geometric parameters involved in the elliptical path. R; denotes the primary
vibration variable in the harmonic, which is geometrically represented as the long half-
axis of the path. Rg denotes the secondary vibration variable in the harmonic, which is
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geometrically represented as the short half-axis of the path. a denotes the angle between
the long half-axis and the x-axis.

Suppose {z,,} and {y,}(n = 0,1,2,..., N — 1) are discrete sequences in the = and y
directions, respectively. To simplify the computational steps, the set of these two discrete
sequences is made into a plural sequence {2,} = {z,} + {yn},(n = 0,1,2,...,N —1).
The Fourier transform of the complex sequence {z,} yields {Z;} = {Zgr} + {Z1}Hk =
0,1,2,... N —1). {Zgi}and {Z;;} are the real and imaginary part sequences of {Z},
respectively. Therefore, we simply compute the other geometric parameters

[ Rpi = Xpi + Xok = 55 (| Ze| + | Zn—kl]
Rs = Xpi — erZ: o5 UZkl + 1 Zn—kl]
) tan pr = Z0- = tan Qax k=0,1,2,...,5 -1 (1)
tan @ = _ 2wk
T +ZR(N—k)
\ a = ‘Ppk2¢rk

Theoretically, at least two sensors need to be used for signal acquisition in order to ensure
comprehensive information. The full loss-of-spectrum technique is used to fuse the two-
channel signals to obtain a new basis for fault identification.

3. Fault prediction modeling based on GA-Elman. Among the fault diagnosis tech-
niques, the fault prediction method is an advanced equipment maintenance tool. Fault
prediction can predict the future operation of the equipment, thus providing a scien-
tific basis for future maintenance. Under the premise of ensuring lasting operation of
equipment, fault prediction can minimize the number of equipment maintenance, reduce
equipment maintenance costs, and reduce downtime.

At present, many effective fault prediction methods have been proposed by numer-
ous experts and scholars. Artificial neural networks can accurately reflect the nonlinear
correspondence between two or more things without the need to build a mathematical
model. Therefore, the artificial neural network can better reflect the dynamic trend of
system operation. Color. Since the hidden layer of Elman neural network is set up with
a takeover layer with delay effect (the function of memory is acquired), which makes the
whole network have the ability to adapt to time change. Therefore, the Elman neural
network is used as the main body of the prediction model in this paper. For the problems
of Elman neural network such as low fitting degree and easy to fall into local optimum,
we use genetic algorithm to improve it.

3.1. Elman Neural Network. Since the 21st century, artificial neural networks have
had more successful applications in big data, image processing and recognition, and pre-
diction and classification in related fields. The processing of an artificial neural network
(ANN) is a nonlinear system fitting, and the ANN has a structure and processing order
similar to that of the brain. The model of an ANN is shown in Figure 1.

i=1

Where X is the input to the ANN, z is a one-dimensional column vector, and w is the
strength (weight) of the input’s action on the neuron

0; = f(X —0) (3)

Where O is the ANN output, 6 denotes the threshold between neurons, and f denotes
the activation function. The range of ANN output is limited by the type of activation



Improved Elman Mechanical System Failure Prediction 313

Figure 1. Model of ANN.

function(Sigmoid). The principle of the Sigmoid function is shown in Figure 2.
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Figure 2. Principle of Sigmoid function.

is therefore weak for nonlinear, time-series stronger signals. Elman is a typical dynamic
recurrent neural network that propagates in the same way as many feed-forward neural
networks [26]. Compared with BP neural network, Elman has set a takeover layer with
delay effect on the hidden layer. Due to its memory function, the whole Elman network
has acquired the ability to adapt to time variation, so it has a strong ability to deal with
timing information.

Elman neural network is a feedback neural network model divided into four layers: input
layer, hidden layer, take-up layer and output layer. After training, the output values of
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the hidden layer are partially fed back to the units in the upper and lower layers and kept
until the next training moment. This approach makes the Elman neural network sensitive
to data from historical states.

The structure of the Elman neural network is shown in Figure 3. The input vector is the
r-dimensional vector x, x = [z1, Z, ..., x,]. The output vector of the implicit layer is the n-
dimensional vector u, u = [ug, us, ..., u,|. The output vector is the m-dimensional vector
Y,y = [Y1,Y2, -, Ym]. The output vector of the undertaking layer is an n-dimensional
TeyTe = [Te1, Teay ooy Ten). w(i, k), w(k,7) and w(k,j) are all weight matrices between
different layers. f() and g() are the activation functions of the hidden layer and the output
layer, respectively, and k() is the takeover layer activation function.

Xel
Xz
/ () Xen
Wik
.1‘-1 [.'i'lil]' 'hfl :l-il
~ M
Xio: o Wik Uy Wik j) AV
()
X, i, Vin

Figure 3. Structure of Elman neural network.

y(t) = g (f(Owey) (5)
u(t) = f (m(t)w(i,k) + xc(t - 1)w(s,k)) <6>
ze = h(u(t — 1)) (7)

First, the weights of the nodes in each layer are initialized. Then, the training data is
input and the input and output values of each layer are calculated. In the learning process
of Elman neural network model, the output of the previous round of the implicit layer
needs to be fed back to the takeover layer. The data processed by the takeover layer
is input to the implicit layer together with the input layer data. Finally, the error is
calculated based on the results of the output layer and the error function. If the size of
the error meets the requirements or the training times reach the maximum, the training
is stopped, otherwise the weights are updated and the next round of training is entered.
The error function is E.

E(t) = %(y(t) — a(t)" (y(t) = ya(1)) (8)
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Where y,(t) is the standard actual output data and y(¢) is the model output data. The
correction parameter is used to perform the calculation of the weights according to the
error back propagation algorithm. In general, the optimal solution of the weights w is
found by the learning algorithm of gradient descent.

Aw, 3y = n30up(t) 9)
Aw(i gy = 1a0kTes(t) (10)

u Ox.q(t
Awiery =m Y (§;wes) aw—() (11)

k=1 (s:%)
d; = (y;(t) — yas(t)) 9’5 () (12)
o= (Gw0ep) fi () (13)

=1
Oxes(t) B Oxes(t — 1)

Ten = f1()zes(t — 1) + « Twen (14)

Where, 11,12 , and 73 are the learning rates of w(i, k), w(k, 7), and w(k, j), respectively.
d; is the gradient term of the neurons in the output layer, J;, is the gradient term of the
neurons in the hidden layer. ¢; (-) is the derivative of the output layer, and f;(.) is the
derivative of the hidden layer.

In the learning process of Elman network, the features of the data are extracted through
a series of nonlinear mappings. Using the acquired features, the weights of the neurons
are updated uninterruptedly after initializing the parameters in order to get the output
value as close to the real value as possible. When the error between the output value and
the actual value is greater than the set error, the Elman network uses back propagation to
provide feedback from the output layer in order to update the weights among the neurons
in each layer.

3.2. Genetic Algorithm. Genetic algorithm (GA) is an optimization algorithm based
on genetic and mutation mechanisms [27], which is essentially an adaptive probabilistic
optimization algorithm. The process of GA is similar to the process of artificial popu-
lation evolution.GA generates new subpopulations through operations such as selection,
crossover, and mutation to select well-adapted individuals. The basic process of GA is
shown in Figure 4.

Start Coding ——» lnitialixulthu N Aﬂﬂ::?asindividuall
population fitness in a population

Y

Generale a new Three genetic
generation of  f#—— manipulations were
population performed

Figure 4. Basic flow of genetic algorithm.
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3.3. Genetic algorithm to optimize the parameters of Elman. Unlike gradient
descent algorithms, GA is good at handling discontinuous objective value optimization
[28].GA uses fitness functions to judge the degree of individual merit. Choosing the right
function can improve the speed of the merit search. For Elman neural network, the GA
needs to find the merit is the initial weights and thresholds. Therefore, the designed
fitness function F is shown as follows.

L
F=k (Z abs (y; — oi)> (15)
i=1
Where L is the number of individual samples, y; is the expected output of individual i
in the Elman neural network. Here a lower fitness means a better individual. When the
optimal individual is used as the parameter of the initial model, the accuracy of the model
will be improved. O; is the predicted output of individual 7.

There are many methods of selection operations in genetic algorithms, and the com-
monly used one is the roulette method. According to the proportional selection strategy
of fitness, we need to calculate selection probability P; of individual <.

fi=k/F (16)
pi = Nfi (17)
;fi

Where F; is the fitness value. For network training, Gray’s code is used for each individual.
The crossover operation is performed at position k. N is the number of populations. The
coded values corresponding to two consecutive numbers differ by only one code bit.

fi=k/R (18)
pi= (19)
> J

In this paper, Gray code is used for encoding, which can effectively improve the local
search ability of GA and avoid too much change after the occurrence of variation, leading
to the situation of far from the optimal solution. Finally, the j-th gene a;; of individual
1 was selected for the mutation operation. The predictive ability of the Elman neural
network model is mainly influenced by the weights from the input layer to the hidden
layer. Therefore, in this paper, GA is used to select the optimal parameters of the Elman
neural network model, and the specific process is shown in Figure 5.

3.4. GA-Elman based fault prediction process. The collected data are divided into
a training set and a test set. The parameters of the Elman model are optimized using
the training set. The optimized Elmam model is used as the final prediction model. The
feasibility of the model is verified using the test set, and the process is as follows.

Step 1: The original signal will be pre-processed, such as normalization, so as to ensure
the validity of the prediction results.

Step 2: Feature extraction of the raw data using full vector spectrum technique. The
feature data are arranged in the order of frequency bands to obtain a set of feature
vectors for describing the device state. The feature vector data are

randomly sorted. The top 90% of the data are selected in order to form the training set,
and the remaining data are formed into the test set.

Step 3: Input training data, so that the Elman model can fully learn each fault feature,
and perform parameter optimization of the Elman model by GA.
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Step 4: judge whether the target accuracy is reached, if it is, then save the GA-Elman
neural network that has finished learning; if it does not reach the target accuracy, then
return to Step 3, reset the parameters and make the GA-Elman neural network learn
again until it reaches the target accuracy.

Step 5: Build the final GA-Elman prediction model with optimal parameters.

Step 6: Use the test set data as input data, apply the final GA-Elman neural network
model to make predictions, and save the prediction results.

GA part Elman part
Code the random | Optimize the
initial value B weight of Elman
h 4 X
T‘Fj"lcling Elman | Get the best
tra%nmg error as = et ght
fitness value
1
A BuildELM
»  Select operation network and
initialize
: .
Cross operation o
Training data

r

Mutation operation

Meet
termination

¥

Calculate fitness conditions
value v
Test data
Meet
termination
conditions L
Y
Predicting

Figure 5. Flow of GA-Elman neural network.

4. Experimental results and analysis.

4.1. Experimental data set. The test bench [29] used by CWRU is shown in Figure
6. The bearing type used for the test is 6205-2RS JEM SKF. The data set consisted of
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normal and fault data. A total of nearly 60 million data were selected for this study.
All the selected data were normalized and pre-processed before feature extraction. In the

Figure 6. Rolling bearing test bench.

MATLAB programming environment, the Elman neural network was trained using the
training set, and the parameters of the Elman neural network were optimized by GA.
Mean Absolute Percentage Error (MAPE) is used as the fitness function. The number of
hidden layer neurons is 160. The relevant parameters of GA were set as shown in Table 1.
Figure 7 gives the relationship curve between the number of genetic generations M and the

Table 1. Relevant parameters of GA.

Parameters Numerical value
Number of Individuals N 20
Maximum number of genetic generations M 30
Generation G 0.95
The crossover probability P1 0.7
The probability of variation P2 0.01

fitness function in the GA search process. As the number of genetic generations’ increases,
the fitness gradually decreases, that is, the error between the predicted and actual values
gradually decreases, which indicates that the selection of parameters becomes more and
more superior. The fitness reaches stability when M is approximately equal to 21.

4.2. Fault feature extraction results. The vibration signals of the driving end of
the rolling bearing were acquired at a sampling frequency of 12 kHz, a fault diameter
of 0.1778 mm, and a motor load of 1 HP. For feature extraction using the full vector
spectrum technique, for the two-channel signal, the X-channel signal X(t) was acquired
in the 3 o’clock direction, while the Y-channel signal Y(t) was acquired in the 6 o’clock
direction. The histograms of the energy occupancy ratios for normal and three fault
states are plotted as shown in Figure 8. It can be seen that the full vector spectrum
technique can effectively extract the feature vectors under different operating conditions.
The energy distribution of each frequency band can then be used to effectively identify
the rolling bearing fault type.

4.3. Analysis of prediction results for different working conditions. Using the
proposed method, the fault data collected under different working conditions are predicted
separately and the prediction accuracy of the three fault states (inner ring, rolling body
and outer ring fault) is tallied. The parameters of various working conditions are shown in
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Figure 7. Optimization search process of genetic algorithm
Table 2. Various working conditions parameters.
Type Sampling Fault Motor Motor approximate
of working condition frequency /kHz diameter/mm load /HP speed/r-min-1
1 12 0.1778 0 1797
2 12 0.1778 1 1772
3 12 0.1778 2 1750
4 12 0.1778 3 1730
3 12 0.3556 0 1797
6 12 0.3556 1 1772
7 12 0.3556 2 1750
8 12 0.3556 3 1730
9 12 0.5334 0 1797
10 12 0.5334 1 1772
11 12 0.5334 2 1750
12 12 0.5334 3 1730
13 48 0.1778 0 1797
14 48 0.1778 1 1772
15 48 0.1778 2 1750
16 48 0.1778 3 1730
17 48 0.3556 0 1797
18 48 0.3556 1 1772
19 48 0.3556 2 1750
20 48 0.3556 3 1730

Table 2. The failures of inner ring, rolling body and outer ring under different operating
conditions were tested using the proposed fault prediction method. The overall average
prediction accuracies of 96.45%, 95.67% and 96.63% were obtained for inner ring, rolling
body and outer ring failures, respectively. The average prediction accuracy for all fault
types under all operating conditions was as high as 96.25%. It can be seen that both
the single fault and the overall average prediction accuracy are relatively satisfactory. If
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Figure 8. Histogram of the energy share of rolling bearings for different failure
states

the data integration based on the full vector spectrum technique is not used, but the
prediction method using a single information source, the average prediction accuracy of
all fault types under all working conditions is only 89.37%. Therefore, the prediction
method using the data integration technique is more effective than the prediction method
using a single information source.

Therefore, the proposed fault prediction method can effectively predict faults under
different operating conditions with strong generalization. The main reason is that the
feature extraction part uses full vector spectrum technology to fuse the data collected by
sensors, and the fault prediction part uses GA-Elman neural network to make integrated
judgment of state features.

4.4. Experimental comparison analysis. In addition, fault prediction models such as
GA-BPNN[30], Elman,GA-Elman,GA-SVM|31], and PSO-SVM|[32] were compared on the
same dataset. The performance comparison results of five mechanical failure prediction
models are shown in Table 3. It can be seen that the GA-Elman model has better
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Table 3. Various working conditions parameters.

Predictive Models RMSE Accuracy MAPE Time/sec
GA-BPNN 5.4415 0.93847 0.10891 66
Elman 6.1912 0.92035 0.1077 30
GA-Elman 4.0312 0.96253 0.074551 38
GA-SVM 5.1008 0.94593 0.087885 90
PSO-SVM 2.0977 0.946 0.087871 103

prediction results compared to the prediction results of the Elman model. In the ANN-
based prediction model, the RMSE of GA-Elman is significantly lower compared to GA-
BPNN and Elman, which is only 4.0312. The MAPE of GA-Elman is also significantly
lower compared to the improved SVM-based prediction model, which is only 0.074551.
Compared to the Elman model, the running time of GA-Elman model increased, but
still significantly smaller than other prediction models. Therefore, on the whole, the GA-
Elman-based fault prediction model can achieve high prediction accuracy and running
efficiency.

5. Conclusion. In this paper, we use data integration technology to fuse data from
multiple sources, which can effectively ensure the integrity of information. Using data
integration techniques in the field of fault prediction can not only improve the prediction
accuracy to a certain extent, but also increase the confidence level of the prediction results.
In this paper, a fault prediction model based on Elman neural network is built. To address
the problem of low output stability due to the randomly generated initial weights of Elman
neural network, this paper uses genetic algorithm to optimize the initial weights of Elman
neural network, so as to further improve the accuracy of fault prediction. Finally, the
equipment fault prediction method based on data integration technology is applied to the
rolling bearing as a specific research object. The prediction results of different working
conditions are analyzed to verify the effectiveness and generalization of the proposed
method. The average prediction accuracy of all fault types under all working conditions
is up to 96.25%. The GA-Elman-based fault prediction model can achieve high prediction
accuracy and operational efficiency. The proposed mechanical system fault prediction

method is of great value both in reducing economic losses and in extending equipment
life.
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